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Preface

The theory of digital nets and sequences has its roots in uniform distribution

modulo one and in numerical integration using quasi-Monte Carlo (QMC)

rules. The subject can be traced back to several influential works: The no-

tion of uniform distribution goes back to a classical paper by Weyl [263].

The Koskma-Hlawka inequality, which forms the starting point for analysing

QMC methods for numerical integration, goes back to Koksma [119] in the

one-dimensional case and Hlawka [109] in arbitrary dimension. Explicit con-

structions of digital sequences were first introduced by Sobol′ [251], followed
by Faure [66] and Niederreiter [171]. A general principle of these construc-

tions was introduced by Niederreiter in [170], which now forms one of the

essential columns of QMC integration and of this book. These early results

are well summarised in [61, 112, 128, 169, 175], where much more informa-

tion on the history and earlier discoveries can be found.

Since then, numerical integration based on QMC has been developed into

a comprehensive theory with many new facets. The introduction of reproduc-

ing kernel Hilbert spaces by Hickernell [106] furnished many Koksma-Hlawka

type inequalities. The worst-case integration error can be expressed directly

in terms of a reproducing kernel, which is a function which, together with a

uniquely defined inner product, describes a Hilbert space of functions.

As opposed to earlier believes, QMC methods are now used for numerical

integration of functions in hundreds or even thousands of dimensions. The

success of this approach has been described by Sloan & Woźniakowski in

[247], where the concept of weighted spaces was introduced. These weighted

spaces nowadays permeate the literature on high-dimensional numerical in-

tegration. The consequence is a weighted Koksma-Hlawka inequality which

yields weighted quality measures (called discrepancies) of the quadrature

points and the need for constructions of point sets which are of high quality

with respect to this new criterion. This leads to computer search algorithms
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for suitable quadrature points which were first developed for lattice rules

[244, 245] and subsequently extended to polynomial lattice rules [45].

The construction of low-discrepancy point sets and sequences has also un-

dergone dramatic improvements. The constructions of Sobol′ [251], Faure [66],
and Niederreiter [171] have been developed into the overarching notion of

(digital) (t,m, s)-nets and (t, s)-sequences. The problem of asymptotically

optimal constructions in the context of this theory (i.e., which minimise

the quality parameter t) have been developed by Niederreiter & Xing in

[189, 265], with several subsequent extensions. From a theoretical perspec-

tive interesting is the development of a duality theory for digital nets [187],

which gives a general framework for the theory of digital nets.

Another development has seen a partial merging of Monte Carlo (MC)

methods, where the quadrature points are chosen purely at random, with

QMC. The aim here is to introduce a random element into the construction

of low-discrepancy points which, on the one hand preserves the distribution

properties and is, at the same time, sufficiently random to yield an unbiased

estimator (and which has also further useful properties). Such a method,

called scrambling, has been introduced by Owen [204], and was first analysed

in [205, 207]. As a bonus, one can obtain an improved rate of convergence

of O(N−3/2(logN)c) (for some c > 0) using this randomisation.

The topic of improved rates of convergence was further developed first in

[101] for lattice rules, and in [27] for polynomial lattice rules, using a random

shift and the tent transformation. This method achieves convergence rates

of O(N−2(logN)c) (for some c > 0). The quadrature points which can be

used in this method can be found by computer search.

A general theory of higher order digital nets and sequences has been de-

veloped in [36] for periodic functions, and for the general case in [37]. There

the convergence rate is of O(N−α(logN)c) (for some c > 0), with α > 1

arbitrarily large for sufficiently smooth functions.

A breakthrough result concerned with the classical problem of finding

explicit construction of point sets which achieve the optimal rate of conver-

gence of the L2-discrepancy has been achieved by Chen & Skriganov [22].

This problem goes back to the lower bound on the L2-discrepancy by Roth [226].

The aim of this work is to describe these achievements in the area of

QMC methods and uniform distribution. The choice and presentation of

the topics is naturally biased towards the authors interests and expertise.

Another consideration for our choice of topics concerns the monographs

already available, many of whom are cited throughout the book.

In order to give a consistent and comprehensive treatment of the subject

we use Walsh series analysis throughout the book. In our context these
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appeared already in [128, 168] and in the context of analysing digital nets in

[131, 146]. Some authors, especially those concerned with the analysis of the

mean-square worst-case error of scrambled nets, prefer to use Haar wavelets,

which were also used for instance by Sobol′ [250, 251].
In the analysis of scrambled nets, no disadvantage seems to arise from re-

placing Haar functions with Walsh functions. The locality of Haar functions

is offset by the locality of the Walsh-Dirichlet kernel. As illustration, Owen’s

description of a nested ANOVA decomposition [205] can also be neatly de-

scribed using the Walsh-Dirichlet kernel, see Section 13.2. The place where

it turned out that Walsh functions are of considerable advantage is in Chap-

ter 14. The Walsh coefficients of smooth functions exhibit a certain decay

which is an essential ingredient in the theory on higher order digital nets

and sequences. This property is not shared in the same manner by the Haar

coefficients of smooth functions. Furthermore, also the construction of point

sets with optimal L2-discrepancy has its origin in the Walsh series expansion

of the characteristic function χ[0,x). This makes Walsh functions more suit-

able for our endeavour than Haar functions. However, this shall not mean

that this is the case in all situations, in future work authors should consider

such a choice on a case by case basis.

The aim of the book is to give an introduction to the topics described

above as well as some others. Parts of the theory which already appeared

elsewhere are repeated here to make the monograph as self-contained as pos-

sible. This effort is complemented by two appendices, one on Walsh functions

and one on algebraic function fields. The latter one are the underlying basis

for the constructions of digital nets and sequences by Niederreiter, Xing,

and Özbudak described in Chapter 8.

The text is aimed at undergraduate students in Mathematics. The exer-

cises at the end of each chapter make it suitable for an undergraduate or

graduate course on the topic of this book or parts thereof. Such a course

may be useful for students in science, engineering, or finance, where QMC

methods find their applications. We also hope that it may prove useful for

our colleagues as reference book and inspiration for future work. We hope

for a similar advancement of the area in the next decades as we have seen

in the past.
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Finally, we are greatly indebted to our families without whom this book

would not exist.

Sydney, Josef Dick

Linz, Friedrich Pillichshammer

November 28, 2009



Notation

Note: In the following we list only symbols that are used in a global context.

Some specific sets and numbers

N Positive Integers.

N0 Nonnegative Integers.

Z Integers.

R Real numbers.

C Complex numbers.

Zb Residue class ring modulo b (we identify Zb with

{0, . . . , b− 1} with addition and multiplication

modulo b).

Fb Finite field with b elements for a prime power b

(if b is a prime, then we identify Fb with Zb). The

elements of Fb (for b not a prime) are sometimes

denoted by 0, 1, . . . , b− 1.

|X| Cardinality of a set X.

Xm The m fold Cartesian product of a set X.

(Xm)⊤ The set of m-dimensional column vectors over X.

P Finite point set in [0, 1)s (interpreted in the sense

of the combinatorial notion of “multiset”, i.e., a

set in which the multiplicity of elements matters.

S Infinite sequence in [0, 1)s.

Is Index set {1, . . . , s}.
u, v, . . . Subsets of Is.
Pu Point set in [0, 1)|u| consisting of the points from

P projected to the components given by u ⊆ Is.
Fb[x], Zb[x] Set of polynomials over Fb or Zb.
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Fb((x
−1)), Zb((x

−1)) Field of formal Laurent series over Fb or Zb.

Gb,m Gb,m = {q ∈ Fb[x] : deg(q) < m}.
γ Set of nonnegative weights, i.e., γ = {γu : u ⊆ Is}.

In the case of product weights γ = (γi)i≥1 is under-

stood as the sequence of one-dimensional weights.

In this case we set γu =
∏
i∈u γi.

i i =
√
−1.

ωb ωb = e2πi.

Vectors and matrices

a, b, c, . . . ,x,y,z Row vectors over N,N0,Z or R.

a,b, c, . . . ,x,y, z Row vectors over Fb or Zb.

a⊤,b⊤,. . . Transpose of a vector a,b, . . . in Fb or Zb.

x · y (or x · y) Usual inner product of the two vectors x and y

(or x and y respectively).

xu For an s-dimensional vector x = (x1, . . . , xs) and

for u ⊆ Is the |u|-dimensional vector consisting of

the components of x whose index belongs to u, i.e.,

xu = (xi)i∈u. For example, for x = ( 1
10 ,

1
3 ,

1
5 ,

1
4 ,

1
8)

∈ [0, 1)5 and u = {2, 3, 5} we have xu = (13 ,
1
5 ,

1
8).

(xu,1) For an s-dimensional vector x = (x1, . . . , xs) and

for u ⊆ Is the s-dimensional vector whose ith component is xi if i ∈ u and 1

x and u as above we have (xu,1) = (1, 13 ,
1
5 , 1,

1
8).

(xu,0) Like (xu,1) with one replaced by zero.

(xu,w) For w = (w1, . . . , ws) the vector whose ith component is xi if i ∈ u and wi if

A,B,C,D, . . . m×m or N× N matrices over Fb.

A⊤ Transpose of the matrix A.

C(m) Left upper m×m sub-matrix of a matrix C.

C(m×n) Left upper m× n sub-matrix of a matrix C.

Some specific functions

d|n, d ∤ n d divides n (d does not divide n).

{x} Fractional part of a real number x.

⌊x⌋ Integer part of a real number x, i.e., ⌊x⌋ = x− {x}.
⌈x⌉ The smallest integer larger than or equal to x.

log x Natural logarithm of x.

logb x Base b logarithm of x.

a Complex conjugate of a complex number a.
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bwalk kth b-adic Walsh function (see Definition A.1).

χJ(x) Characteristic function of a set J , i.e., χJ(x) = 1 if

x ∈ J and χJ(x) = 0 if x 6∈ J .
ϕb b-adic radical inverse function (see Definition 3.10).

ϕ Bijection from {0, . . . , b− 1} → Fb.

ϕ−1 Inverse of the bijection ϕ : {0, . . . , b− 1} → Fb.

A(J,N,S) For S = (xn)n≥0 the number of indices n, 0 ≤ n < N ,

for which the point xn belongs to J .

A(J,N,P) For a P = {x0, . . . ,xN−1} the number of indices n,

0 ≤ n < N , for which the point xn belongs to J .

λs s-dimensional Lebesgue measure (for s = 1 simply λ).

D∗
N Star discrepancy (see Definition 2.2 and 2.14).

D∗
N,γ Weighted star discrepancy (see Definition 3.59).

DN Extreme discrepancy (see Definition 3.13).

Lq,N Lq-discrepancy (see Definition 3.19).

Lq,N,γ Weighted Lq-discrepancy (see Definition 3.59).

Bk kth Bernoulli polynomial.

O(f(x)) For f, g : R→ R, f ≥ 0, g(x) = O(f(x)) for x→ a if

there exist C, δ > 0 such that |g(x)| ≤ Cf(x) for all
x with |x− a| < δ (or x > δ if a =∞).

πm(c) Projection of c ∈ FN
b onto its first m components.

trm(k) trm(k) = κ0 + κ1b+ · · · + κm−1b
m−1 for k ∈ N0 with

b-adic expansion k =
∑

j≥0 κjb
j .

trm(k) trm(k) = (κ0, . . . , κm−1)
⊤ for k ∈ N0 with b-adic

expansion k =
∑

j≥0 κjb
j .

I(f) Integral of the function f over the s-dimensional unit

cube, i.e., I(f) =
∫
[0,1]s f(x) dx.

QN (f) Quasi-Monte Carlo (QMC) rule for f and an N -element point

set P = {x0, . . . ,xN−1}, i.e., QN (f) = 1
N

∑N−1
n=0 f(xn).

Prob Probability.

E Expectation.

Var Variance.

|x|1 L1-norm; |x|1 = |x1|+ · · · + |xs| if x = (x1, . . . , xs).

|x|∞ Maximum norm; |x|∞ = max1≤i≤s |xi| if x = (x1, . . . , xs).
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Introduction

In this introductory chapter we review some current methods of numerical

integration to put the subsequent chapters into a wider context. This serves

as a motivation for later investigations.

The problem of numerical integration occurs in applications from physics,

chemistry, finance, biology, computer graphics, and others, where one has

to compute some integral (for instance an expectation value) which cannot

be done analytically. Hence one has to resort to numerical methods in this

case. We shall in the following consider only the standardised problem of

approximating an integral of the form
∫

[0,1]s
f(x) dx.

The books of Fox [79], Tezuka [254], Glasserman [83], and Lemieux [152]

and the surveys of Keller [118] and L’Ecuyer [149] deal more directly with

questions arising from applications.

1.1 The one-dimensional case

Let us consider the case s = 1 first. Let f : [0, 1] → R be a Riemann

integrable function. We proceed now as follows. Take a sample of N points

x0, . . . , xN−1 in the interval [0, 1) and calculate the average function value

at those points, i.e.,

1

N

N−1∑

n=0

f(xn).

As approximation to the integral we use the value

length of the interval × average function value,
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that is, we approximate the integral of f by

∫ 1

0
f(x) dx ≈ 1

N

N−1∑

n=0

f(xn).

The question arises how large the approximation error is using this method,

i.e., how large is the value
∣∣∣∣∣

∫ 1

0
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣?

Intuitively we expect the integration error to depend on two quantities,

namely,

• on the quadrature points x0, . . . , xN−1 ∈ [0, 1), and

• on the function f .

Let us consider those two points in turn. The quadrature points should

have no big gaps in between otherwise large portions of the function are

not considered in the approximation. Hence {x0, . . . , xN−1} should be well

distributed in [0, 1). For instance, assume we want to integrate the function

f : [0, 1]→ R given by

f(x) =

{
0 if x ≤ 1/2,

1 if x > 1/2.

If all the points x0, . . . , xN−1 are in the interval [0, 1/2], i.e., the points are

not well distributed in [0, 1), then we obtain

1

N

N−1∑

n=0

f(xn) = 0

as an approximation to the integral
∫ 1

0
f(x) dx = 1/2,

see Figure 1.1.

Hence we obtain an integration error
∣∣∣∣∣
1

N

N−1∑

n=0

f(xn)−
∫ 1

0
f(x) dx

∣∣∣∣∣ =
1

2
.

The error depends of course also strongly on the integrand f itself, and in

particular on the smoothness and some norm of the integrand f , which in

some sense measures how strongly f varies. For instance, constant functions
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1

1

Figure 1.1 Example of badly distributed quadrature points.

are always integrated exactly with our method. On the other hand, assume

we have an integrand f which varies strongly, like the function f(x) =

1+cos(2πkx) in Figure 1.2 for some large value of k. If we choose for N = k

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

Figure 1.2 Example of the strongly varying function f(x) = 1+ cos(2πkx)
with k = 10.

the points x0, . . . , xN−1 as xn = (2n + 1)/(2N) for 0 ≤ n < N , then one

may say that they are “well” distributed in [0, 1), but we still obtain a large

integration error. Indeed we have

∫ 1

0
f(x) dx = 1,
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but

1

N

N−1∑

n=0

f(xn) = 0.

Hence again we obtain a large integration error
∣∣∣∣∣
1

N

N−1∑

n=0

f(xn)−
∫ 1

0
f(x) dx

∣∣∣∣∣ = 1.

Remark 1.1 We see later in Chapter 2 that one can indeed bound the

integration error by a product of a quantity which measures the distribution

properties of the points x0, . . . , xN−1 and a quantity which measures how

strongly the integrand f varies.

1.2 The general case

Now let us consider the case where s ∈ N. Let f : [0, 1]s → R be a, say, Rie-

mann integrable function. We want to approximate the value of the integral
∫ 1

0
· · ·
∫ 1

0
f(x1, . . . , xs) dx1 · · · dxs =

∫

[0,1]s
f(x) dx.

For this purpose we proceed as in the case s = 1, i.e., we choose quadrature

points x0, . . . ,xN−1 ∈ [0, 1)s and approximate the integral via the average

function value of f at those N points, i.e.,

∫

[0,1]s
f(x) dx ≈ 1

N

N−1∑

n=0

f(xn).

Again we want to estimate the absolute value of the integration error
∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ .

Now the question arises how we should choose the quadrature points

x0, . . . ,xN−1. Considering the case s = 1, a solution which suggests it-

self for s > 1 would be to choose the points on a centred regular lattice. For

s = 1 we would choose, as above, the points xn = 2n+1
2N for 0 ≤ n < N . In

general, for m ∈ N, m ≥ 2, the centred regular lattice Γc
m is given by the

points

xk =

(
2k1 + 1

2m
, . . . ,

2ks + 1

2m

)
(1.1)

for all k = (k1, . . . , ks) ∈ Ns0 with |k|∞ := max1≤i≤s |ki| < m (hence we
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have N = ms points). An example of a centred regular lattice is shown in

Figure 1.3.

Figure 1.3 Centred regular lattice Γc
6 in [0, 1)2, i.e., s = 2 and m = 6.

As mentioned above, we need to make some smoothness assumptions on

the integrand f . In the following we therefore assume that the integrand f is

continuous. In this case we can introduce the following concept as a measure

of how much the function f varies.

Definition 1.2 For a continuous function f : [0, 1]s → R, the modulus of

continuity is given by

Mf (δ) := sup
x,y∈[0,1]s

|x−y|∞≤δ

|f(x)− f(y)| for δ ≥ 0,

where | · |∞ is the maximum norm, i.e., for x = (x1, . . . , xs) we set |x|∞ :=

max1≤i≤s |xi|.

If we assume that the function f is uniformly continuous on [0, 1]s, then

we have limδ→0+ Mf (δ) = 0. Note that for any function f its modulusMf is

nondecreasing and subadditive. Recall that a function f is nondecreasing if

f(x) ≤ f(y) for all x ≤ y, and that a function f is subadditive if f(x+ y) ≤
f(x) + f(y) for all x, y in the domain of f .

Furthermore, for nonconstant functions f the smallest possible order of

Mf is Mf (δ) = O(δ) as δ → 0+. Recall that we say h(x) = O(g(x)) as

x → 0 if and only if there exist positive real numbers δ and C such that

|h(x)| ≤ C|g(x)| for |x| < δ.

For k = (k1, . . . , ks) ∈ Ns0 with |k|∞ < m let Qk =
∏s
i=1[ki/m, (ki+1)/m).

Then each point of the centred regular lattice (1.1) is contained in exactly

one interval Qk, namely the point xk (see again Figure 1.3).
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Let now f : [0, 1]s → R be a continuous function and let xk for k ∈ Ns0
with |k|∞ < m be the points of a centred regular lattice. Then we have

∣∣∣∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

ms

∑

k∈N
s
0

|k|∞<m

f(xk)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∑

k∈N
s
0

|k|∞<m

∫

Qk

f(x)− f(xk) dx

∣∣∣∣∣∣∣∣

≤
∑

k∈Ns0
|k|∞<m

∫

Qk

Mf (|x− xk|∞) dx

≤ ms

∫

B( 1
2m)

Mf (|x|∞) dx, (1.2)

where B(ε) := {x ∈ Rs : |x|∞ ≤ ε}.
Assume that the function f is in addition Lipschitz continuous (for exam-

ple it suffices if f has partial derivatives), i.e., there is a real number Cf > 0

such that

Mf (δ) ≤ Cf δ for all δ > 0.

Then, using (1.2), we have

∣∣∣∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

ms

∑

k∈Ns
0

|k|∞<m

f(xk)

∣∣∣∣∣∣∣∣
≤ ms

∫

B( 1
2m)

Cf |x|∞ dx

≤ Cf
2m

=
Cf

2N1/s
, (1.3)

where the last inequality can be obtained by estimating |x|∞ ≤ 1
2m .

This result cannot be improved significantly for uniformly continuous

functions. Before we show the corresponding result, let us give some ex-

amples. For instance, choose s = 1 and consider the function f(x) = c
2N (1+

cos(2πNx)) for some constant c > 0 (see Figure 1.4). Notice that f ′(x) =

−cπ sin(2πNx), hence the Lipschitz constant is Cf = sup0≤x≤1 |f ′(x)| = cπ

and the modulus of continuity satisfies Mf (δ) ≤ cπδ for all δ > 0. Thus, as

opposed to the function itself, the Lipschitz constant and the modulus of

continuity do not depend on N . If we consider the Lipschitz constant or the

modulus of continuity of f as a measure of how strongly f varies, then this

measure does not depend on N . Hence we have a family of functions which

all vary equally strongly. Let us now consider the integration errors of these

functions.
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Figure 1.4 The function f(x) = c
2N

(1 + cos(2πNx)) for N = 10.

We have

1

N

N−1∑

n=0

f

(
2n+ 1

2N

)
= 0 and

∫ 1

0
f(x) dx =

c

2N
,

and hence
∣∣∣∣∣

∫ 1

0
f(x) dx− 1

N

N−1∑

n=0

f

(
2n+ 1

2N

)∣∣∣∣∣ =
c

2N
.

A convergence of O(N−1) is reasonable in many practical applications, which

makes the quadrature method a useful tool in dimension s = 1.

Consider now the case s > 1. Choose a function

g(x1, x2, . . . , xs) =
c

2m
(1 + cos(2πmx1)),

see Figure 1.5. Again, the functions g vary equally strongly for each m.

Then we have

∫ 1

0
· · ·
∫ 1

0
g(x1, . . . , xs) dx1 · · · dxs =

c

2m
=

c

2N1/s

and

1

ms

∑

k∈Ns0
|k|∞<m

g(xk) = 0.
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Figure 1.5 The function g(x1, x2) =
c

2m
(1 + cos(2πmx1)) for m = 3.

Hence we obtain an integration error of
∣∣∣∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

ms

∑

k∈Ns
0

|k|∞<m

g(xk)

∣∣∣∣∣∣∣∣
=

c

2N1/s
.

Motivated by the above examples we show the following unpublished re-

sult due to G. Larcher. In the following we call a uniformly continuous func-

tion M : R+
0 → R+

0 , where R+
0 = {x ∈ R : x ≥ 0}, which is nondecreasing,

subadditive, and for which we have limδ→0+ M(δ) = 0 a modulus.

Theorem 1.3 For any modulus M and any x0, . . . ,xN−1 in [0, 1)s, there

is a uniformly continuous function f : [0, 1]s → R with modulus of continuity

Mf ≤M , such that

∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ ≥ N
∫

B
(

1

2N1/s

)M(|x|∞) dx.

Proof Consider the Voronoi diagram V0, . . . , VN−1 of x0, . . . ,xN−1 with

respect to the maximum norm, i.e.,

Vn = {x ∈ [0, 1]s : |x− xn|∞ = min
0≤j<N

|x− xj |∞}

for 0 ≤ n < N , and define f : [0, 1]s → R by f(x) := M(|x − xn|∞) for
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x ∈ Vn. Then f is uniformly continuous sinceM is continuous, V0, . . . , VN−1

is a Voronoi diagram, and f is defined on a compact domain.

We show that Mf ≤ M . Let x,y ∈ [0, 1]s and assume that f(x) > f(y).

If x,y are in the same Voronoi cell, say Vn, then we have

|f(x)− f(y)| =M(|x− xn|∞)−M(|y − xn|∞)

≤M(max(|x− xn|∞ − |y − xn|∞, 0))
≤M(|x− y|∞),

where we used that M is subadditive and nondecreasing. If x,y are not in

the same Voroni cell, say x ∈ Vn and y ∈ Vk with n 6= k, then we have

|f(x)− f(y)| =M(|x− xn|∞)−M(|y − xk|∞)

≤M(|x− xk|∞)−M(|y − xk|∞)

≤M(max(|x− xk|∞ − |y − xk|∞, 0))
≤M(|x− y|∞),

where we again used that M is subadditive and nondecreasing. Hence we

have Mf ≤M .

It remains to show the lower bound on the integration error. We have
∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ =
N−1∑

n=0

∫

Vn

M(|x− xn|∞) dx. (1.4)

Let Wn :=
{
x ∈ [0, 1]s : |x− xn|∞ ≤ 1/(2N1/s)

}
. Then we have

N−1∑

n=0

∫

Vn

M(|x− xn|∞) dx

=
N−1∑

n=0

(∫

Vn∩Wn

M(|x− xn|∞) dx+

∫

Vn\Wn

M(|x− xn|∞) dx

)
. (1.5)

Let y ∈ Vn \Wn for some n and let x ∈Wk \Vk for some k. Then we have

|y − xn|∞ > 1/(2N1/s) and |x − xk| ≤ 1/(2N1/s). Since M , by definition,

is nondecreasing it follows that M(|y − xn|∞) ≥M(|x− xk|∞).

We also have
∑N−1

n=0 λs(Vn) = 1 and
∑N−1

n=0 λs(Wn) ≤ 1, where λs is the

s-dimensional Lebesgue measure. Hence we have

0 ≤
N−1∑

n=0

λs(Vn)−
N−1∑

n=0

λs(Wn)

=
N−1∑

n=0

[λs(Vn \Wn) + λs(Vn ∩Wn)]−
N−1∑

n=0

[λs(Wn \ Vn) + λs(Vn ∩Wn)]
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=

N−1∑

n=0

λs(Vn \Wn)−
N−1∑

n=0

λs(Wn \ Vn),

from which it follows that
∑N−1

n=0 λs(Wn \ Vn) ≤
∑N−1

n=0 λs(Vn \Wn). From

these considerations it follows that

N−1∑

n=0

∫

Vn\Wn

M(|x− xn|∞) dx ≥
N−1∑

n=0

∫

Wn\Vn
M(|x− xn|∞) dx.

Inserting this inequality in (1.5), then we obtain

N−1∑

n=0

∫

Vn

M(|x− xn|∞) dx

≥
N−1∑

n=0

(∫

Vn∩Wn

M(|x− xn|∞) dx+

∫

Wn\Vn
M(|x− xn|∞) dx

)

=

N−1∑

n=0

∫

Wn

M(|x− xn|∞) dx

= N

∫

B
(

1

2N1/s

)M(|x|∞) dx.

Now the result follows by (1.4).

Combining Theorem 1.3 with (1.2) we obtain the following result from

G. Larcher, which states that the centred regular lattice yields the smallest

possible integration error for the class of uniformly continuous functions

with a given modulus of continuity.

Corollary 1.4 Let N = ms and let M be any modulus. Then we have

inf
P

sup
f

∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ = N

∫

B
(

1

2N1/s

)M(|x|∞) dx,

where the infimum is extended over all point sets P consisting of N points in

[0, 1)s and the supremum is extended over all uniformly continuous functions

f : [0, 1]s → R with modulus of continuity Mf =M . Moreover, the infimum

is attained by the centred regular lattice.

The problem in the upper bounds (1.2) and (1.3) respectively is that

the integration error depends strongly on the dimension s. For large s the

convergence of N−1/s to 0 is very slow as N → ∞. This phenomenon is

often called the curse of dimensionality. The question arises whether one
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can choose “better” quadrature points x0, . . . ,xN−1, i.e., for which the in-

tegration error depends only weakly (or not at all) on the dimension s.

The question can be answered in the affirmative, which can be seen by the

following consideration.

Assume we want to approximate the integral of a function f : [0, 1]s → R

by

1

N

N−1∑

n=0

f(xn),

where x0, . . . ,xN−1 ∈ [0, 1)s. Then one can ask how large the integration

error ∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ =: RN,f (x0, . . . ,xN−1)

is on average. That is, if one chooses the quadrature points x0, . . . ,xN−1 ∈
[0, 1)s uniformly distributed and i.i.d., how large is RN,f on average, i.e.,

what is the expectation value of RN,f?

Let f : [0, 1]s → R be a square integrable function, i.e., f ∈ L2([0, 1]
s). In

the following we calculate the expectation value of R2
N,f , i.e., E[R

2
N,f ] and

then use the inequality

E[RN,f ] ≤
√

E[R2
N,f ].

Let g(x) := f(x)−
∫
[0,1]s f(x) dx. Then we have

∫

[0,1]s
g(x) dx = 0. (1.6)

Now we have
(

1

N

N−1∑

n=0

f(xn)−
∫

[0,1]s
f(x) dx

)2

=

(
1

N

N−1∑

n=0

g(xn)

)2

=
1

N2

N−1∑

n=0

g2(xn) +
2

N2

∑

0≤m<n<N
g(xm)g(xm).

Hence

E[R2
N,f ] =

1

N2

N−1∑

n=0

∫

[0,1]s
· · ·
∫

[0,1]s
g2(xn) dx0 · · · dxN−1
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+
2

N2

∑

0≤m<n<N

∫

[0,1]s
· · ·
∫

[0,1]s
g(xm)g(xn) dx0 · · · dxN−1

=: Σ1 +Σ2.

We consider Σ2. For any 0 ≤ m < n < N , (1.6) implies that
∫

[0,1]s
· · ·
∫

[0,1]s
g(xm)g(xn) dx0 · · · dxN−1

=

∫

[0,1]s
g(xm) dxm

∫

[0,1]s
g(xn) dxn = 0.

Hence Σ2 = 0 and therefore E[R2
N,f ] = Σ1. Further for every 0 ≤ n < N we

have
∫

[0,1]s
· · ·
∫

[0,1]s
g(xn)

2 dx0 · · · dxN−1 =

∫

[0,1]s
g2(x) dx

=

∫

[0,1]s

(
f(x)−

∫

[0,1]s
f(y) dy

)2

dx.

Hence we have the following theorem.

Theorem 1.5 Let f ∈ L2([0, 1]
s). Then for any N ∈ N we have

E[R2
N,f ] =

1

N

∫

[0,1]s

(
f(x)−

∫

[0,1]s
f(y) dy

)2

dx =
σ2(f)

N
,

where we set σ2(f) :=
∫
[0,1]s

(
f(x)−

∫
[0,1]s f(y) dy

)2
dx.

Theorem 1.5 can now be understood in the following way. The absolute

value of the integration error is, on average, bounded by σ(f)/
√
N , where

σ(f) =
√
σ2(f) is the standard deviation of f . Note that the integration

error does not depend on the dimension s (although for some functions σ(f)

may depend on s). We have N−1/2 < N−1/s for s > 2. Hence, roughly

speaking, for s > 2 it is on average better to use random points for the

approximation of the integral of f than using the centred regular grid (f

does not even have to be continuous if one chooses random samples). This

method of using random sample points x0, . . . ,xN−1 is called Monte Carlo

(MC) method.

Nevertheless the MC method also has some disadvantages:

• The error bound is only probabilistic, that is, in any one instance one

cannot be sure of the integration error. However, further probabilistic
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information is obtained from the central limit theorem, which states (see

[175]) that, if 0 < σ(f) <∞, then

lim
N→∞

Prob

[
RN,f (x0, . . . ,xN−1) ≤

cσ(f)√
N

]
=

√
2

π

∫ c

0
e−t

2/2 dt,

for any c > 0, where Prob[·] is the infinite-dimensional Lebesgue measure

λ∞ of all sequences x0,x1, . . . of elements of [0, 1)s that have the property

indicated between the brackets.

• A second problem is that the generation of random samples is difficult.

This problem is a topic on its own. For more information in this direction

we refer to the books of Lemieux [152], of Niederreiter [175], or to the

overview article of L’Ecuyer & Hellekalek [150].

• The convergence rate of O(N−1/2) is for some applications too slow and

it does not reflect some regularity of the integrand.

For more information concerning the MC method we refer to the books

of Niederreiter [175], of Lemieux [152] or of Glasserman [83]. The later one

deals with the application of MC for financial problems.

The aim is now to find deterministic constructions of quadrature points

which are at least as good as the average. This method is called quasi-Monte

Carlo (QMC) method as opposed to MC, where one uses randomly chosen

quadrature points. In the deterministic case we hence need quadrature points

which are in some sense “well” distributed in [0, 1)s. We consider this prob-

lem in the next two chapters. There we also specify the space of integrands

first, since this also determines what the correct distribution properties of

the quadrature points should be. Chapter 3 motivates the distribution prop-

erties of the quadrature points from a geometrical point of view and presents

some classical constructions of “good” quadrature points.

Exercises

1.1 Define a modulus M by M(δ) = δ for all δ ≥ 0. Find a function

f : [0, 1] → R which has modulus of continuity Mf ≤ M . Verify the

lower bound on the integration error of Theorem 1.3 for this function.

1.2 A well known measure of how strongly a function f : [0, 1]→ R varies is

the so-called total variation V (f). For functions whose first derivative

f ′ is continuous it is known that the total variation can be computed

by

V (f) =

∫ 1

0
|f ′(x)|dx.
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(Note that this is a semi-norm of f which should be compared to the

norm in the Koksma-Hlawka inequality, which is presented in the fol-

lowing chapter as Proposition 2.18.)

Compute the total variation of the function f(x) = c
2N (1+cos(2πNx)).

Remark: Observe that the total variation of this function is independent

of N .

1.3 Assume that the function f : [0, 1]s → R satisfies a Hölder condition,

i.e., |f(x)− f(y)| ≤ Cf |x− y|λ∞ for some constant Cf > 0 which only

depends on f and 0 < λ ≤ 1. Show that then
∣∣∣∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

ms

∑

k∈Ns
0

|k|∞<m

f(xk)

∣∣∣∣∣∣∣∣
≤ Cf

2λmλ
,

where xk with k ∈ Ns0 and |k|∞ < m is a centred regular lattice.

1.4 Let ms < N < (m + 1)s, and in particular ml(m + 1)s−l ≤ N <

ml−1(m+ 1)s−l+1 for some 1 ≤ l ≤ s, say N = ml (m+ 1)s−l + k with

some 0 ≤ k < ml−1(m+ 1)s−l. Consider ml−1 (m+ 1)s−l intervals

l−1∏

i=1

[
ai
m
,
ai + 1

m

)
×
s−1∏

i=l

[
bi

m+ 1
,
bi + 1

m+ 1

)
× [0, 1)

with 0 ≤ ai < m and 0 ≤ bi < m + 1. For ml−1(m + 1)s−l − k of

these intervals divide the last coordinate into m equal parts and for

the remaining k intervals divide the last coordinate into m + 1 equal

parts. This gives N boxes. Take the N mid points of these boxes. This

gives a centred quasi-regular lattice. See Figure 1.6 for an example.

Figure 1.6 Centred quasi-regular lattice in [0, 1)2 with s = 2 N = 11,
m = 3, l = 2, and k = 2.
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Let f : [0, 1]s → R be continuous with modulus of continuity Mf

and let r(f) := supx∈[0,1]s f(x). Show that for a centred quasi-regular

lattice x0, . . . ,xN−1 with ms < N < (m+ 1)s we have
∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ ≤ N
∫

B( 1
2m)

ω(|x|∞) dx+ r(f)
1

N1/s
.

1.5 Let f : [0, 1]s → R be Lipschitz continuous. Show that for a quasi-

regular lattice x0, . . . ,xN−1 with ms < N < (m+ 1)s we have
∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ = O(N−1/s).

1.6 For a Borel set E ⊆ [0, 1]s we say a point set P = {x0, . . . ,xN−1} in

[0, 1]s is fair with respect to E if the portion of points of P that belong

to E is equal to the volume of E, i.e., if A(E,N,P) :=∑N−1
n=0 χE(xn) =

λs(E)N . We say that the point set P is fair with respect to a nonempty

collection E of Borel sets in [0, 1]s if P is fair with respect to every

E ∈ E .
Let E = {E1, . . . , Ek} be a partition of [0, 1]s into nonempty Borel

subsets of [0, 1]s. For a Lebesgue integrable function f : [0, 1]s → R and

for 1 ≤ j ≤ k put

Gj(f) := sup
t∈Ej

f(t) and gj(f) := inf
t∈Ej

f(t).

Show that for any P = {x0, . . . ,xN−1} which is fair with respect to E
we have

∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ ≤
k∑

j=1

λs(Ej)(Gj(f)− gj(f)).

Remark and Hint: This is a special case of [179, Theorem 2] where one

can find a proof.

1.7 Let f : [0, 1]s → R be continuous and let E = {E1, . . . , Ek} be a

partition of [0, 1]s into nonempty Borel subsets of [0, 1]s. Show that for

any P = {x0, . . . ,xN−1} which is fair with respect to E we have
∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ ≤Mf (δ(E)),

where δ(E) := max1≤j≤k supx,y∈Ej
|x−y|∞. Hint: Compare with [179,

Theorem 3].
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1.8 Prove an analogue of Theorem 1.5 for functions f : D → R defined

on an integration domain D ⊂ Rs which has Lebesgue measure 0 <

λs(D) <∞.

1.9 Let f : [0, 1]2 → R, f(x1, x2) = 1 if x21 + x22 ≤ 1 and 0 otherwise.

We are interested in
∫ 1
0

∫ 1
0 f(x1, x2) dx1 dx2 (which is π/4). Write a

computer program (for instance with Mathematica) which applies

the MC method to this problem. Run some experiments and compare

the integration error with 1/
√
N , where N is the sample size.

1.10 Let f : [0, 1] → R and g(x) = 1
2 [f(x) + f(1 − x)]. Show that σ2(g) ≤

1
2σ

2(f). Hint: This is [175, Proposition 1.3].
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Quasi-Monte Carlo integration, discrepancy and
reproducing kernel Hilbert spaces

In this chapter we motivate the ideas behind concepts such as discrepancy,

uniform distribution, quasi-Monte Carlo algorithms and others from the

point of view of numerical integration. Most discrepancies considered here

can be derived from numerical integration and can therefore be understood

as worst-case errors of numerical integration of functions from certain func-

tion spaces. Using reproducing kernel Hilbert spaces as function spaces re-

moves many technicalities and gives a nice pathway to the connections be-

tween discrepancies and worst-case errors of numerical integration.

2.1 Quasi-Monte Carlo rules

We consider the problem of integrating a high dimensional Lebesgue inte-

grable function f : [0, 1]s → R where this cannot be done analytically and

therefore one has to resort to numerical algorithms. Indeed we consider the

simplest of possible algorithms, namely we approximate

∫

[0,1]s
f(x) dx ≈ 1

N

N−1∑

n=0

f(xn), (2.1)

where x0, . . . ,xN−1 ∈ [0, 1]s are the quadrature points which one needs to

choose. Because the volume of the unit cube [0, 1]s is one, the value of the

integral is just the average value of the function, which is exactly what the

algorithm tries to approximate.

If the quadrature points x0, . . . ,xN−1 ∈ [0, 1]s are chosen deterministi-

cally, the algorithm 1
N

∑N−1
n=0 f(xn) is called a quasi-Monte Carlo (QMC)

algorithm or a QMC rule. On the surface the algorithm looks simple, but

of course, the difficulty is how to choose the quadrature points. The follow-

ing two main questions arise from this: how can we assess the quality of



32 QMC integration, discrepancy and reproducing kernel Hilbert spaces

some given quadrature points? And, how can we find quadrature points of

particularly high quality?

In order to answer these questions, we need to specify which integrands

f : [0, 1]s → R we want to consider. Indeed, we want our algorithm to work

not just for one specific integrand, but for a whole class of functions, that is,

for a set of functions which have certain properties, so that, if we know that

the integrand satisfies a certain property, i.e. is “smooth”, then we know

that the method we use works well. In other words, the point set is chosen a

priori and we apply the QMC algorithm to an arbitrary function belonging

to a certain class.

As we know from classical integration rules in dimension s = 1, like Simp-

son’s Rule, the smoother the integrand the faster the error (which for QMC

rules is given by |
∫
[0,1]s f(x) dx − 1

N

∑N−1
n=0 f(xn)|) goes to zero as N in-

creases. The same can of course be observed for QMC rules. We first de-

velop the classical theory on QMC methods, which deals with integrands of

bounded variation [175]. In order to avoid too many technicalities though,

we deal with absolutely continuous functions with partial first derivatives

which are square integrable, instead of functions of bounded variation (see

[175, p. 19] for an equivalence or [37, Section 3.1] for a discussion of the

similarities between those two concepts).

2.2 Numerical integration in one dimension

As a first example, consider a one-dimensional function f : [0, 1] → R with

continuous first derivative which is bounded on [0, 1]. For a subset J ⊆ [0, 1]

let χJ(x) denote the characteristic function of J , i.e.,

χJ(x) =

{
1 if x ∈ J,
0 if x /∈ J.

Considering the integration error of a QMC rule using a point set P =

{x0, . . . , xN−1} ⊆ [0, 1], we obtain, by substituting f(1) −
∫ 1
x f

′(y) dy for

f(x), that

∫ 1

0
f(x) dx− 1

N

N−1∑

n=0

f(xn)

=
1

N

N−1∑

n=0

∫ 1

xn

f ′(y) dy −
∫ 1

0

∫ 1

x
f ′(y) dy dx

=

∫ 1

0

1

N

N−1∑

n=0

χ(xn,1](y)f
′(y) dy −

∫ 1

0

∫ y

0
f ′(y) dxdy
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=

∫ 1

0
f ′(y)

[
1

N

N−1∑

n=0

χ(xn,1](y)− y
]
dy.

(Note that alternatively we could use χ[xn,1](y) instead of χ(xn,1](y), but the

latter is used more commonly.) Note that

N−1∑

n=0

χ(xn,1](y) =

N−1∑

n=0

χ[0,y)(xn) =: A([0, y), N,P),

the number of points of P which lie in the interval [0, y). The expression

between the squared brackets above leads to the following definition.

Definition 2.1 For a point set P consisting of N points in [0, 1) the

function ∆P : [0, 1]→ R,

∆P(y) :=
A([0, y), N,P)

N
− y

is called the discrepancy function of P.

The discrepancy function permits a geometric interpretation which gives

us some insight. Namely: A([0, y), N,P)/N is the proportion of points of P
which lie in the interval [0, y). The length or Lebesgue measure of the interval

[0, y) is of course y and so, for a given y ∈ [0, 1], the function ∆P(y) measures

the difference between the proportion of points of P in the interval [0, y)

and the length of the interval [0, y). We see that the discrepancy function

is small when the points x0, . . . , xN−1 are evenly spread over the interval

[0, 1]. A more detailed discussion of this geometric interpretation is given in

Section 3.

Hence we have

∫ 1

0
f(x) dx− 1

N

N−1∑

n=0

f(xn) =

∫ 1

0
f ′(y)∆P(y) dy. (2.2)

This equation is a simplified form of Hlawka’s identity [110], which is also

known as Zaremba’s identity [270].

Thus the criterion for P should be to choose it such that ∆P(y) is small

for all y ∈ [0, 1], then (2.2) guarantees that the error committed by P is also

small for the class of functions which have continuous first derivative. To

make the statement “∆P(y) small for all y ∈ [0, 1]” more tangible, we can

take the absolute value on both sides of (2.2) and apply Hölder’s inequality
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to the right hand side to obtain
∣∣∣∣∣

∫ 1

0
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ (2.3)

≤
∫ 1

0
|f ′(y)||∆P(y)|dy ≤

(∫ 1

0
|f ′(y)|q dy

)1/q (∫ 1

0
|∆P(y)|p dy

)1/p

for p, q ≥ 1 and 1/p + 1/q = 1.

The last inequality (2.3) now separates the effects of the function and the

point set on the integration error. Note that
(∫ 1

0 |f ′(y)|q dy
)1/q

is a semi-

norm on the function space, while ‖f‖q :=
(
|f(1)|q +

∫ 1
0 |f ′(y)|q dy

)1/q
is a

norm on the function space.

Two choices of p received particular attention, namely, p =∞ and p = 2.

Definition 2.2 Let P = {x0, . . . , xN−1} be a point set in the unit-interval

[0, 1). The star discrepancy of P is defined as

D∗
N (P) := sup

y∈[0,1]
|∆P(y)|

and the L2-discrepancy of P is defined as

L2,N (P) :=
(∫ 1

0
|∆P(y)|2 dy

)1/2

.

From the definition of the discrepancy function, we can now see that the

star discrepancy D∗
N (P) and the L2-discrepancy L2,N (P) of a point set P

are small if the points in P are evenly spread over the interval [0, 1] (see

Exercise 2.1).

We can write (2.3) as
∣∣∣∣∣

∫ 1

0
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ ≤ ‖f‖1D
∗
N (P) (2.4)

for p =∞ and q = 1 and for p = q = 2 we can write
∣∣∣∣∣

∫ 1

0
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ ≤ ‖f‖2L2,N (P). (2.5)

We remark that (2.4) is a simplified version of Koksma’s inequality (see

[128, Theorem 5.1] for the original version).
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Remark 2.3 Note that (2.4) and (2.5) are slightly weaker than (2.3) be-

cause we switched from a semi-norm to a norm. On the other hand, the QMC

algorithm integrates all constant functions exactly so that for all c ∈ R we

have
∣∣∣∣∣

∫ 1

0
f(x) dx− 1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ =
∣∣∣∣∣

∫ 1

0
(f(x)− c) dx− 1

N

N−1∑

n=0

(f(xn)− c)
∣∣∣∣∣

≤
(
|f(1)− c|q +

∫ 1

0
|f ′(y)|q dy

)1/q

×
(∫ 1

0
|∆P(y)|p dy

)1/p

.

By choosing c = f(1) we see from the last expression that in our error

analysis we could restrict ourselves to consider only functions for which

f(1) = 0.

We now aim to develop this theory for arbitrary dimensions s ≥ 1. Re-

producing kernel Hilbert spaces make this generalisation somewhat simpler,

hence we introduce them in the following section.

2.3 Reproducing kernel Hilbert spaces

Before we introduce reproducing kernel Hilbert spaces in a general setting,

we work out an example which we already used implicitly in the previous

section.

A first example

As we have seen from the one-dimensional example, the error analysis hinges

on the substitution

f(x) = f(1)−
∫ 1

x
f ′(y) dy, (2.6)

i.e., the analysis works for all functions which have such an integral repre-

sentation. For functions f, g permitting such a substitution, and for which

f ′, g′ ∈ L2([0, 1]), we can introduce an inner product by using the value of

f, g at one and the derivatives of f, g, that is

〈f, g〉 := f(1)g(1) +

∫ 1

0
f ′(x)g′(x) dx. (2.7)
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The corresponding norm ‖f‖2 :=
√
〈f, f〉 is exactly the norm used in (2.5).

This defines a Hilbert space

H = {f : [0, 1]→ R : f absolutely continuous and ‖f‖2 <∞}
(hence the fundamental theorem of calculus applies) whose first derivative

is square integrable. With this, we can introduce a proper criterion for how

well a given QMC rule QN (f) = 1
N

∑N−1
n=0 f(xn) works by looking at the

worst performance of QN for all functions in H with norm at most one.

Definition 2.4 Let H be a Hilbert space of Lebesgue integrable functions

on [0, 1] with norm ‖ · ‖ for which function values are well-defined, and let P
be the quadrature points used in the QMC rule QN . The worst-case error

for QMC integration in the Hilbert space H is then given by

e(H ,P) = sup
f∈H ,‖f‖≤1

∣∣∣∣
∫ 1

0
f(x) dx−QN (f)

∣∣∣∣ .

A particularly nice theory now develops when we combine Equation (2.6)

and (2.7), i.e., for each y ∈ [0, 1] we want to have a function gy : [0, 1] → R

such that 〈f, gy〉 = f(y). As we modelled the inner product after (2.6) in

the first place (we used f(1) and f ′ which both appear in (2.6)), it is not

hard to see that this can be done. Indeed, gy(1) = 1 for all y ∈ [0, 1] and

g′y(x) =
dgy
dx = −1 for all x ∈ [y, 1] and g′y(x) = 0 for x ∈ [0, y). This implies

that gy has to be of the form

gy(x) = 2−
{
c for 0 ≤ x < y,

x for y ≤ x ≤ 1,

for some arbitrary fixed constant c ∈ R.

We add one more sensible condition on gy, namely, that gy ∈H for each

y ∈ [0, 1]. Then the condition that gy is an absolutely continuous function

of x completely determines gy, and we obtain that c = y, i.e.

gy(x) = 2−
{
y for 0 ≤ x < y,

x for y ≤ x ≤ 1,

which we can write as gy(x) = 2−max(x, y) = 1 + min(1− x, 1− y).
To summarise, for each y ∈ [0, 1] we now have a function gy ∈ H such

that 〈f, gy〉 = f(y). The function (x, y) 7→ gy(x) is called a reproducing

kernel [4] and has several useful properties. In the following we denote the

reproducing kernel by K, so in our case

K(x, y) = gy(x) = 1 + min(1− x, 1− y).
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Definition 2.5 A Hilbert space H of functions f : X → R on a set X

with inner product 〈·, ·〉 is called a reproducing kernel Hilbert space, if there

exists a function K : X ×X → R such that

P1: K(·, y) ∈H for each fixed y ∈ X and

P2: 〈f,K(·, y)〉 = f(y) for each fixed y ∈ X and for all f ∈H .

Note that here we consider K as a function of the first variable denoted

by · and in 〈f,K(·, y)〉 the inner product is taken with respect to the first

variable of K. Sometimes we indicate this by writing 〈f(x),K(x, y)〉x. The
last property, i.e. P2, is the reproducing property, i.e. the function values of

f can be reproduced via the kernel and the inner product.

It follows that a function K with these properties must also be symmetric,

unique and positive semidefinite:

P3 (symmetry): this holds as

K(x, y) = 〈K(·, y),K(·, x)〉 = 〈K(·, x),K(·, y)〉 = K(y, x),

P4 (uniqueness): this holds since for any function K̃ satisfying P1 and

P2 we have

K̃(x, y) = 〈K̃(·, y),K(·, x)〉 = 〈K(·, x), K̃(·, y)〉 = K(y, x) = K(x, y),

P5 (positive semidefiniteness): this holds as for all choices of a0, . . . , aN−1 ∈
R and x0, . . . , xN−1 ∈ X we have

N−1∑

m,n=0

amanK(xm, xn) =

N−1∑

m,n=0

aman〈K(·, xn),K(·, xm)〉

=

〈
N−1∑

n=0

anK(xn, ·),
N−1∑

m=0

amK(xm, ·)
〉

=

∥∥∥∥∥
N−1∑

m=0

amK(xm, ·)
∥∥∥∥∥

2

≥ 0.

As was shown in [4], a function K which satisfies P3 and P5 also uniquely

determines a Hilbert space of functions together with an inner product for

which P1 and P2 (and hence also P4) hold. Thus it makes sense to speak of a

reproducing kernel without explicitly specifying a Hilbert space of functions.

Remark 2.6 In our example, according to the construction of K(x, y) =

gy(x) the conditions P1 and P2 are satisfied and hence H = {f : [0, 1] →
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R : ‖f‖2 < ∞} is a reproducing kernel Hilbert space. We wrote K(x, y) =

1 + min(1 − x, 1 − y) rather than K(x, y) = 2 −max(x, y), as the function

min(1 − x, 1 − y) is a reproducing kernel of the Hilbert space of absolutely

continuous functions with square integrable first derivative for which f(1) =

0 for all f in this space (see Exercise 2.5).

Remark 2.7 We note that if we include complex functions f : X → C,

then 〈f, g〉 = 〈g, f〉, 〈f, ag〉 = a〈f, g〉 for a ∈ C, P3 becomes K(x, y) =

K(y, x) and we call a function positive semidefinite if for all choices of

a0, . . . , aN−1 ∈ C and x0, . . . , xN−1 ∈ X we have

N−1∑

m,n=0

amanK(xm, xn) ≥ 0.

Example 2.8 We give another example of a reproducing kernel Hilbert

space which was considered in [50]. This reproducing kernel Hilbert space is

based on Walsh functions.

We recall some notation from Appendix A. Assume that x, y ∈ [0, 1) have

b-adic expansion x = ξ1b
−1+ξ2b

−2+· · · and y = η1b
−1+η2b

−2+· · · . Further
let k ∈ N0 have b-adic expansion k = κ0 + κ1b+ · · ·+ κa−1b

a−1. Further let

ωb = e2πi/b. Then the kth Walsh function in base b is defined by

bwalk(x) = ω
κ0ξ1+κ1ξ2+···+κa−1ξa
b .

Further we set

x⊖ y =
ζ1
b
+
ζ2
b2

+ · · · ,

where ζj = ξj + ηj (mod b) for all j ≥ 0. See Appendix A for more informa-

tion on Walsh functions.

Let Kwal(x, y) =
∑∞

k=0 rwal,b,α(k) bwalk(x ⊖ y), where rwal,b,α(0) = 1 and

for k > 0 with base b (b ≥ 2) representation k = κ0 + κ1b+ · · · + κa−1b
a−1

and κa−1 6= 0, we define rwal,b,α(k) = b−αa, where α > 1. The reproducing

kernel Hilbert space with kernel Kwal is called a Walsh space and consists

of Walsh series
∑∞

k=0 f̂(k) bwalk(x). The inner product in this space for two

Walsh series f(x) =
∑∞

k=0 f̂(k) bwalk(x) and g(x) =
∑∞

k=0 ĝ(k) bwalk(x) is

given by 〈f, g〉 =∑∞
k=0 rwal,b,α(k)

−1f̂(k)ĝ(k).

The reproducing property can be verified in the following way: the kth

Walsh coefficient of Kwal(·, y) (considered as a function of the first variable)

is given by rwal,b,α(k) bwalk(⊖y) and hence

〈f,Kwal(·, y)〉 =
∞∑

k=0

f̂(k)rwal,b,α(k) bwalk(⊖y)
rwal,b,α(k)

=

∞∑

k=0

f̂(k) bwalk(y) = f(y).
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Numerical integration in one dimension revisited

Using the framework of reproducing kernel Hilbert spaces we can now revisit

Section 2.2. Hence we define the reproducing kernel K as in Section 2.2 by

K(x, y) = 1 + min(1− x, 1− y)

and the inner product by 〈f, g〉 = f(1)g(1) +
∫ 1
0 f

′(x)g′(x) dx. We have

∫ 1

0
f(y) dy =

∫ 1

0
〈f,K(·, y)〉dy =

〈
f,

∫ 1

0
K(·, y) dy

〉
,

where the second equality is obtained by a change of the order of integration,

and

QN (f) =
1

N

N−1∑

n=0

f(xn) =
1

N

N−1∑

n=0

〈f,K(·, xn)〉 =
〈
f,

1

N

N−1∑

n=0

K(·, xn)
〉
,

where the inner product is taken with respect to the first variable of K.

Thus, using the Cauchy-Schwarz Inequality, we have

∣∣∣∣
∫ 1

0
f(y) dy −QN (f)

∣∣∣∣ =
∣∣∣∣∣

〈
f,

∫ 1

0
K(·, y) dy − 1

N

N−1∑

n=0

K(·, xn)
〉∣∣∣∣∣

≤ ‖f‖2
∥∥∥∥∥

∫ 1

0
K(·, y) dy − 1

N

N−1∑

n=0

K(·, xn)
∥∥∥∥∥
2

.(2.8)

Note that we have ∆P(x) = d
dx

(∫ 1
0 K(x, y) dy − 1

N

∑N−1
n=0 K(x, xn)

)
and

hence

L2,N (P) =
∥∥∥∥∥

∫ 1

0
K(·, y) dy − 1

N

N−1∑

n=0

K(·, xn)
∥∥∥∥∥
2

.

Let us now calculate the worst-case error. For short we write now h(x) =∫ 1
0 K(x, y) dy− 1

N

∑N−1
n=0 K(x, xn). SinceK(·, y) ∈H and also

∫ 1
0 K(·, y) dy ∈

H it is clear that h ∈H . We have equality in (2.8) if f(x) = h(x). Let

e(f,P) :=
∫ 1

0
f(y) dy −QN (f)

=

〈
f,

∫ 1

0
K(·, y) dy − 1

N

N−1∑

n=0

K(·, xn)
〉

= 〈f, h〉.

Then for all f with ‖f‖2 6= 0 we have e(f,P)
‖f‖2 = e(f/‖f‖2,P) ≤ e(h/‖h‖2 ,P) =
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e(h,P)
‖h‖2 by a property of the inner product and hence

e(H ,P) = e(h,P)
‖h‖2

=
〈h, h〉
‖h‖2

= ‖h‖2.

This means, that for a given point set P, among all functions in the space

H , the function h ∈ H is the hardest to integrate. For the function h we

have equality in (2.8).

The worst-case error for arbitrary reproducing kernel Hilbert

spaces

In the following we use the approach of Hickernell [99] and Sloan &Woźniakowski [247].

Let us now consider an arbitrary Hilbert space H of Lebesgue integrable

functions f : [0, 1]s → R, s ≥ 1, with inner product 〈·, ·〉 and norm ‖ · ‖ =√
〈·, ·〉. Consider the functional Ty which evaluates a function at the point

y, i.e.

Ty(f) = f(y) ∀f ∈H .

Because we want to approximate the integral
∫
[0,1]s f(y) dy by the average

of some function values 1
N

∑N−1
n=0 f(xn), it is reasonable to demand that

|f(xn)| < ∞, which is ensured by the condition that the functional Ty is

bounded, i.e., that there is an M <∞ such that |Ty(f)| ≤M for all f ∈H

with ‖f‖ ≤ 1. Riesz’ representation theorem now implies that there exists a

unique function K(·,y) ∈ H such that Ty(f) = 〈f,K(·,y)〉 for all f ∈ H .

Properties P1 and P2 now imply that K is the reproducing kernel for the

Hilbert space H (and hence H is a reproducing kernel Hilbert space).

An essential property which we used in the previous section is the fact

that
∫ 1

0
〈f,K(·, y)〉dy =

〈
f,

∫ 1

0
K(·, y) dy

〉

for the reproducing kernel K(x, y) = 1 + min(1 − x, 1 − y), as this repre-

sents only a change of the order of integration. As changing the order of

integration and inner product is essential for our error analysis, we consider

in the following under which conditions this holds for arbitrary reproducing

kernels.

Let now T be another bounded linear functional on H (not necessarily

integration), then, again by the Riesz representation theorem, it follows that

there exists a unique function R ∈H such that T (f) = 〈f,R〉 for all f ∈H .
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On the other hand we have

R(x) = 〈R,K(·,x)〉 = 〈K(·,x), R〉 = T (K(·,x)),

where in the first equality we used the reproducing property of K and in the

third equality we used that R is the representer of the functional T (note

that R ∈H and for any given x also K(·,x) ∈H ). Here the inner product

and the operator T are applied to the first variable of K. Thus, for any

bounded linear functional T we have

T (〈f(x),K(x,y)〉x) = T (f) = 〈f,R〉 = 〈f(x), T (K(y,x))〉x,

where the inner product is always with respect to the variable x (which is

indicated by writing 〈·, ·〉x instead of 〈·, ·〉) and the operator T is always

applied to the variable y.

Example 2.9 Consider the operator I(f) =
∫
[0,1]s f(y) dy. First we have

I(f) =

∫

[0,1]s
f(y) dy =

∫

[0,1]s
〈f,K(·,y)〉dy.

By the above, the representer R of the functional I is given by

R(x) = I(K(·,x)) =
∫

[0,1]s
K(y,x) dy =

∫

[0,1]s
K(x,y) dy.

Hence we obtain
∫

[0,1]s
〈f,K(·,y)〉dy = I(f) = 〈f,R〉 =

〈
f,

∫

[0,1]s
K(·,y) dy

〉
. (2.9)

Hence integral and inner product in a reproducing kernel Hilbert space can

always be interchanged as long as the integration functional I is bounded.

We are especially interested in two operators:

• the integration operator I(f) :=
∫
[0,1]s f(x) dx and

• the QMC rule QN (f) := 1
N

∑N−1
n=0 f(xn) using the quadrature points

x0, . . . ,xN−1 ∈ [0, 1]s.

For an arbitrary f with ‖f‖ 6= 0 we have

|f(y)|
‖f‖ = |〈f/‖f‖,K(·,y)〉|

≤ 〈K(·,y)/‖K(·,y)‖,K(·,y)〉
=
√
〈K(·,y),K(·,y)〉 =

√
K(y,y).
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Thus we have |Ty(f)|/‖f‖ ≤
√
K(y,y) and that

|I(f)|/‖f‖ ≤
∫

[0,1]s
|f(y)|dy/‖f‖ ≤

∫

[0,1]s

√
K(y,y) dy

for all f ∈H with ‖f‖ 6= 0.

First note that reproducing kernel Hilbert spaces are defined as Hilbert

spaces of functions in which pointwise evaluation is a continuous linear func-

tional, in other words, in which point evaluation is a bounded linear func-

tional as introduced at the beginning of this subsection. As K(·,y) ∈H we

have K(y,y) <∞ for all y ∈ [0, 1]s by the definition of reproducing kernel

Hilbert spaces. Hence |f(y)| ≤ ‖f‖
√
K(y,y) <∞ and the QMC rule is well

defined for integrands which lie in some reproducing kernel Hilbert space.

If a reproducing kernel also satisfies

C:
∫
[0,1]s

√
K(y,y) dy <∞,

then, by the above, the integration operator and the QMC rule are both

bounded linear functionals. In this case (2.9) always holds.

Like the reproducing kernel from the previous section, the other repro-

ducing kernels considered in this book also satisfy condition C.

Definition 2.10 Let H be a reproducing kernel Hilbert space for which

I is a bounded linear functional. Then the initial error is defined as

e(H , 0) = ‖I‖ = sup
f∈H ,‖f‖≤1

|I(f)|

and the worst-case error for a QMC rule based on the quadrature points

P = {x0, . . . ,xN−1} ⊆ [0, 1]s is defined as

e(H ,P) = ‖I −QN‖ = sup
f∈H ,‖f‖≤1

|I(f)−QN (f)|.

The initial error is introduced as a reference. We always assume that the

initial error is finite, which is equivalent to saying that the integral operator

is bounded.

With this, the same error analysis as in the previous section applies,

namely:

I(f) =

〈
f,

∫

[0,1]s
K(·,y) dy

〉
,

where we used the fact that the representer for the functional I is given by
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I(K(·,x)) =
∫
[0,1]s K(x,y) dy and

QN (f) =

〈
f,

1

N

N−1∑

n=0

K(·,xn)
〉
,

where we used that the representer for the functionalQN is given byQN (K(·,x)) =
1
N

∑N−1
n=0 K(x,xn).

The initial error is thus given by

e(H , 0) = ‖I‖ = sup
f∈H ,‖f‖≤1

|I(f)|

= sup
f∈H ,‖f‖≤1

∣∣∣∣∣

〈
f,

∫

[0,1]s
K(·,y) dy

〉∣∣∣∣∣

=

√√√√
〈∫

[0,1]s
K(·,y) dy,

∫

[0,1]s
K(·,y) dy

〉
,

since the largest value of the supremum occurs for g
‖g‖ , where g(x) =∫

[0,1]s K(x,y) dy ∈H is the representer of the integration functional. There-

fore we have

e2(H , 0) = ‖I‖2 =
∫

[0,1]s

∫

[0,1]s
〈K(·,x),K(·,y)〉 dxdy

=

∫

[0,1]2s
K(x,y) dxdy.

The integration error is given by

I(f)−QN (f) = 〈f, h〉 , (2.10)

where the representer of the integration error is given by

h(x) =

∫

[0,1]s
K(x,y) dy − 1

N

N−1∑

n=0

K(x,xn).

We can estimate this error using the Cauchy-Schwarz Inequality with

|I(f)−QN (f)| ≤ ‖f‖‖h‖.

From (2.10) it is then clear that the function in the unit ball of H which

is hardest to integrate is h/‖h‖ and hence the worst-case error is given by

e(H ,P) = ‖h‖.

For the square worst-case error e2(H ,P) = 〈h, h〉.
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Proposition 2.11 Let H be a reproducing kernel Hilbert space whose

reproducing kernel K satisfies condition C. Then the square initial error is

given by

e2(H ,P) =
∫

[0,1]2s
K(x,y) dxdy

and the square worst-case error for QMC integration of functions from H

using the quadrature points P = {x0, . . . ,xN−1} is given by

e2(H ,P) =
∫

[0,1]2s
K(x,y) dxdy − 2

N

N−1∑

n=0

∫

[0,1]s
K(xn,y) dy

+
1

N2

N−1∑

n,m=0

K(xn,xm).

We give a modification of a classical result for the star discrepancy (see

Proposition 3.16). The following result, called the triangle inequality for the

worst-case error, which was first proved in [103], gives a bound for the worst-

case error in H of a QMC rule using a point set P which is a superposition

of several smaller point sets.

Lemma 2.12 Let H be a reproducing kernel Hilbert space of functions on

[0, 1]s. For 1 ≤ i ≤ k let Pi be point sets consisting of Ni points in [0, 1)s

with worst-case error e(H ,Pi). Let P be the point set obtained by listing in

some order the terms of Pi, 1 ≤ i ≤ k. We set N = N1 + · · ·+Nk, which is

the number of points of P. Then we have

e(H ,P) ≤
k∑

i=1

Ni

N
e(H ,Pi).

Proof We have

Ne(H ,P) =

∥∥∥∥∥∥
N

∫

[0,1]s
K(x,y) dy −

k∑

i=1

∑

y∈Pi

K(x,y)

∥∥∥∥∥∥

≤
k∑

i=1

∥∥∥∥∥∥
Ni

∫

[0,1]s
K(x,y) dy −

∑

y∈Pi

K(x,y)

∥∥∥∥∥∥

=
k∑

i=1

Nie(H ,Pi).

The formulas in this section give us a convenient method for finding the

worst-case and initial errors of arbitrary reproducing kernel Hilbert spaces.
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In the following section we obtain some classical results by making use of

reproducing kernel Hilbert spaces and the results in this section.

2.4 Connections to classical discrepancy theory

We now turn to classical results on numerical integration in arbitrary di-

mension s ≥ 1, which we already considered for dimension s = 1 in Sec-

tion 2.2. Let the quadrature points be given by P = {x0, . . . ,xN−1}, where
xn = (xn,1, . . . , xn,s).

In the previous section we have already analysed the worst-case error

for arbitrary reproducing kernel Hilbert spaces. An interesting as well as

practical feature of the worst-case error is that we only need to know the

reproducing kernel for the space to obtain formulas for the worst-case and

initial error. To generalise from the one-dimensional case, considered at the

beginning, to arbitrary high dimensions, we consider tensor product spaces

of the one-dimensional spaces considered before. From [4, Section 8] we

know that the reproducing kernel for this space is simply the product of

the one-dimensional reproducing kernels. Hence, for the one-dimensional

reproducing kernel K(x, y) = min(1 − x, 1 − y) considered in Section 2.3

(see in particular Remark 2.6), we obtain that the reproducing kernel of the

s-fold tensor product is given by

K(x,y) =

s∏

i=1

K(xi, yi) =

s∏

i=1

min(1− xj , 1− yj),

where x = (x1, . . . , xs),y = (y1, . . . , ys) ∈ [0, 1]s.

What functions are in this space? The one-dimensional space contains all

absolutely continuous functions f : [0, 1] → R for which f(1) = 0 and the

first derivative is square integrable. The inner product in one dimension is

given by 〈f, g〉 =
∫ 1
0 f

′(x)g′(x) dx.
For the tensor product space we then have, for example, if f1, . . . , fs are

functions in the one-dimensional space, then f(x1, . . . , xs) =
∏s
i=1 fi(xi) is

in the tensor-product space. The inner product of two such functions f and

g(x1, . . . , xs) =
∏s
i=1 gi(xi) is then

〈f, g〉 =
s∏

i=1

〈fi, gi〉 =
s∏

i=1

∫ 1

0
f ′i(xi)g

′
i(xi) dxi =

∫

[0,1]s

∂sf

∂x
(x)

∂sg

∂x
(x) dx.

The tensor product space contains not only those products, and sums of

those products, but also its completion with respect to the norm induced by
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the inner product

〈f, g〉 =
∫

[0,1]s

∂sf

∂x
(x)

∂sg

∂x
(x) dx.

Note that, as for the one-dimensional space we have f(1) = 0, it follows

that ∂|u|f
∂xu

(xu,1) = 0 for all u ( Is := {1, . . . , s}, where (xu,1) is the vector

whose ith component is xi if i ∈ u and 1 otherwise.

We now consider numerical integration in this space. From the previous

section we know that

|I(f)−QN (f)| ≤ ‖f‖‖h‖,

where e(H ,P) = ‖h‖ with

h(x) =

∫

[0,1]s
K(x,y) dy − 1

N

N−1∑

n=0

K(x,xn)

=

s∏

i=1

1− x2i
2
− 1

N

N−1∑

n=0

s∏

i=1

min(1− xi, 1− xn,i),

where we used
∫ 1
0 K(xi, yi) dyi =

∫ 1
0 min(1 − xi, 1 − yi) dyi = (1 − x2i )/2.

Then

∂s

∂x
h(x) = (−1)s

(
s∏

i=1

xi −
1

N

N−1∑

n=0

χ[0,x)(xn)

)
, (2.11)

where [0,x) denotes the interval
∏s
i=1[0, xi).

Apart from the factor (−1)s, the right-hand side of (2.11) permits some

geometrical interpretation. We write A([0,x), N,P) :=
∑N−1

n=0 χ[0,x)(xn),

which is the number of points of P = {x0, . . . ,xN−1} that belong to the

interval [0,x).

Definition 2.13 For a point set P consisting of N points in [0, 1)s the

function ∆P : [0, 1]s → R,

∆P(x) =
A([0,x), N,P)

N
−

s∏

i=1

xi

denotes the s-dimensional discrepancy function of P.
It generalises the one-dimensional discrepancy function given in Defini-

tion 2.1 in Section 2.2. The geometrical interpretation also generalises from

the one-dimensional example, i.e., it measures the difference between the

proportion of points in a cube [0,x) and the volume of this cube.
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Hence

e(H ,P) = ‖h‖ =
(∫

[0,1]s
|∆P(x)|2 dx

)1/2

,

and this is the classical L2-discrepancy.

Definition 2.14 For a point set P = {x0, . . . ,xN−1} the L2-discrepancy

L2,N(P) is given by

L2,N (P) :=
(∫

[0,1]s
|∆P(x)|2 dx

)1/2

,

and the star discrepancy is given by

D∗
N (P) := sup

x∈[0,1]s
|∆P(x)|.

There is a concise formula for the classical L2-discrepancy due to Warnock [261],

which we derive in the following. We have
∫ 1
0 K(x, y) dy =

∫ 1
0 min(1−x, 1−

y) dy = (1 − x2)/2 and
∫ 1
0

∫ 1
0 K(x, y) dxdy = 1/3. Thus Proposition 2.11

yields the following formula for the L2-discrepancy.

Proposition 2.15 For any point set P = {x0, . . . ,xN−1} in [0, 1]s we

have

(L2,N (P))2 =
1

3s
− 2

N

N−1∑

n=0

s∏

i=1

1− x2n,i
2

+
1

N2

N−1∑

m,n=0

s∏

i=1

min(1−xm,i, 1−xn,i),

where xn,i is the ith component of the point xn.

Remark 2.16 Using the formula in Proposition 2.15 the L2-discrepancy

of a point set consisting of N points in [0, 1)s can be computed in O(sN2)

operations. Based on this formula Heinrich [90] introduced an asymptoti-

cally even faster algorithm using O(N(logN)s) operations for fixed s, which

has been further improved to O(N(logN)s−1) operations by Frank & Hein-

rich [80]. It should be remarked that there is no concise formula which allows

a computation of the star discrepancy (apart from the one-dimensional case,

see [128, Chapter 2, Theorem 1.4] or [175, Theorem 2.6]). It was shown by

Gnewuch, Srivastav & Winzen [85] that the computation of star discrepancy

is an NP-hard problem. For a more detailed discussion of this topic we refer

to [85] and the references therein.

The condition on the integrands is rather stringent. As we can see from

the definition of the space, lower dimensional projections are ignored. Hence
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one often considers the reproducing kernel Hilbert space with reproducing

kernel

K(x,y) =

s∏

i=1

(1 + min(1− xi, 1− yi)).

Again from Section 2.2 we know that the inner product for the one-dimensional

space is given by 〈f, g〉 = f(1)g(1)+
∫ 1
0 f

′(x)g′(x) dx. Hence the inner prod-
uct in the tensor product space Hs for functions f(x) =

∏s
i=1 fi(xi) and

g(x) =
∏s
i=1 gi(xi) is then

〈f, g〉 =
s∏

i=1

〈fi, gi〉 =
s∏

i=1

(
fi(1)gi(1) +

∫ 1

0
f ′i(xi)g

′
i(xi) dxi

)

=
∑

u⊆Is

∫

[0,1]|u|

∏

i∈u
f ′i(xi)

∏

i∈Is\u
fi(1)

∏

i∈u
g′i(xi)

∏

i∈Is\u
gi(1) dxu.

In general the inner product for arbitrary functions f, g in this space is given

by

〈f, g〉 =
∑

u⊆Is

∫

[0,1]|u|

∂|u|f
∂xu

(xu,1)
∂|u|g
xu

(xu,1) dxu.

From (2.10) we know that I(f)−QN (f) = 〈f, h〉, with

h(x) =

∫

[0,1]s
K(x,y) dy − 1

N

N−1∑

n=0

K(x,xn)

=
s∏

i=1

3− x2i
2
− 1

N

N−1∑

n=0

s∏

i=1

(1 + min(1− xi, 1 − xn,i)).

Then for u ⊆ Is we have

∂|u|

∂xu

h(xu,1) = (−1)|u|
(∏

i∈u
xi −

1

N

N−1∑

n=0

χ[0u,xu)(xn,u)

)
,

where [0u,xu) denotes the interval
∏
i∈u[0, xi). Note that ∂|u|

∂xu

h(xu,1) =

(−1)|u|+1∆P(xu,1).

The following formula due to Hlawka [110] is called Hlawka’s identity (but

it is also known as Zaremba’s identity [270]), and follows from I(f)−QN (f) =
〈f, h〉 by substitution.

Proposition 2.17 The QMC integration error for any function f ∈ Hs
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is given by

QN (f)− I(f) =
∑

u⊆Is
(−1)|u|

∫

[0,1]|u|

∂|u|f
∂xu

(xu,1)∆P(xu,1) dxu.

Note that we have ∆P(x∅,1) = ∆P(1) = 0 and hence the case u = ∅ can
be excluded in the above sum.

Applying the estimate |∆P(xu,1)| ≤ supx∈[0,1]s |∆P(x)| = D∗
N (P), the

star discrepancy of the point set P, to Hlawka’s identity we obtain the

classical Koksma-Hlawka inequality.

Proposition 2.18 (Koksma-Hlawka inequality) Let P be the quadrature

points employed by the QMC rule QN and for a function f : [0, 1]s → R

for which all partial mixed derivatives are continuous on [0, 1]s let ‖f‖1 =∑
u⊆Is

∫
[0,1]|u|

∣∣∣∂|u|f∂xu

(xu,1)
∣∣∣ dxu. Then the integration error for functions with

‖f‖1 <∞ can be bounded by

|I(f)−QN (f)| ≤ ‖f‖1D∗
N (P).

Remark 2.19 Koksma [120] proved the inequality for dimension s = 1 and

Hlawka [109] generalised it to arbitrary dimension s ≥ 1. Those inequalities

in their original version consider functions of bounded variation in the sense

of Hardy and Krause (which is, in the one-dimensional case, the same as the

total variation) rather than functions f for which ‖f‖1 <∞. The variation

in the sense of Hardy and Krause and the norm considered here, without

the summand |f(1)|, coincide whenever all the mixed partial derivatives are

continuous on [0, 1]s, see for example [175, p. 19] or [37, Section 3.1].

Further information concerning the relationship between integration and

discrepancy can be found in the books of Novak & Woźniakowski [198, 200]

and of Triebel [256].

2.5 Numerical integration in weighted spaces

We now generalise the function spaces considered above based on ideas from

Sloan & Woźniakowski [247]. The motivation is at least two-fold. One comes

from the observation that integrands appearing in applications are often

such that they vary more in some coordinates than in others and hence not

all variables are of equal importance for the integration problem. The second

one comes from the bounds on the various discrepancies. Here we introduce

the first motivation, the second motivation is given in Section 3.6. In the

following we use toy examples which highlight the features we are after (but
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which are not directly appearing in practice as it is not obvious there that

the integrand varies more in some coordinates than in others).

An extreme example of a function varying more in one coordinate than

in another would be f : [0, 1]2 → R given by f(x1, x2) = g(x1), with

g : [0, 1] → R. This function does not depend on the second variable x2
altogether, so although it is defined as a two-dimensional function, it is, as

far as numerical integration is concerned, only a one-dimensional function.

Or, less extreme, we can have a function f(x1, x2) = f1(x1) + f2(x2), with

f1, f2 : [0, 1] → R. In this case we can apply the same rule to the first

and second coordinate simultaneously, i.e. QN (f) = 1
N

∑N−1
n=0 f(xn, xn) =

1
N

∑N−1
n=0 f1(xn) +

1
N

∑N−1
n=0 f2(xn). Again, as far as numerical integration is

concerned, a one-dimensional rule would be sufficient.

More generally, we can have f(x) =
∑

u⊆Is fu(xu), where fu depends only

on xi for which i ∈ u, (this representation is of course not unique) and where

for some u we may have fu = 0, such that I(f) =
∑

u⊆Is I(fu). In general

we might not directly have fu = 0, but something “small” (for the purpose

of numerical integration). In this case our QMC rule does not need to have

“good” projections onto the coordinates in u if the contribution of fu to

the value of the integral
∫
[0,1]s f(x) dx is negligible. That is, we do not need

to pay much attention to obtain good accuracy in approximating I(fu) by

QN (fu), which allows us to focus more on the important projections.

In order to account for that, we want such properties to be reflected in the

reproducing kernel Hilbert spaces and thus also in the criterion for assessing

the quality of the quadrature points. This leads to weighted reproducing

kernel Hilbert spaces originating from [247].

In the following we introduce a decomposition f(x) =
∑

u⊆Is fu(xu),

which has some further useful properties. These properties are then used

to introduce weighted reproducing kernel Hilbert spaces.

Orthogonal decomposition of a reproducing kernel Hilbert space

As an example we first consider the Hilbert space H of absolutely continu-

ous functions f : [0, 1] → R whose first derivative is square integrable. The

inner product in H is given by

〈f, g〉 =
∫ 1

0
f(y) dy

∫ 1

0
g(y) dy +

∫ 1

0
f ′(y)g′(y) dy.

From the inner product one can see that constant functions are orthogonal

to functions which integrate to 0, i.e., for f(x) = c, with c ∈ R a constant
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and hence f ′ = 0, and a function g ∈H with
∫ 1
0 g(y) dy = 0 we always have

〈f, g〉 = 0.

On the other hand, every function f ∈H can be written as f(x) = c+g(x)

such that g ∈ H with
∫ 1
0 g(y) dy = 0. Thus if we set H1 = {f = c}, the

set of all constant functions in H , and H2 = {g ∈ H :
∫ 1
0 g(y) dy = 0},

we obtain an orthogonal decomposition of H : 〈f1, f2〉 = 0 for all f1 ∈ H1,

f2 ∈H2 and for every f ∈H there are unique functions f1 ∈H1, f2 ∈H2

such that f = f1+f2. Indeed, for a given f ∈H , we set f1 :=
∫ 1
0 f(y) dy and

f2 := f−f1, then f1 ∈H1 and f2 ∈H with
∫ 1
0 f2(y) dy =

∫ 1
0 f(y) dy−f1 =

0, and so f2 ∈H2.

It can be checked that (see Exercise 2.11) the reproducing kernel for H

is given by

K(x, y) = 1 +B1(x)B1(y) +
B2(|x− y|)

2
,

where B1(t) = t− 1/2 and B2(t) = t2− t+1/6 (B1 is the first and B2 is the

second Bernoulli polynomial). Hence we have

〈f,K(·, y)〉 = f(y).

It is not too hard to see that we can obtain f1 =
∫ 1
0 f(y) dy using the inner

product. Indeed, there is a linear functional which maps f to f1, and its

representer is, as we have seen above,
∫ 1
0 K(x, y) dy = 1. Thus

〈f, 1〉 =
∫ 1

0
f(y) dy

∫ 1

0
1 dy +

∫ 1

0
f ′(y)0 dy =

∫ 1

0
f(y) dy.

Therefore we can also obtain f2 = f − f1. We have

f2(y) = f(y)− f1 = 〈f,K(·, y)〉 − 〈f, 1〉 = 〈f,K(·, y) − 1〉.
Hence we have

H1 = {f1 ∈H : f1 = 〈f, 1〉, for some f ∈H }
and

H2 = {f2 ∈H : f2(y) = 〈f,K(·, y)− 1〉 ∀y ∈ [0, 1], for some f ∈H }.
Further, H1,H2 are reproducing kernel Hilbert spaces themselves with inner

products 〈f, g〉1 =
∫ 1
0 f(y) dy

∫ 1
0 g(y) dy and 〈f, g〉2 =

∫ 1
0 f

′(y)g′(y) dy and

reproducing kernels K1(x, y) = 1 andK2(x, y) = B1(x)B1(y)+B2(|x−y|)/2.
Obviously we have K = K1 +K2. For a general result see [4].

Remark 2.20 We call the Hilbert space H considered in this section

the unanchored Sobolev space. The Hilbert space with kernel K(x, y) = 1 +
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min(1 − x, 1 − y) is called anchored Sobolev space (with anchor 1), as the

inner product 〈f, g〉 = f(1)g(1) +
∫ 1
0 f

′(y)g′(y) dy is anchored at the point

1.

In the next section we consider now tensor products of the unanchored

Sobolev space and obtain orthogonal decompositions in this case.

Unanchored Sobolev spaces over [0, 1]s

Let again K(x, y) = 1 +B1(x)B1(y) +B2(|x− y|)/2 and let

K(x,y) =
s∏

i=1

K(xi, yi)

be the reproducing kernel of the s-fold tensor product of the one-dimensional

unanchored Sobolev space. We call the corresponding reproducing kernel

Hilbert space Hs with domain [0, 1]s again unanchored Sobolev space. The

inner product in this space is given by

〈f, g〉 (2.12)

=
∑

u⊆Is

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂|u|f
∂xu

(x) dxIs\u

)(∫

[0,1]s−|u|

∂|u|g
∂xu

(x) dxIs\u

)
dxu.

Remark 2.21 Note that
∫ 1
0 B1(y) dy =

∫ 1
0 B2(y) dy = 0 (see Exercise 2.18).

Since B2(y) = B2(1 − y) we have
∫ 1
0 B2(|x − y|) dy =

∫ x
0 B2(x − y) dy +∫ 1

x B2(1−(y−x)) dy =
∫ 1
0 B2(z) dz = 0. Altogether we obtain that

∫ 1
0 K(x, y) dy =

1.

Recall that for f ∈Hs we want to have a decomposition of the form

f(x) =
∑

u⊆Is
fu(xu),

where fu only depends on the variables xi for i ∈ u. From the previous section

we know that we can decompose a one-variable function into a constant part

and a variable part. We can now apply this same procedure to each of the

s variables of f to decompose it into functions fu which depend only on

the variables xi for which i ∈ u. For i /∈ u the function fu is constant with

respect to xi, i.e. does not depend on xi.

For u ⊆ Is let

Ku(xu,yu
) =

∏

i∈u
(B1(xi)B1(yi) +B2(|xi − yi|)/2),
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where K∅ = 1. We write Ku(xu,yu
) and Ku(x,y) interchangeably. Then

K(x,y) =
∑

u⊆Is Ku(xu,yu
).

Let now

Hu = {fu ∈Hs : fu(y) := 〈f,Ku(·,y)〉 ∀y ∈ [0, 1]s for some f ∈Hs}.

Then for i ∈ u we have
∫ 1

0
fu(y) dyi =

∫ 1

0
〈f,Ku(·,y)〉dyi =

〈
f,

∫ 1

0
Ku(·,y) dyi

〉
= 〈f, 0〉 = 0,

as
∫ 1
0 K(x, y) dy = 1 according to Remark 2.21. Further, by definition, fu

does not depend on variables yi for i /∈ u and thus ∂fu
∂yi

= 0 for i /∈ u. For

fu ∈ Hu we often write fu(yu
) instead of fu(y), to emphasise that fu only

depends on yi for i ∈ u.

On the other hand, if f ∈ Hs with
∫ 1
0 f(x) dxi = 0 for i ∈ u and ∂f

∂xi
= 0

for i /∈ u and g ∈Hs, then

〈f, g〉

=
∑

v⊆Is

∫

[0,1]|v|

(∫

[0,1]s−|v|

∂|v|f
∂xv

(x) dxIs\v

)(∫

[0,1]s−|v|

∂|v|g
∂xv

(x) dxIs\v

)
dxv

=

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂|u|f
∂xu

(x) dxIs\u

)(∫

[0,1]s−|u|

∂|u|g
∂xu

(x) dxIs\u

)
dxu

=: 〈f, g〉u,

as we have
∫
[0,1]s−|v|

∂|v|f
∂xv

(x) dxIs\v =
∂|v|

∂xv

∫
[0,1]s−|v| f(x) dxIs\v and therefore

∫ 1
0 f(x) dxi = 0 for i ∈ u and ∂f

∂xi
= 0 for i /∈ u imply that we obtain

∫
[0,1]s−|v|

∂|v|f
∂xv

(x) dxIs\v = 0 for v 6= u. (That the order of integration and

differentiation can be changed can be seen in the following way: As the order

can be changed for the reproducing kernel it follows that 〈·, ·〉′ given by

〈f, g〉′ =
∑

u⊆Is

∫

[0,1]|u|

∂|u|

∂xu

(∫

[0,1]s−|u|
f(x) dxIs\u

)

× ∂|u|

∂xu

(∫

[0,1]s−|u|
g(x) dxIs\u

)
dxu,

is also an inner product in Hs. From [4] we know that the inner product is

unique and hence 〈f, g〉 = 〈f, g〉′ for all f, g ∈Hs. Therefore we can change

the order of integration and differentiation.)
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For such a function f we then have

f(y) = 〈f,K(·,y)〉 = 〈f,Ku(·,yu
)〉 = 〈f,Ku(·,yu

)〉u.

Thus

Hu =

{
f ∈H :

∫ 1

0
f(x) dxi = 0 for i ∈ u and

∂f

∂xi
= 0 for i /∈ u

}

and for f, g ∈Hu we have the inner product

〈f, g〉u (2.13)

=

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂|u|f
∂xu

(x) dxIs\u

)(∫

[0,1]s−|u|

∂|u|g
∂xu

(x) dxIs\u

)
dxu.

As for f ∈ Hu and g ∈ HIs we have 〈f, g〉 = 〈f, g〉u, Ku(·,yu
) ∈ Hu and

f(y
u
) = 〈f,Ku(·,yu

)〉u it follows that Ku is the reproducing kernel for Hu

with inner product 〈·, ·〉u.
Let f ∈Hs and let again

fu(y) = 〈f,Ku(·,y)〉.

Then fu ∈Hu and we have

∑

u⊆Is
fu(yu

) =
∑

u⊆Is
〈f,Ku(·,yu

)〉 =
〈
f,
∑

u⊆Is
Ku(·,yu

)

〉
= 〈f,K(·,y)〉 = f(y).

Further, for f, g ∈Hs we also have

〈f, g〉 =
∑

u⊆Is
〈f, g〉u =

∑

u⊆Is
〈fu, gu〉u.

The first equality follows from (2.12) and (2.13) and the second equality

follows as, for v 6= u and fv ∈ Hv, we have 〈fv, g〉u = 0 for all g ∈ Hu. In

particular we have

‖f‖2 =
∑

u⊆Is
‖fu‖2u. (2.14)

ANOVA decomposition

The orthogonal decomposition of Hs considered in the previous section has

some other interesting properties, as shown in [54, Section 6]. The func-

tions fu can also be found in an inductive way by using the properties
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∫ 1
0 fu(x) dxi = 0 for i ∈ u and

∫ 1
0 fu(x) dxi = fu(x) for i /∈ u (fu does not

depend on xi for i /∈ u). Thus
∫

[0,1]s−|u|
f(x) dxIs\u =

∑

v⊆Is

∫

[0,1]s−|u|
fv(xv) dxIs\u =

∑

v⊆u

fv(xv).

Starting with u = ∅ we can obtain the functions fu inductively: f∅ =∫
[0,1]s f(x) dx and if fv is known for all v ⊂ u we obtain

fu(xu) =

∫

[0,1]s−|u|
f(x) dxIs\u −

∑

v⊂u

fv(xv).

Example 2.22 Let f(x1, x2) = ex1 − x2 + x1 sin(πx2). Then

f∅ =
∫ 1

0

∫ 1

0
f(x1, x2) dx1 dx2 = e−1−1/2+ 1

2π
(cos(0)−cos(π)) = e−3/2+1

π
.

Now we can calculate f{1} and f{2}, we have

f{1}(x1) =
∫ 1

0
f(x1, x2) dx2 − f∅ = ex1 +

2x1
π
− e + 1− 1

π

and

f{2}(x2) =
∫ 1

0
f(x1, x2) dx1 − f∅ = −x2 +

1

2
sin(πx2) +

1

2
− 1

π
.

Finally we can calculate f{1,2}, we have

f{1,2}(x1, x2) = f(x1, x2)− f{1}(x1)− f{2}(x2)− f∅
= (x1 − 1/2) sin(πx2) +

1− 2x1
π

.

The variance Var of a function f is given by Var(f) =
∫
[0,1]s f

2(x) dx −
(∫

[0,1]s f(x) dx
)2

. Using the decomposition of f we obtain

Var(f) =

∫

[0,1]s
f2(x) dx−

(∫

[0,1]s
f(x) dx

)2

=
∑

∅6=u,v⊆Is

∫

[0,1]s
fu(xu)fv(xv) dx.

Using the fact that
∫ 1
0 fu(xu) dxi = 0 for i ∈ u we obtain

∫
[0,1]s fu(xu)fv(xv) dx =

0 for u 6= v. Further
∫
[0,1]s fu(xu)fu(xu) dx =

∫
[0,1]|u| f

2
u
(xu) dxu = Var(fu)
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since
∫
[0,1]s fu(xu) dxu = 0. Therefore and since Var(f∅) = 0 we obtain

Var(f) =
∑

u⊆Is
Var(fu). (2.15)

ANOVA decomposition stands for ANalysis Of VAriance. The decompo-

sition of f as used above can be used to analyse the contributions of lower

dimensional projections fu to the total variance via the formula Var(f) =∑
u⊆Is Var(fu).

Example 2.23 We calculate the variances of f, f{1}, f{2}, f{1,2} from Ex-

ample 2.22. We have

Var(f) =
−4− 8 e1π + 24π − 2π2e2 − 5π2 + 8 e1π2

4π2
,

Var(f{1}) =
12 e1π2 + 36π − 9π2 − 3π2e2 + 2− 12 e1π

6π2
,

Var(f{2}) =
−24 + 5π2

24π2
,

Var(f{1,2} =
−8 + π2

24π2
,

and therefore Var(f) = Var(f{1}) + Var(f{2}) + Var(f{1,2}).

Weighted reproducing kernel Hilbert spaces

Equation (2.14) now holds the key to weighted reproducing kernel Hilbert

spaces. Recall that for the worst-case error we consider all functions in the

unit ball of the space, i.e. all f ∈Hs with ‖f‖ ≤ 1. Using (2.14) this amounts

to
∑

u⊆Is ‖fu‖2u ≤ 1, where f(x) =
∑

u⊆Is fu(xu).

The worst-case error is used as a criterion for choosing the quadrature

points. By a small change to the norm we can change the shape of the unit

ball considered in the worst-case error, and thereby also the criterion used

for measuring the quality of quadrature points.

It has been observed that many integrands from applications seem to

vary more in lower dimensional projections than higher dimensional ones.

We model this behaviour now in the following way: We can write f(x) =∑
u⊆Is fu(xu). Some of the fu are “small”, which we can now make more

precise by saying that ‖fu‖u is small, compared with the norm of other

projections. In order to change the unit ball such that only functions for

which ‖fu‖u is small are contained in it, we multiply ‖fu‖u by a real number
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γu. Let γ := {γu : u ⊆ Is}. Then we define a new “weighted” norm by

‖f‖2γ =
∑

u⊆Is
γ−1
u
‖fu‖2u.

Then the condition ‖f‖γ ≤ 1 in the definition of the worst-case error (Def-

inition 2.10) implies that if γu is small, then also ‖fu‖ has to be small in

order for f to satisfy ‖f‖γ ≤ 1. The corresponding inner product then has

the form

〈f, g〉γ =
∑

u⊆Is
γ−1
u
〈f, g〉u. (2.16)

We now work out how this modification affects the theory which we es-

tablished until now. The Hilbert space Hγ with inner product (2.16) is a

reproducing kernel Hilbert space with reproducing kernel

Kγ(x,y) =
∑

u⊆Is
γuKu(xu,yu

).

Indeed we have Kγ(·,y) ∈Hγ and

〈f,Kγ(·,y)〉γ =
∑

u⊆Is
γ−1
u
〈f, γuKu(·,yu

)〉u =
∑

u⊆Is
〈f,Ku(·,yu

)〉u = f(y).

Using Proposition 2.11 we obtain the weighted square worst-case error

e2(Hγ ,P) =
1

N2

N−1∑

m,n=0

∑

∅6=u⊆Is
γuKu(xm,xn)

=
1

N2

N−1∑

m,n=0

∑

∅6=u⊆Is
γu
∏

i∈u
(B1(xm,i)B1(xn,i) +B2(|xm,i − xn,i|)/2)

=
∑

∅6=u⊆Is
γu

1

N2

N−1∑

m,n=0

∏

i∈u
(B1(xm,i)B1(xn,i) +B2(|xm,i − xn,i|)/2).

The worst-case error is a measure for the quality of the quadrature points.

Observe that 1
N2

∑N−1
m,n=0

∏
i∈u(B1(xm,i)B1(xn,i)+B2(|xm,i−xn,i|)/2) is the

worst-case error for the reproducing kernel Hilbert space Hu and hence

measures the quality of the projection of the quadrature points onto the

coordinates in u.

Recall that if for some ∅ 6= u ⊆ Is the value of γu is small, than ‖fu‖u also

has to be small. On the other hand, if γu is small (compared to γv for v 6=
u), then γu

1
N2

∑N−1
m,n=0

∏
i∈u(B1(xm,i)B1(xn,i) + B2(|xm,i − xn,i|)/2) is also

small, regardless of whether 1
N2

∑N−1
m,n=0

∏
i∈u(B1(xm,i)B1(xn,i)+B2(|xm,i−
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xn,i|)/2) is large or small. This makes sense, since ‖fu‖ small means we do

not need to focus on approximating the integral
∫
[0,1]|u| fu(xu) dxu and so

the quality of the approximation does not matter much.

In the next chapter we look more closely at geometrical properties of the

discrepancy.

Exercises

2.1 Calculate the star discrepancy and the L2-discrepancy of the point sets

• P1 = { nN : 0 ≤ n ≤ N − 1},
• P2 = {2n+1

2N : 0 ≤ n ≤ N − 1},
• P3 = { n

2N : 0 ≤ n ≤ N − 1}.
2.2 Let P = {p(x) = a0 + a1x+ · · ·+ arx

r : a0, . . . , ar ∈ R} be the space of
all polynomials of degree at most r. We define an inner product on this

space by: for p(x) = a0+a1x+· · ·+arxr and q(x) = b0+b1x+· · ·+brxr
let 〈p, q〉 = a0b0 + a1b1 + · · ·+ arbr. What is the reproducing kernel for

this space? Prove properties P1 - P5 for this kernel.

2.3 Let P = {f(x) = a0+a1e
2πix+· · ·+are2πirx : a0, a1, . . . , ar ∈ C} be the

space of all trigonometric polynomials of degree at most r. We define an

inner product on this space by: for f(x) = a0+ a1e
2πix+ · · ·+ are

2πirx

and g(x) = b0+b1e
2πix+· · ·+bre2πirx let 〈f, g〉 = a0b0+a1b1+· · ·+arbr.

What is the reproducing kernel for this space? Prove properties P1 -

P5 for this kernel.

2.4 The one-dimensional Korobov space Hkor,α for real α > 1 consists of

all one-periodic L1-functions f : [0, 1] → C with absolute convergent

Fourier series representation such that |f̂(h)| = O(max(1, |h|α)) for

integers h. The reproducing kernel for the Korobov space is given by

K(x, y) = 1+
∑

h∈Z,h 6=0 |h|−αe2πih(x−y). What is the inner product for

this space?

2.5 Verify Remark 2.6, by showing thatK(x, y) := min(1−x, 1−y) satisfies
P1-P5 for a suitable inner product.

2.6 Verify that ∆P(y) = d
dy

(∫ 1
0 K(x, y) dx− 1

N

∑N−1
n=0 K(xn, y)

)
, where

∆P is the discrepancy function and K(x, y) = 1 + min(1− x, 1− y).
2.7 Let Hwal be the Walsh space as defined in Example 2.8. Show that the

worst-case error for a QMC rule using a point set P = {x0, . . . , xN−1}
is given by

e2(Hwal,P) =
∞∑

k=1

rwal,b,α(k)

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn)

∣∣∣∣∣

2

.
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Hint: See Appendix A for more information on Walsh functions; see

[50, Section 2 and 4] for more information on the reproducing kernel

Hilbert space generated by K and numerical integration therein.

2.8 Evaluate the integral
∫
[0,1]s |∆P(x)|2 dx to obtain Proposition 2.15.

2.9 For s = 2 prove Proposition 2.17 directly by evaluating the integrals

on the right hand side of the formula.

2.10 Study the proof of the classical Koksma-Hlawka inequality in [128, p.

143–153].

2.11 Check that for K(x, y) = 1+B1(x)B1(y)+B2(|x−y|)/2, with B1(t) =

t − 1/2 and B2(t) = t2 − t + 1/6 and an inner product 〈f, g〉 =∫ 1
0 f(y) dy

∫ 1
0 g(y) dy +

∫ 1
0 f

′(y)g′(y) dy we always have 〈f,K(·, y)〉 =
f(y) and thus conclude that K is the reproducing kernel of the Hilbert

space of absolutely continuous functions with square integrable first

derivative.

2.12 Obtain a Warnock type formula, Hlawka identity and Koksma-Hlawka

inequality for the reproducing kernel

K(x,y) =

s∏

i=1

(1 +B1(xi)B1(yi) +B2(|xi − yi|)/2),

where B1(t) = t−1/2 and B2(t) = t2−t+1/6 (this is the kernel consid-

ered in Section 2.5). The inner product in the associated reproducing

kernel Hilbert space is given by

〈f, g〉 =
∑

u⊆Is

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂|u|f
∂xu

(x) dxIs\u

)

×
(∫

[0,1]s−|u|

∂|u|g
∂xu

(x) dxIs\u

)
dxu.

(Note that the discrepancy function differs from the discrepancy func-

tion in Definition 2.13 in this case.) See [249] for more information on

this space.

2.13 The s-dimensional Korobov space Hkor,s,α, s ∈ N and α > 1, is the

reproducing kernel Hilbert space of complex-valued functions of period

one which is defined by

Kα(x,y) =
∑

h∈Zs

1

rα(h)
e2πih·(x−y),



60 QMC integration, discrepancy and reproducing kernel Hilbert spaces

where rα(h) =
∏s
i=1(max(1, |hi|))α. The inner-product is given by

〈f, g〉α =
∑

h∈Zs

rα(h)f̂(h)ĝ(h).

Show that the worst-case integration error for a QMC rule in Hkor,s,α

using P = {x0, . . . ,xN−1} is given by

e2(Hkor,s,α,P) =
∑

h∈Zs\{0}

1

rα(h)

∣∣∣∣∣
1

N

N−1∑

n=0

e2πih·xn

∣∣∣∣∣

2

.

2.14 Let ẽ2α,N :=
∫ 2
[0,1]Ns e

2(Hkor,s,α, {x0, . . . ,xN−1}) dx0 · · · dxN−1. Show

that for α > 1 we have

ẽ2α,N ≤ e2ζ(α)s/N,

where ζ(α) =
∑∞

j=1 j
−α. Hint: See [248, Theorem 1] or [100].

2.15 Let s ≥ 1 and b ≥ 2 be integers, α > 1 a real and γ = (γi)i≥1 be a

sequence of nonnegative reals. The s-dimensional weighted version of

the Walsh space from Example 2.8 is the reproducing kernel Hilbert

space Hwal,s,b,α,γ of b-adic Walsh series f(x) =
∑

k∈Ns
0
f̂(k) bwalk(x)

with reproducing kernel defined by

Kwal,s,b,α,γ(x,y) =
∑

k∈Ns
0

rwal,b,α(k,γ) bwalk(x⊖ y),

where for k = (k1, . . . , ks) we put rwal,b,α(k,γ) =
∏s
i=1 rwal,b,α(ki, γi)

and for k ∈ N0 and γ > 0 we write

rwal,b,α(k, γ) =

{
1 if k = 0,

γb−αa if k = κ0 + κ1b+ · · · + κab
a and κa 6= 0.

The inner-product is given by

〈f, g〉 =
∑

k∈Ns
0

rwal,b,α(k,γ)
−1f̂(k)ĝ(k).

Show that the worst-case integration error for a QMC rule in Hwal,s,b,α,γ

using P = {x0, . . . ,xN−1} is given by

e2(Hwal,s,b,α,γ,P) =
∑

k∈Ns
0\{0}

rwal,b,α(k,γ)

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn)

∣∣∣∣∣

2

.

Hint: Compare with Exercise 2.7. See [50, Section 2 and 4].
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2.16 Let ẽ2n,α,γ,N :=
∫ 2
[0,1]Ns e

2(Hwal,s,b,α,γ, {x0, . . . ,xN−1}) dx0 · · · dxN−1.

Show that for α > 1 we have

ẽ2α,N ≤ eνb(α)
∑s

i=1 γi/N,

where νb(α) =
∑∞

k=1 b
−αa(k) = bα(b−1)

bα−b and where a(k) = a whenever

k = κ0 + κ1b+ · · ·+ κab
a with κa 6= 0. Hint: See [50, Theorem 1].

2.17 Obtain an orthogonal decomposition of the reproducing kernel Hilbert

space with reproducing kernel K(x, y) = 1 + min(1 − x, 1 − y). What

are the spaces H1,H2, K1,K2 and respective inner products in this

case?

2.18 Show that
∫ 1
0 B1(x) dx = 0 and

∫ 1
0 B2(x) dx = 0.

2.19 Let f(x1, x2) = ex1−x2 − x2 cos(π(x1 + x22)). Calculate the ANOVA

decomposition and the variances of fu and check that (2.15) holds.

2.20 Using similar arguments as in Section 2.4 and 2.5, obtain a weighted

version of the L2-discrepancy, Warnock’s formula, Hlawka’s identity

and the Koksma-Hlawka inequality for the reproducing kernel Hilbert

space with reproducing kernel K(x,y) =
∏s
i=1(1+min(1−xi, 1− yi)).

Hint: See [247].

2.21 Calculate the worst-case error for numerical integration in the repro-

ducing kernel Hilbert space Hu from Section 2.5.
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Geometric discrepancy

In this chapter we introduce the theory of uniform distribution modulo one,

for which the main motivation is the application of equidistributed points

for numerical integration with QMC algorithms as we have seen in Chap-

ter 2. The quality of the equidistribution of a point set is measured by the

so-called discrepancy. We introduce different notions of discrepancy includ-

ing the rather new weighted discrepancies now from the perspective of their

geometrical properties. Because of their geometric interpretation these dis-

crepancies are also often called geometric discrepancies. We provide some

classical as well as new results for geometric discrepancies. A standard ref-

erence for the theory of uniform distribution modulo one is the book of

Kuipers & Niederreiter [128] to which we refer for a further, more detailed

discussion (mainly from a number-theoretic view point). See also the book

of Drmota & Tichy [61].

3.1 Uniform distribution modulo one

As discussed in Chapter 2 we are concerned with approximating the inte-

gral of a function f over the s-dimensional unit cube [0, 1]s with a QMC

rule, which gives the average of function values f(xn), where the points

x0, . . . ,xN−1 are deterministically chosen sample points from the unit cube,

see (2.1).

For Riemann integrable functions f we would, of course, demand that for

growing N the error of this approximation goes to zero, i.e., for a sequence

(xn)n≥0 in [0, 1)s we would like to have

lim
N→∞

1

N

N−1∑

n=0

f(xn) =

∫

[0,1]s
f(x) dx. (3.1)

Hence the question arises, how the sequence of sample points has to be cho-
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sen such that this is indeed the case? Let us, for a moment, assume that the

function f to be integrated comes from the class of finite linear combinations

of characteristic functions of axes-parallel rectangles. This is probably one

of the simplest sub-class of Riemann-integrable functions. Then our ques-

tion leads directly to a branch of Number Theory, namely to the Theory of

Uniform Distribution Modulo One, which goes back to a fundamental work

of Weyl [263] from the year 1916.

Intuitively, one may consider a sequence of points in the unit cube as uni-

formly distributed, if each set E from some suitable subclass of measurable

sets contains (asymptotically) the right portion of points, namely Nλs(E),

where λs is the s-dimensional Lebesgue measure (see Figure 3.1). This leads

to the following exact definition of uniform distribution modulo one.

E

Figure 3.1 The number of points in E should be approximately Nλs(E).

For a sequence S = (xn)n≥0 in the s-dimensional unit cube [0, 1)s and a

subset E of [0, 1]s let A(E,N,S) be the number of indices n, 0 ≤ n ≤ N−1,

for which the point xn belongs to E. That is, A(E,N,S) =∑N−1
n=0 χE(xn).

Definition 3.1 A sequence S = (xn)n≥0 in the s-dimensional unit cube

[0, 1)s is said to be uniformly distributed modulo one, if for every interval

[a, b) ⊆ [0, 1]s we have

lim
N→∞

A([a, b), N,S)
N

= λs([a, b)), (3.2)

or in other words, if (3.1) holds for the characteristic function χ[a,b) of any

sub-interval [a, b) ⊆ [0, 1]s.

We remark that the choice of half-open intervals in the above definition

and in the following is of minor importance.

Remark 3.2 There is also the stronger concept of well-distribution modulo

one. For a sequence S = (xn)n≥0 in the s-dimensional unit cube [0, 1)s and
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a subset E of [0, 1]s, let A(E, k,N,S) be the number of indices n, k ≤ n ≤
k+N −1, for which the point xn belongs to E. Then the sequence S is said

to be well-distributed modulo one, if for every sub-interval [a, b) ⊆ [0, 1]s we

have

lim
N→∞

A([a, b), k,N,S)
N

= λs([a, b)) (3.3)

uniformly in k = 0, 1, 2, . . ..

It is obvious from the definition that a sequence (xn)n≥0 in the s-dimensional

unit cube [0, 1)s is uniformly distributed modulo one, if (3.1) holds for every

finite linear combination of characteristic functions of axes-parallel rectan-

gles f : [0, 1]s → R.

Now it is well known from analysis that any Riemann integrable func-

tion on [0, 1]s can be approximated arbitrary closely in L1([0, 1]
s) by finite

linear combinations of characteristic functions of axes-parallel rectangles.

From this fact we obtain the following equivalence (see [128, Chapter 1,

Corollary 1.1] for a more detailed proof).

Theorem 3.3 A sequence S = (xn)n≥0 in [0, 1)s is uniformly distributed

modulo one, if and only if for every Riemann integrable function f : [0, 1]s →
R we have

lim
N→∞

1

N

N−1∑

n=0

f(xn) =

∫

[0,1]s
f(x) dx. (3.4)

Note that there is no sequence such that (3.4) holds for all Lebesgue inte-

grable functions. For a given sequence S with support S the characteristic

function of [0, 1]s \ S is a counterexample. Furthermore, it was shown by

de Bruijn & Post [31] that for every function f ∈ L1([0, 1]), which is not

Riemann integrable, there exists a sequence which is uniformly distributed

modulo one but for which (3.4) does not hold.

One can also show the following theorem whose proof is left as an exercise

(see Exercise 3.4).

Theorem 3.4 A sequence (xn)n≥0 in the s-dimensional unit cube [0, 1)s

is uniformly distributed modulo one, if and only if (3.4) holds for every

continuous, complex-valued function f : [0, 1]s → C with period one.

For example, let f : [0, 1]s → C be given by f(x) = e2πih·x, where

h ∈ Zs is some s-dimensional integer vector. If a sequence (xn)n≥0 in the

s-dimensional unit cube is uniformly distributed modulo one, then by The-
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orem 3.4 we have

lim
N→∞

1

N

N−1∑

n=0

e2πih·xn =

∫

[0,1]s
e2πih·x dx,

where the last integral is 0 if h ∈ Zs \{0} and 1 if h = 0. Astonishingly, the

opposite is true as well: That is, the relation limN→∞ 1
N

∑N−1
n=0 e2πih·xn = 0

for all h ∈ Zs \ {0} is also a sufficient condition for the sequence (xn)n≥0 to

be uniformly distributed modulo one (for h = 0 we trivially have equality for

any sequence). This fact is the famousWeyl criterion for uniform distribution

modulo one.

Let us make this assertion a bit more plausible. We consider the one-

dimensional case and we identify the unit interval [0, 1) equipped with ad-

dition modulo one, i.e., R/Z, with the one-dimensional torus (T, ·), where
T = {z ∈ C : |z| = 1}, via the group isomorphism x 7→ e2πix. Let (xn)n≥0

be a sequence in [0, 1). Then 1
N

∑N−1
n=0 e2πixn is nothing else than the cen-

troid of the N points e2πix0 , . . . , e2πixN−1 ∈ T. If the centroid is now close to

the origin then the points are evenly balanced on the torus T whereas this

is not the case when the points are badly balanced (see Figure 3.2). How-

ever, this need not mean that the sequence (xn)n≥0 is uniformly distributed

modulo one. For example consider the case where x2k = 0 and x2k+1 = 1/2

for all k ∈ N0. Then (xn)n≥0 is obviously not uniformly distributed but

the centroid of the points e2πix0 , . . . , e2πixN−1 tends to the origin when N

grows to infinity. Thus for uniform distribution one needs more than just

the property that the centroid of the points, transformed onto the torus, is

close to the origin. The Weyl criterion states that it is enough to demand

this property for the sequence ({hxn})n≥0 for all integers h 6= 0.

Theorem 3.5 (Weyl criterion) A sequence S = (xn)n≥0 in the s-dimensional

unit cube [0, 1)s is uniformly distributed modulo one, if and only if

lim
N→∞

1

N

N−1∑

n=0

e2πih·xn = 0 (3.5)

holds for all vectors h ∈ Z \ {0}.

Proof TheWeyl criterion follows from the criterion in Theorem 3.4 by using

the fact that the trigonometric polynomials of the form
∑

|h|∞≤R ahe
2πih·x

with complex coefficients ah and arbitrarily large R ∈ N0, are dense with

respect to the uniform norm in the space of all continuous, complex-valued

functions on [0, 1]s. A detailed proof for the case s = 1 can be found in the

book of Kuipers & Niederreiter [128, p. 7,8, Theorem 2.1]. See also [61].



66 Geometric discrepancy

Figure 3.2 Ten points on the unit-circle. The points on the left are perfectly
balanced and hence the centroid is exactly the origin. For the points on the
right the centroid is far away from the origin.

Example 3.6 Applying the Weyl criterion to the sequence ({nα})n≥0,

where α = (α1, . . . , αs) ∈ Rs and where {·} denotes the fractional part

applied component wise to a vector, we find that this sequence is uniformly

distributed modulo one, if and only if the numbers 1, α1, . . . , αs are linearly

independent over Q. Namely, if we assume that this holds true, then for each

nonzero integer vector h we have h ·α 6∈ Z. Therefore, using the periodicity

of the fractional part and the formula for a geometric sum, we have
∣∣∣∣∣
N−1∑

n=0

e2πih·xn

∣∣∣∣∣ =
∣∣∣∣∣
N−1∑

n=0

e2πinh·α
∣∣∣∣∣ =

∣∣∣∣
e2πiNh·α − 1

e2πih·α − 1

∣∣∣∣ ≤
2

|e2πih·α − 1|

and hence by the Weyl criterion it follows that the sequence ({nα})n≥0 is

uniformly distributed modulo one.

If, on the other hand, h∗ · α ∈ Z for some integer vector h∗ 6= 0, then
1
N

∑N−1
n=0 e2πinh

∗·α = 1
N

∑N−1
n=0 1 = 1, which implies that the Weyl criterion

is not satisfied and the sequence ({nα})n≥0 is not uniformly distributed.

As Walsh functions play a very important role in this book, we present

also the Weyl criterion for the Walsh function system in more detail. See

Appendix A for the definition and basic properties of Walsh functions.

Before we state the Weyl criterion for the Walsh function system, let

us consider an example in dimension s = 1 and base b = 2. For k ∈ N0

with 2-adic expansion k = κ0 + κ12 + · · · + κr2
r the 2-adic Walsh function

is given by 2walk(x) = (−1)ξ1κ0+···+ξr+1κr for x ∈ [0, 1) with canonical 2-

adic expansion x = ξ12
−1 + ξ22

−2 + · · · . This is of course a step function

defined on the unit interval [0, 1); see Figure 3.3 for some examples. Hence,

if a sequence (xn)n≥0 in [0, 1) is uniformly distributed modulo one, then
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we have limN→∞ 1
N

∑N−1
n=0 2walk(xn) =

∫ 1
0 2walk(x) dx. This can be seen

in the following way: if k = 0 then 2walk(x) = 1 and
∫ 1
0 2walk(x) dx = 1

and the equality holds trivially. If k > 0, then the last integral is zero, the

Walsh function is 1 on a union of intervals with combined length 1/2 and −1
on a union of intervals with combined length 1/2. As (xn)n≥0 is uniformly

distributed it follows that the equality also holds for k > 0.

1

1

0

−1

1

1

0

−1

1

1

0

−1 −1

0

1

1

Figure 3.3 The 2-adic Walsh functions 2wal1(x), 2wal2(x), 2wal3(x) and
2wal4(x).

On the other hand, assume that for a given sequence (xn)n≥0 in [0, 1)

we have limN→∞ 1
N

∑N−1
n=0 2wal1(xn) = 0 =

∫ 1
0 2wal1(x) dx. The first Walsh

function 2wal1(x) is constant with value 1 on the interval [0, 1/2) and con-

stant with value −1 on the interval [1/2, 1); see Figure 3.3. Hence, asymp-

totically, in each of these two intervals we must have the same propor-

tion of points of the sequence, namely 1/2. Assume further that we also

have limN→∞ 1
N

∑N−1
n=0 2walk(xn) = 0 for k ∈ {2, 3}. The Walsh functions

2wal2(x) and 2wal3(x) are both constant on the intervals J1 = [0, 1/4),
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J2 = [1/4, 1/2), J3 = [1/2, 3/4) and J4 = [3/4, 1) of length 1/4; see again

Figure 3.3. Let jl be the proportion of points of the sequence (xn)n≥0 that

belong to the interval Jl, l ∈ {1, 2, 3, 4}. Then we have from the above

that j1 + j2 = 1/2 and j3 + j4 = 1/2, and from the asymptotic relation

for the third and fourth Walsh function we obtain (see Figure 3.3) that

j1 − j2 + j3 − j4 = 0 and j1 − j2 − j3 + j4 = 0. From these four equa-

tions we easily find that j1 = j2 = j3 = j4 = 1/4. Hence each interval Jl,

l ∈ {1, 2, 3, 4}, contains in the limit the same proportion of points of the

sequence (xn)n≥0.

If limN→∞ 1
N

∑N−1
n=0 2walk(xn) = 0 for all 0 ≤ k < 2r, then, by an

extension of the above argument, one can conjecture (and we see below

that this does indeed hold) that each interval of the form
[
a
2r ,

a+1
2r

)
, with

a ∈ {0, . . . , 2r − 1}, of length 2−r, contains in the limit the same propor-

tion of points of the sequence, namely 2−r, and hence (3.2) holds for all of

these intervals. As one can approximate any subinterval [x, y) ⊆ [0, 1) arbi-

trary closely by intervals of the form
[
a
2r ,

a+1
2r

)
, it follows that (3.2) holds

for any subinterval [x, y) ⊆ [0, 1) which means that the sequence (xn)n≥0 is

uniformly distributed modulo one.

Now let us state the general result together with a detailed proof.

Theorem 3.7 (Weyl criterion for the Walsh function system) Let b ≥ 2 be

an integer. A sequence S = (xn)n≥0 in the s-dimensional unit cube [0, 1)s is

uniformly distributed modulo one, if and only if

lim
N→∞

1

N

N−1∑

n=0

bwalk(xn) = 0 (3.6)

holds for all vectors k ∈ Ns0 \ {0}.

From the point of view of Definition 3.1, the Weyl criterion for the Walsh

function system seems to be more natural than the classical Weyl criterion

using trigonometric functions, since by using the Walsh function system one

measures directly the proportion of points of a sequence in certain intervals.

However, if we identify the unit-interval [0, 1) with the torus, and therefore

define uniform distribution on the torus, then the classical Weyl criterion

using trigonometric functions becomes more natural.

For the proof of the result we need some preparation. The following fun-

damental definition is used throughout the book.

Definition 3.8 Let b ≥ 2 be an integer. An s-dimensional, b-adic elemen-
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tary interval is an interval of the form

s∏

i=1

[
ai
bdi
,
ai + 1

bdi

)

with integers 0 ≤ ai < bdi and di ≥ 0 for all 1 ≤ i ≤ s. If d1, . . . , ds are such

that d1 + · · · + ds = k, then we say that the elementary interval is of order

k.

Lemma 3.9 For b ≥ 2 consider an s-dimensional, b-adic elementary in-

terval J =
∏s
i=1

[
ai
bdi
, ai+1
bdi

)
with integers 0 ≤ ai < bdi and di ∈ N0 for all

1 ≤ i ≤ s. Let further k = (k1, . . . , ks) ∈ Ns0 \ {0} be such that ki ≥ bdi

for at least one index 1 ≤ i ≤ s. Then for the kth Walsh coefficient of the

characteristic function of J we have

χ̂J(k) = 0.

Proof First we show the one-dimensional case. Let k ≥ bd and 0 ≤ a < bd

be integers with b-adic expansions k = κ0+κ1b+ · · ·+κgbg with κg 6= 0 and

g ≥ d, and a = α0 + α1b+ · · · + αd−1b
d−1. For x ∈

[
a
bd
, a+1
bd

)
, we have that

the b-adic expansion of x is of the form

x =
αd−1

b
+
αd−2

b2
+ · · ·+ α0

bd
+
∑

j≥d+1

ξj
bj
,

where ξj ∈ {0, . . . , b− 1} are arbitrary b-adic digits for j ≥ d+ 1. Therefore

we obtain
∫ (a+1)/bd

a/bd
bwalk(x) dx = ω

κ0αd−1+···+κd−1α0

b

∫ (a+1)/bd

a/bd
ω
κdξd+1+···+κgξg+1

b dx

= ω
κ0αd−1+···+κd−1α0

b

1

bg+1

g∏

j=d

b−1∑

ζ=0

ω
κjζ
b = 0,

as for κ 6= 0 we have
∑b−1

ζ=0 ω
κζ
b = (ωκbb − 1)/(ωb − 1) = 0.

Now let k = (k1, . . . , ks) ∈ Ns0 with ki ≥ bdi for at least one index 1 ≤ i ≤
s. Then we obtain from the above that for J =

∏s
i=1

[
ai
bdi
, ai+1
bdi

)
we have

χ̂J(k) =

∫

[0,1]s
χJ(x) bwalk(x) dx =

∫

J
bwalk(x) dx

=

s∏

i=1

∫ (ai+1)/bdi

ai/bdi
bwalki(x) dx = 0.
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Proof of Theorem 3.7 Assume first that the sequence S = (xn)n≥0 is uni-

formly distributed modulo one. As the Walsh function bwalk with k =

(k1, . . . , ks) ∈ Ns0, 0 ≤ ki < bri for all 1 ≤ i ≤ s, is constant on each interval

of the form

J =
s∏

i=1

[
ai
bri
,
ai + 1

bri

)
,

with integers 0 ≤ ai < bri for all 1 ≤ i ≤ s, we can write bwalk as a step

function, i.e.,

bwalk(x) =
∑

l∈M
clχJl(x)

with a finite set M , cl ∈ R and pairwise disjoint intervals Jl ⊆ [0, 1]s. Then

we obtain

lim
N→∞

1

N

N−1∑

n=0

bwalk(xn) =
∑

l∈M
cl lim
N→∞

1

N

N−1∑

n=0

χJl(xn) =
∑

l∈M
clλs(Jl),

as the sequence (xn)n≥0 is uniformly distributed modulo one. Since for k 6= 0

we have

0 =

∫

[0,1]s
bwalk(x) dx =

∑

l∈M
clλs(Jl)

we find that (3.6) holds for all k 6= 0.

Now we show the other direction. Assume that (3.6) holds for all k 6= 0.

Let first J be a b-adic elementary interval with d1 = · · · = ds = r ∈ N0, i.e.,

of the form

J =

s∏

i=1

[
ai
br
,
ai + 1

br

)
, (3.7)

with integers 0 ≤ ai < br for all 1 ≤ i ≤ s. Then it follows from Lemma 3.9

that the characteristic function of J has a finite Walsh series representation,

i.e.,

χJ(x) =
∑

k∈N
s
0

|k|∞<br

χ̂J(k) bwalk(x),

where for k = (k1, . . . , ks) we write |k|∞ := max1≤j≤s |kj |. Hence

lim
N→∞

A(J,N,S)
N

=
∑

k∈Ns
0

|k|∞<br

χ̂J(k) lim
N→∞

1

N

N−1∑

n=0

bwalk(xn) = χ̂J(0) = λs(J),

by our assumption. Let now [x,y) ⊆ [0, 1)s be an arbitrary interval with x =
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(x1, . . . , xs) and y = (y1, . . . , ys). For r ∈ N0 choose ui, vi ∈ {0, . . . , br − 1}
such that ui ≤ xib

r < ui + 1 and vi ≤ yib
r < vi + 1 for 1 ≤ i ≤ s. Then we

have

J1 :=

s∏

i=1

[
ui + 1

br
,
vi
br

)
⊆ [x,y) ⊆

s∏

i=1

[
ui
br
,
vi + 1

br

)
=: J2

and A(J1, N,S) ≤ A([x,y), N,S) ≤ A(J2, N,S). As both, J1 and J2 are

disjoint, finite unions of b-adic elementary intervals of the form (3.7), we

obtain from the above considerations that

s∏

i=1

vi − ui − 1

br
≤ lim

N→∞
A([x,y), N,S)

N
≤

s∏

i=1

vi − ui + 1

br
.

But, as for all 1 ≤ i ≤ s we have limr→∞
vi−ui−1

br = limr→∞
vi−ui+1

br = yi−xi,
it follows that

lim
N→∞

A([x,y), N,S)
N

= λs([x,y)),

and hence the sequence S is uniformly distributed modulo one.

Now we can easily give a further example for a uniformly distributed

sequence.

Definition 3.10 Let b ≥ 2 be an integer. For any n ∈ N0 with b-adic

expansion n = n0 + n1b+ n2b
2 + · · · (this expansion is obviously finite) the

(b-adic) radical inverse function ϕb : N0 → [0, 1) is defined as

ϕb(n) =
n0
b

+
n1
b2

+ · · · .

Then the b-adic van der Corput sequence is defined as the one-dimensional

sequence S = (xn)n≥0 with xn = ϕb(n) for all n ∈ N0.

Example 3.11 For b = 2 the first elements of the 2-adic van der Corput

sequence are 0, 12 ,
1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 ,

1
16 , . . ..

Example 3.12 Using Theorem 3.7 we show that the b-adic van der Corput

sequence is uniformly distributed modulo one. Let k ∈ N with k = κ0+κ1b+

· · ·+ κr−1b
r−1, where κr−1 6= 0. For the b-adic van der Corput sequence the

nth element is of the form xn = n0b
−1 + n1b

−2 + · · · and hence we have

E(N) :=

N−1∑

n=0

bwalk(xn) =

N−1∑

n=0

ω
κ0n0+···+κr−1nr−1

b .

Let first N = br. Then we have E(br) =
∏r−1
j=0

∑b−1
n=0 ω

κjn
b = 0 as at least
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κr−1 6= 0 and the same holds for each multiple of br, i.e., E(vbr) = 0 for all

v ∈ N. From this we find that |E(N)| ≤ br for all N ∈ N and hence

lim
N→∞

1

N

N−1∑

n=0

bwalk(xn) = 0.

Now it follows from the Weyl criterion for the Walsh function system that

the b-adic van der Corput sequence is uniformly distributed modulo one.

3.2 Discrepancy

In the last section we found that a sequence should be uniformly distributed

modulo one to satisfy our purpose of approximating the integral of a Rie-

mann integrable function arbitrarily closely with a QMC algorithm using

the first N points of this sequence. In practice, however, we can only use

finite sets of sample points (where here and throughout this book by a set

of points we always mean a multi-set where the multiplicity of elements

matters). But a finite sequence can never be uniformly distributed modulo

one. Nevertheless, Theorem 3.3 and the results from Chapter 2 suggest to

use point sets whose empirical distribution is close to uniform distribution

modulo one.

In the following we introduce several quantitative measures for the de-

viation of a finite point set from uniform distribution. Some of them have

already been introduced and used in Chapter 2. Such measures are usually

called discrepancies. The definition of uniform distribution modulo one leads

directly to the following definition.

Definition 3.13 Let P = {x0, . . . ,xN−1} be a finite point set in [0, 1)s.

The extreme discrepancy DN of this point set is defined as

DN (P) := sup
J

∣∣∣∣
A(J,N)

N
− λs(J)

∣∣∣∣ ,

where the supremum is extended over all sub-intervals J ⊆ [0, 1)s of the

form J = [a, b). For an infinite sequence S the extreme discrepancy DN (S)
is the extreme discrepancy of the first N elements of the sequence.

It can be shown (see Exercise 3.9) that a sequence S is uniformly dis-

tributed modulo one, if and only if limN→∞DN (S) = 0. Hence, for uniformly

distributed sequences, the extreme discrepancy goes to zero as N tends to

infinity. However, this convergence to zero cannot be arbitrarily fast. Con-

sider, for example, an interval of volume ε > 0 which contains exactly one

point of the first N elements of the sequence S. Then by choosing ε > 0
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arbitrarily small, we find DN (S) ≥ 1/N . This gives a first lower bound on

the extreme discrepancy.

Very often one uses a slightly weaker version of the extreme discrepancy

which is commonly known as the star discrepancy. Here the supremum in

Definition 3.13 is only extended over all subintervals of the unit cube with

one vertex anchored at the origin. The star discrepancy D∗
N of a finite point

set P has been introduced in Definition 2.14 as the sup-norm of the discrep-

ancy function ∆P(x) := A([0,x), N,P)/N −λs([0,x)) (see Definition 2.13),

which can be considered as a local measure for the deviation from uniform

distribution. That is, for a point set P = {x0, . . . ,xN−1} in [0, 1)s the star

discrepancy is given by

D∗
N (P) := sup

x∈[0,1]s
|∆P(x)| .

For an infinite sequence S the star discrepancyD∗
N (S) is the star discrepancy

of the first N elements of the sequence.

From these definitions we immediately obtain the following relation be-

tween the extreme discrepancy and the star discrepancy.

Proposition 3.14 For any point set P consisting of N points in [0, 1)s

we have

D∗
N (P) ≤ DN (P) ≤ 2sD∗

N (P).
Proof The left inequality is obvious. For the right inequality we mention

that any subinterval of [0, 1]s can be written as composition of at most 2s

subintervals of [0, 1]s with one vertex anchored in the origin. For example,

for s = 2 and a = (a1, a2) and b = [b1, b2) we have

[a, b) = ([0, b1)× [0, b2) \ [0, a1)× [0, b2))\([0, b1)× [0, a2) \ [0, a1)× [0, a2)) .

From this composition the result immediately follows.

On account of Proposition 3.14 we mainly deal with the simpler star

discrepancy instead of the extreme discrepancy in the following. A further

motivation for concentrating on the star discrepancy is its appearance in

the Koksma-Hlawka inequality (Theorem 2.18). Results for the extreme dis-

crepancy can be obtained from results for the star discrepancy together with

Proposition 3.14.

Obviously this also holds in the other direction. From our results for the

extreme discrepancy we find now that a sequence is uniformly distributed

modulo one, if and only if its star discrepancy tends to zero. Furthermore

we find the (weak) lower bound D∗
N (S) ≥ 1/(2sN) for the star discrepancy

of any sequence S in [0, 1)s.
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In the following we present three important statements on the star dis-

crepancy which are often used (sometimes implicitly) within this book.

Sometimes, it is very useful to know that the star discrepancy is a contin-

uous function on [0, 1)Ns. This is more or less the assertion of the following

proposition.

Proposition 3.15 Let P = {x0, . . . ,xN−1} be a point set in [0, 1)s with

star discrepancy D∗
N (P). Let xn := (xn,1, . . . , xn,s) for 0 ≤ n ≤ N − 1, and

let δn,i, 0 ≤ n ≤ N − 1, 1 ≤ i ≤ s, be nonnegative reals with δn,i < ε, such

that xn,i + δn,i < 1 for all 0 ≤ n ≤ N − 1 and 1 ≤ i ≤ s. Then for the

star discrepancy D∗
N (P̃) of the shifted point set P̃ = {x̃0, . . . , x̃N−1}, with

x̃n,i := xn,i + δn,i for all 0 ≤ n ≤ N − 1 and 1 ≤ i ≤ s, we have

|D∗
N (P) −D∗

N (P̃)| ≤ εs.
Proof For an arbitrary interval B =

∏s
i=1[0, αi) ⊆ [0, 1)s we define for

j ∈ {0, 1} the intervals

B̃j :=

s∏

i=1

[
0, α̃

(j)
i

)

with

α̃
(j)
i :=





0 if αi + (−1)jε < 0,

1 if αi + (−1)jε > 1,

αi + (−1)jε otherwise.

Then one can prove, by induction on the dimension s, that |λs(B)−λs(B̃j)| ≤
εs holds for j ∈ {0, 1}.
Then we have A(B̃1, N,P) ≤ A(B,N, P̃) ≤ A(B,N,P) and hence

A(B,N, P̃)−Nλs(B) ≤ |A(B,N,P) −Nλs(B)| ≤ D∗
N (P)

and

Nλs(B)−A(B,N, P̃) ≤ Nλs(B)−A(B̃1, N,P)
= Nλs(B̃1)−A(B̃1, N,P) +Nλs(B)−Nλs(B̃1)

≤ D∗
N (P) +Nεs.

Therefore we have |A(B,N, P̃) − Nλs(B)| ≤ D∗
N (P) + Nεs. Since B is an

arbitrary interval, we get from this inequality that D∗
N (P̃) ≤ D∗

N (P) + εs.

In the same way we can show that D∗
N (P) ≤ D∗

N (P̃) + εs, which shows

the result.

Sometimes it is possible to split a given point set into smaller point sets

with low star discrepancies. In this case the following result, which is often
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called the triangle inequality for the discrepancy, may be very useful to get

an upper bound on the star discrepancy of the superposition of the small

point sets (see [128, p. 115, Theorem 2.6]).

Proposition 3.16 For 1 ≤ i ≤ k, let Pi be point sets consisting of

Ni points in [0, 1)s with star discrepancy D∗
Ni
(Pi). Let P be the point set

obtained by listing in some order the terms of Pi, 1 ≤ i ≤ k. We set

N = N1 + · · · +Nk, which is the number of points of P. Then we have

D∗
N (P) ≤

k∑

i=1

Ni

N
D∗
Ni
(Pi),

and the same result holds with the star discrepancy replaced by the extreme

discrepancy.

The third statement on the star discrepancy gives the error when we re-

place the supremum in its definition by a maximum over a finite, equidistant

grid with given mesh-size. For an integer m ≥ 2 let Γm := 1
mZs (mod 1) be

the equidistant grid with mesh-size 1/m.

Proposition 3.17 Let δ > 0 and define m = ⌈s/δ⌉. Further let Γm be

the equidistant grid on [0, 1]s with mesh-size 1/m. Then for any point set P
consisting of N points in [0, 1)s we have

D∗
N (P) ≤ max

y∈Γm

|∆P(y)|+ δ.

For the proof of this result we need the following lemma.

Lemma 3.18 Let ui, vi ∈ [0, 1] for 1 ≤ i ≤ s and let δ ∈ [0, 1] be such that

|ui − vi| ≤ δ for 1 ≤ i ≤ s. Then
∣∣∣∣∣
s∏

i=1

ui −
s∏

i=1

vi

∣∣∣∣∣ ≤ 1− (1− δ)s ≤ sδ.

Proof As in [175] we prove the result by induction on s. Trivially, the result

holds for s = 1. Let s > 1. We may assume that us ≥ vs. Then, by assuming

that the result holds true for s− 1, we have
∣∣∣∣∣
s∏

i=1

ui −
s∏

i=1

vi

∣∣∣∣∣ =
∣∣∣∣∣(us − vs)

s−1∏

i=1

ui + vs

(
s−1∏

i=1

ui −
s−1∏

i=1

vi

)∣∣∣∣∣
≤ |us − vs|+ vs(1− (1− δ)s−1)

= us − vs(1− δ)s−1

= us(1− (1− δ)s−1) + (us − vs)(1− δ)s−1
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≤ 1− (1− δ)s−1 + δ(1 − δ)s−1

= 1− (1− δ)s.

This shows the first inequality. For the second inequality we consider the

real function x 7→ xs. According to the Mean Value Theorem, for all reals

y > z we have ys − zs = s ξs−1(y − z) for some ξ ∈ (z, y). Now we obtain

the result by using this insight with the choice y = 1 and z = 1− δ.

Proof of Proposition 3.17 For ε > 0 we choose y∗ = (y∗1, . . . , y
∗
s) ∈ [0, 1)s

such that

D∗
N (P) ≤

∣∣∣∣
A([0,y∗), N,P)

N
− λs([0,y∗))

∣∣∣∣+ ε.

Now choose x = (x1, . . . , xs) and y = (y1, . . . , ys) in Γm with xi ≤ y∗i <
xi +

1
m =: yi for all 1 ≤ i ≤ s. Using Lemma 3.18 we obtain

s∏

i=1

yi −
s∏

i=1

xi ≤ 1−
(
1− 1

m

)s
≤ s

m
≤ δ.

Hence we get −δ +∏s
i=1 yi ≤

∏s
i=1 y

∗
i ≤

∏s
i=1 xi + δ and therefore we have

A([0,x), N,P)
N

− λs([0,x))− δ ≤
A([0,y∗), N,P)

N
− λs([0,y∗))

≤ A([0,y), N,P)
N

− λs([0,y)) + δ.

From these inequalities we get

D∗
N (P) ≤ max

y∈Γm

∣∣∣∣
A([0,y), N,P)

N
− λs([0,y))

∣∣∣∣+ δ + ε.

Since ε > 0 can be chosen arbitrarily small, the result follows.

Similarly, as the star discrepancy is defined as the supremum norm of the

discrepancy function we may now introduce other notions of discrepancies

by taking different norms of the discrepancy function. In particular, we take

the Lq norm in the following (the special case of L2-discrepancy has been

introduced in Definition 2.14 already).

Definition 3.19 Let 1 ≤ q < ∞ be a real number. For a point set P
in [0, 1)s the Lq-discrepancy is defined as the Lq norm of the discrepancy

function, i.e.,

Lq,N(P) :=
(∫

[0,1]s
|∆P(x)|q dx

)1/q

.
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For an infinite sequence S the Lq-discrepancy Lq,N (S) is the Lq-discrepancy
of the first N elements of the sequence.

Obviously, for any point set P and any 1 ≤ q < ∞ we have Lq,N (P) ≤
D∗
N (P). Conversely, it is also possible to give an upper bound for the star

discrepancy in terms of Lq-discrepancy, see, for example, [61, Theorem 1.8].

From this it follows that a sequence is uniformly distributed modulo one, if

and only if its Lq-discrepancy tends to zero.

We gave already some (trivial) lower bounds for the extreme and the star

discrepancy of finite point sets in the unit cube. While it can be shown

that these bounds are best possible in the order of magnitude in N for one-

dimensional point sets (compare with Exercise 2.1) this is by no means true

in higher dimension. The following remarkable result was first proved by

Roth [226] in 1954.

Theorem 3.20 (Roth’s lower bound on L2-discrepancy) For any dimen-

sion s ∈ N and for any point set P consisting of N points in the s-dimensional

unit cube we have

L2,N (P) ≥
1

N

√(⌊log2N⌋+ s+ 1

s− 1

)
1

22s+4
≥ cs

(logN)(s−1)/2

N
,

where cs =
1

22s+4(log 2)(s−1)/2
√

(s−1)!
.

Remark 3.21 The inequality in the above theorem also applies to the

extreme- and the star discrepancy as DN (P) ≥ D∗
N (P) ≥ L2,N (P).

The original proof of Roth’s result can be found in [226] (this proof is in

dimension s = 2 only, but can be easily generalised to the general case).

A detailed proof (in arbitrary dimension) using the orthogonality relation

of Rademacher functions can be found in the book of Kuipers & Niederre-

iter [128]. We also refer to the book of Beck & Chen [11].

The constant in Theorem 3.20 here is better than that in Kuipers &

Niederreiter, see [128, p. 104]. This can be obtained by a few slight modifi-

cations in the proof as in [128], which we describe in the following.

For the proof of Theorem 3.20 we need several lemmas and some notation

which we introduce in the following. Thereby we follow the proofs of [128,

Chapter 2, Lemma 2.1–Lemma 2.5].

Let P = {x0, . . . ,xN−1} with xn = (xn,1, . . . , xn,s) and let ψ(x) =

− 2wal1(x) = (−1)ξ1+1 for x ∈ R with x = X + ξ12
−1 + ξ22

−2 + · · · where
X ∈ Z, ξ1, ξ2, . . . ∈ {0, 1} and infinitely many of the ξ1, ξ2, . . . are 0. Further,

let t be a natural number such that 2t−1 > N , which will be specified below.

For a vector r = (r1, . . . , rs) ∈ Ns0 we define |r|1 = r1 + · · ·+ rs.
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For a vector r ∈ Ns0 with |r|1 = t − 1 we define a function Gr on Rs as

follows: if there exists an 0 ≤ n < N such that

(⌊2r1xn,1⌋, . . . , ⌊2rsxn,s⌋) = (⌊x1⌋, . . . , ⌊xs⌋),

then we set Gr(x1, . . . , xs) = 0. Otherwise we set

Gr(x1, . . . , xs) = ψ(x1) · · ·ψ(xs).

Furthermore we define

Fr(x1, . . . , xs) = Gr(2
r1x1, . . . , 2

rsxs)

and

F (x1, . . . , xs) =
∑

r∈Ns
0

|r|1=t−1

Fr(x1, . . . , xs).

Lemma 3.22 For a given vector r ∈ Ns0 with |r|1 = t− 1 and for some i

with 1 ≤ i ≤ s let a = h2−ri and b = m2−ri, where h,m ∈ Z and h < m.

Then, for any fixed x1, . . . , xi−1, xi+1, . . . , xs, we have

∫ b

a
Fr(x1, . . . , xs) dxi = 0.

Proof Using the substitution t = 2rixi we have

∫ b

a
Fr(x1, . . . , xs) dxi =

∫ b

a
Gr(2

r1x1, . . . , 2
rsxs) dxi

=
1

2ri

∫ m

h
Gr(2

r1x1, . . . , t, . . . , 2
rsxs) dt.

Split up the interval [h,m] into subintervals of the form [c, c + 1] with in-

tegers c. Then the integrand Gr(2
r1x1, . . . , t, . . . , 2

rsxs) is zero on certain

subintervals of these intervals. On the remaining intervals the integrand is

equal to ψ(2r1x1) · · ·ψ(t) · · ·ψ(2rsxs). But for any c we have

∫ c+1

c
ψ(t) dt = −

∫ 1

0
2wal1(t) dt = 0

and hence the result follows.

Lemma 3.23 We have
∫ 1

0
· · ·
∫ 1

0
x1 · · · xsF (x1, . . . , xs) dx1 · · · dxs ≥

(
t− 1 + s− 1

s− 1

)
2t−1 −N
22(s+t−1)

.
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Proof First we show that for all r ∈ Ns0 with |r|1 = t− 1 we have
∫ 1

0
· · ·
∫ 1

0
x1 · · · xsFr(x1, . . . , xs) dx1 · · · dxs ≥

2t−1 −N
22(s+t−1)

.

Using the substitution ti = 2rixi for 1 ≤ i ≤ s we have
∫ 1

0
· · ·
∫ 1

0
x1 · · · xsFr(x1, . . . , xs) dx1 · · · dxs

=
1

22|r|1

∫ 2r1

0
. . .

∫ 2rs

0
t1 · · · tsGr(t1, . . . , ts) dt1 · · · dts

We have
∫ h1+1

h1

· · ·
∫ hs+1

hs

t1 · · · tsGr(t1, . . . , ts) dt1 · · · dts = 0

whenever (h1, . . . , hs) ∈ Ns0 with

(h1, . . . , hs) = (⌊2r1xn,1⌋, . . . , ⌊2rsxn,s⌋)
for some 0 ≤ n ≤ N − 1. Therefore we have

∫ 1

0
· · ·
∫ 1

0
x1 · · · xsFr(x1, . . . , xs) dx1 · · · dxs

=
1

22(t−1)

∑

h

∗ ∫ h1+1

h1

· · ·
∫ hs+1

hs

t1 · · · tsGr(t1, . . . , ts) dt1 · · · dts, (3.8)

where the sum
∑∗

h is over all lattice points h = (h1, . . . , hs) with 0 ≤ hi <

2ri for 1 ≤ i ≤ s and with h 6= (⌊2r1xn,1⌋, . . . , ⌊2rsxn,s⌋) for all 0 ≤ n ≤ N−1.
Hence this sum is extended over at least 2|r|1 −N = 2t−1−N lattice points.

For any integer h we have
∫ h+1

h
tψ(t) dt = −

∫ h+1/2

h
t dt+

∫ h+1

h+1/2
t dt =

1

4

and hence

∑

h

∗
∫ h1+1

h1

· · ·
∫ hs+1

hs

t1 · · · tsGr(t1, . . . , ts) dt1 · · · dts ≥
2t−1 −N

4s
.

From this together with (3.8) it follows that
∫ 1

0
· · ·
∫ 1

0
x1 · · · xsFr(x1, . . . , xs) dx1 · · · dxs ≥

2t−1 −N
22(s+t−1)

.

To obtain the final result note that the number of vectors r ∈ Ns0 with

|r|1 = t− 1 is given by
(t−1+s−1

s−1

)
.
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Lemma 3.24 We have
∫ 1

0
· · ·
∫ 1

0
F 2(x1, . . . , xs) dx1 · · · dxs ≤

(
t− 1 + s− 1

s− 1

)
.

Proof We have

∫ 1

0
· · ·
∫ 1

0
F 2(x1, . . . , xs) dx1 · · · dxs

=
∑

r∈N
s
0

|r|1=t−1

∫ 1

0
· · ·
∫ 1

0
F 2
r (x1, . . . , xs) dx1 · · · dxs

+
∑

r,w∈Ns0
r 6=w

|r|1=|w|1=t−1

∫ 1

0
· · ·
∫ 1

0
Fr(x1, . . . , xs)Fw(x1, . . . , xs) dx1 · · · dxs.

Now F 2
r (x1, . . . , xs) ≤ 1 and hence the first sum is bounded by

(t−1+s−1
s−1

)
. It

remains to show that the second sum is zero.

We show that each term in the second sum is zero. Choose r,w ∈ Ns0,

r 6= w, and r = (r1, . . . , rs) and w = (w1, . . . , ws). Then there exists an

index 1 ≤ i ≤ s such that ri 6= wi. Without loss of generality we may

assume that ri < wi. For fixed x1, . . . , xi−1, xi+1, . . . , xs we show that

∫ 1

0
Fr(x1, . . . , xs)Fw(x1, . . . , xs) dxi = 0.

The result then follows.

Using the substitution t = 2wixi transforms the above integral into

1

2wi

∫ 2wi

0
Gr(2

r1x1, . . . , 2
ri−wit, . . . , 2rsxs)Gw(2w1x1, . . . , t, . . . , 2

wsxs) dt.

Split the interval [0, 2wi) into subintervals [c, c + 1)with integers c. In such

an interval the integrand is either identical to zero or equal to

ψ(2r1x1) · · ·ψ(2ri−wit) · · ·ψ(2rsxs)ψ(2w1x1) · · ·ψ(t) · · ·ψ(2wsxs).

Here the only dependence on t is in ψ(2ri−wit)ψ(t) and hence it suffices to

show that
∫ c+1
c ψ(2ri−wit)ψ(t) dt is zero. Since ri − wi < 0 it follows that

ψ(2ri−wit) = − 2wal1(2
ri−wit) is constant on the interval [c, c+1) and hence

we have
∫ c+1

c
ψ(2ri−wit)ψ(t) dt = 2wal1(2

ri−wic)

∫ 1

0
2wal1(t) dt = 0.
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Lemma 3.25 For 0 ≤ n < N , we have

∫ 1

xn,1

· · ·
∫ 1

xn,s

F (x1, . . . , xs) dx1 · · · dxs = 0.

Proof It suffices to show that

∫ 1

xn,1

· · ·
∫ 1

xn,s

Fr(x1, . . . , xs) dx1 · · · dxs = 0

for all 0 ≤ n ≤ N − 1 and all r ∈ Ns0 with |r|1 = t− 1. For fixed n and for

1 ≤ i ≤ s, let ai be the least integral multiple of 2−ri that is ≥ xn,i. Then

we have
∫ 1
xn,1
· · ·
∫ 1
xn,s

=
∫ a1
xn,1
· · ·
∫ as
xn,s

+(sum of integrals in which for at least

one variable xi, we integrate over an interval [ai, 1]). The first integral on the

right-hand side is zero, since for all (x1, . . . , xs) in the interval
∏s
l=1[xn,l, al]

we have

(⌊2r1x1⌋, . . . , ⌊2r1x1⌋) = (⌊2r1xn,1⌋, . . . , ⌊2r1xn,1⌋)

and hence by definition Fr(x1, . . . , xs) = Gr(2
r1x1, . . . , 2

rsxs) = 0.

The remaining integrals however are zero by Lemma 3.22 and hence the

result follows.

Proof of Theorem 3.20 For 0 ≤ n ≤ N − 1, let Jn :=
∏s
i=1(xn,i, 1] and let

χJn(x) be the characteristic function of this interval. Then A([0,x), N,P) =∑N−1
n=0 χJn(x), where x = (x1, . . . , xs) ∈ [0, 1]s. Therefore,

∫

[0,1]s
A([0,x), N,P)F (x) dx =

N−1∑

n=0

∫

[0,1]s
χJn(x)F (x) dx

=

N−1∑

n=0

∫

Jn

F (x) dx = 0

by Lemma 3.25. Hence, using Lemma 3.23 we obtain

∫

[0,1]s
(−N∆P(x))F (x) dx = N

∫ 1

0
· · ·
∫ 1

0
x1 · · · xsF (x1, . . . , xs) dx1 · · · dxs

≥ N
(
t− 1 + s− 1

s− 1

)
2t−1 −N
22(s+t−1)

.

Then
(
N

(
t− 1 + s− 1

s− 1

)
2t−1 −N
22(s+t−1)

)2
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≤
(∫

[0,1]s
(−N∆P(x))F (x) dx

)2

≤
(∫

[0,1]s
(−N∆P(x))

2 dx

)(∫

[0,1]s
F (x)2 dx

)

≤
(∫

[0,1]s
(−N∆P(x))2 dx

)(
t− 1 + s− 1

s− 1

)

by Cauchy-Schwarz’ inequality and by Lemma 3.24. Hence we obtain
∫

[0,1]s
(N∆P(x))2 dx ≥ N2

(
t− 1 + s− 1

s− 1

)
2−4(s+t−1)(2t−1 −N)2.

Let t now be the unique integer for which 2N < 2t−1 ≤ 4N . Then
∫

[0,1]s
(N∆P(x))

2 dx ≥ N42−4(t−1)

(
t− 1 + s− 1

s− 1

)
2−4s

≥
(
t− 1 + s− 1

s− 1

)
1

24s+8
.

Further, 1+ log2N < t− 1 ≤ 2+ log2N , which implies 2+ ⌊log2N⌋ = t− 1

and substituting on the right hand side above yields
∫

[0,1]s
(N∆P(x))

2 dx ≥
(⌊log2N⌋+ s+ 1

s− 1

)
1

24s+8

≥ (logN)s−1

(log 2)s−1(s− 1)! 24s+8
,

where we used
(⌊log2N⌋+s+1

s−1

)
≥ (⌊log2N⌋+3)s−1

(s−1)! ≥ (log2N)s−1

(s−1)! and log2N =
logN
log 2 in the last inequality. Thus the result follows.

As the Lq norm is monotone increasing in q it follows that Roth’s lower

bound holds for all Lq-discrepancies with q ≥ 2, too. Furthermore, it was

shown by Schmidt [236] that the same is true for all 1 < q < 2. Summing

up, for any 1 < q < ∞ and any dimension s there exists a cs,q > 0 with

the following property: for any point set P consisting of N points in the

s-dimensional unit cube we have

Lq,N(P) ≥ cs,q
(logN)(s−1)/2

N
.

On the other hand, it is known that this bound is best possible in the

order of magnitude in N as was shown first for the L2-discrepancy by Dav-

enport [29] for s = 2 and by Roth [227, 228] and Frolov [82] for arbitrary
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dimensions s ∈ N and by Chen [21] for the general Lq case. But we know

even more. For any q > 1, any dimension s ∈ N and any integer N ≥ 2

there is an explicit construction of a point set P consisting of N points in

the s-dimensional unit cube such that

Lq,N(P) ≤ Cs,q
(logN)(s−1)/2

N
.

Such a construction was first given by Davenport for q = s = 2 and by

Chen & Skriganov [22] for the case q = 2 and arbitrary dimension s. Later

Skriganov [242] generalised this construction to the Lq case with arbitrary

q > 1. We are concerned with this topic in Chapter 16.

For the star discrepancy the situation is quite different. For s = 2 we have

an improvement due to Schmidt [235] (see also [128]) or Béjian [12] who

showed that there is a c > 0 (for example c = 0.06 as shown in [12]) such

that for the star discrepancy of any point set P consisting of N points in

the two-dimensional unit square we have

D∗
N (P) ≥ c

logN

N
.

In dimension s = 3 it was shown by Beck [10] that for any ε > 0 there exists

an N(ε) such that for any point set P consisting of N ≥ N(ε) points in the

three-dimensional unit cube we have

D∗
N (P) ≥

logN(log logN)1/8−ε

N
.

An improvement of Becks result in dimension s = 3 has been shown by Bilyk

& Lacey [15]. They showed that there is a choice of 0 < η < 1/2 such that

for any point set P ⊂ [0, 1)3 of cardinality N we have

D∗
N (P) ≥ c

(logN)1+η

N

for some constant c > 0. This breakthrough led then to the paper of Bilyk,

Lacey & Vagharshakyan [16] where it is shown that for any s ∈ N, s ≥ 2,

there is a cs > 0 and a 0 < ηs <
1
2 with the property that for any point set

P consisting of N points in the s-dimensional unit cube we have

D∗
N (P) ≥ cs

(logN)(s−1)/2+ηs

N
.

This is the best result for dimensions s ≥ 3 currently known.

If we consider infinite sequences, then it follows from Roth’s lower bound

that there exists a cs > 0 such that for the star discrepancy of any sequence
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S in the s-dimensional unit cube we have

D∗
N (S) ≥ cs

(logN)s/2

N

for infinitely many values of N ∈ N. For a proof see, for example, [128,

Chapter 2, Theorem 2.2].

However, the exact lower order of the star discrepancy in N is still one

of the most famous open problems in the theory of uniform distribution

modulo one. It is widely believed that there exists some cs > 0 such that for

any point set P consisting of N points in the s-dimensional unit cube [0, 1)s

the inequality

D∗
N (P) > cs

(logN)s−1

N

holds true. This lower bound would be best possible for the star discrepancy

D∗
N as we see later. For infinite sequences a lower bound for the star discrep-

ancy of order (logN)s/N for infinitely many values of N ∈ N is conjectured.

3.3 General bounds for the discrepancy

From the Weyl criterion (Theorem 3.5) we know that the behaviour of ex-

ponential sums is closely related to uniform distribution modulo one. The

following important result, which is usually attributed to Erdős, Turán and

Koksma, gives a quantitative version of this insight.

Theorem 3.26 (Erdős-Turán-Koksma inequality) For the discrepancy of

any point set P = {x0, . . . ,xN−1} in [0, 1)s we have

DN (P) ≤
(
3

2

)s

 2

m+ 1
+

∑

h∈Zs

0<|h|∞≤m

1

r(h)

∣∣∣∣∣
1

N

N−1∑

n=0

e2πih·xn

∣∣∣∣∣


 ,

where m is an arbitrary positive integer and where r(h) =
∏s
i=1max(1, |hi|)

for h = (h1, . . . , hs) ∈ Zs.

A proof of this bound can be found in [61, Section 1.2.2]. See also [128,

Chapter 2, Section 2] for the special case of s = 1.

In practice one is mainly concerned with point sets whose elements only

have rational components. For such point sets Niederreiter [175, Theorem 3.10]

proved a general upper bound for the discrepancy in terms of exponential

sums. To formulate this result we need some notation.

For an integer M ≥ 2, let C(M) = (−M/2,M/2] ∩ Z and let Cs(M)
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be the Cartesian product of s copies of C(M). Furthermore, let C∗
s (M) =

Cs(M) \ {0}. For h ∈ C(M) put

r(h,M) =

{
M sin(π|h|/M) if h 6= 0,

1 if h = 0.

For h = (h1, . . . , hs) ∈ Cs(M), put r(h,M) =
∏s
i=1 r(hi,M).

Theorem 3.27 Let P = {x0, . . . ,xN−1} be a point set in the s-dimensional

unit cube where xn is of the form xn = {yn/M} with yn ∈ Zs for all

0 ≤ n < N , and let M ≥ 2 be an integer. Then we have

DN (P) ≤ 1−
(
1− 1

M

)s
+

∑

h∈C∗
s (M)

1

r(h,M)

∣∣∣∣∣
1

N

N−1∑

n=0

e2πih·yn/M

∣∣∣∣∣ .

For a proof of this theorem we refer to [175, Chapter 3].

In the following we consider point sets for which all coordinates of all

points have a finite digit expansion in a fixed base b ≥ 2. A bound sim-

ilar to that of Theorem 3.27 on the star discrepancy of such point sets

was first given by Niederreiter [168, Satz 2] (see also [175, Theorem 3.12]).

An approach to this result by means of Walsh functions was described by

Hellekalek [94, Theorem 1]. To formulate the result of Hellekalek we again

need some notation.

Let b ≥ 2 be an integer. For a vector k = (k1, . . . , ks) ∈ Ns0 we put

ρb(k) :=
∏s
i=1 ρb(ki) where for k ∈ N0 we set

ρb(k) :=

{
1 if k = 0,

1
br+1 sin(πκr/b)

if br ≤ k < br+1 where r ∈ N0

and where κr is the most significant digit in the b-adic expansion of k.

Theorem 3.28 Let P = {x0, . . . ,xN−1} be a point set in the s-dimensional

unit cube where xn is of the form xn = {yn/bm} with yn ∈ Zs, and integers

m ≥ 1 and b ≥ 2. Then we have

D∗
N (P) ≤ 1−

(
1− 1

bm

)s
+

∑

k∈Ns
0

0<|k|∞<bm

ρb(k)

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn)

∣∣∣∣∣ .

The proof of this results is based on the following idea. We only consider

elementary b-adic intervals since we know from Lemma 3.9 that the charac-

teristic functions of such intervals have a finite Walsh series representation.

The remaining Walsh coefficients can be bounded independently of the cho-

sen elementary interval. Then we approximate each interval with one corner
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anchored in the origin by elementary b-adic intervals and in this way the

result will follow.

For the complete proof of Theorem 3.28 we need the following lemma

which provides the announced bound on the Walsh coefficients for the char-

acteristic function of an interval.

Lemma 3.29 Let J = [0, β) with 0 < β < 1, and let br ≤ k < br+1, where

r ∈ N0. Then for the kth Walsh coefficient of the characteristic function of

J we have

|χ̂J(k)| ≤ ρb(k).

Proof Let β = β1b
−1 + β2b

−2 + · · · be the b-adic expansion of β and let

β(r) := β1b
−1 + · · · + βrb

−r. Then we can write the interval [0, β(r)) as a

disjoint union of finitely many one-dimensional b-adic elementary intervals

J(a, br) = [ab−r, (a+1)b−r) of order r. As k ≥ br it follows from Lemma 3.9

that for each of these intervals J(a, br) we have
∫
J(a,br) bwalk(x) dx = 0.

Therefore we obtain

χ̂J(k) =

∫ β

β(r)
bwalk(x) dx.

Let k = κ0 +κ1b+ · · ·+κrb
r with κr 6= 0 and let k(r) := k−κrbr. Then the

Walsh function bwalk(r) is constant on the interval [β(r), β(r) + b−r) with

value bwalk(r)(β(r)). Hence with x = ξ1b
−1 + ξ2b

−2 + · · · we obtain

χ̂J(k) =

∫ β

β(r)
bwalk(x) dx =

∫ β

β(r)
ω
ξ1κ0+···+ξrκr−1+ξr+1κr
b dx

= bwalk(r)(β(r))

∫ β

β(r)
ω
ξr+1κr
b dx. (3.9)

For the last integral we split up the integration domain in βr+1 one-dimensional,

b-adic elementary intervals of order r + 1 and in a rest interval with length

of at most b−(r+1). Then we obtain

∫ β

β(r)
ω
ξr+1κr
b dx =

βr+1−1∑

l=0

∫ β1
b
+···+βr

br
+ l+1

br+1

β1
b
+···+βr

br
+ l

br+1

ω
ξr+1κr
b dx+

∫ β

β1
b
+···+βr+1

br+1

ω
ξr+1κr
b dx

=
1

br+1

βr+1−1∑

l=0

ωlκrb + ω
βr+1κr
b (β − β(r + 1))

=
1

br+1

ω
βr+1κr
b − 1

ωκrb − 1
+ ω

βr+1κr
b (β − β(r + 1)). (3.10)
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From (3.9) and (3.10) we now obtain

|χ̂J(k)| =
1

br+1

∣∣∣∣∣
ω
βr+1κr
b − 1

ωκrb − 1
+ br+1ω

βr+1κr
b (β − β(r + 1))

∣∣∣∣∣

=
1

br+1

∣∣∣∣ω
βr+1κr
b

(
1

ωκrb − 1
+ br+1(β − β(r + 1))

)
− 1

ωκrb − 1

∣∣∣∣

≤ 1

br+1

(∣∣∣∣
1

ωκrb − 1
+ br+1(β − β(r + 1))

∣∣∣∣+
1

|ωκrb − 1|

)
.

For any 0 ≤ γ ≤ 1 and any z ∈ C, z 6= 1, with |z| = 1 we have
∣∣∣ 1
z−1 + γ

∣∣∣ ≤
1/|z − 1|. Applying this inequality to the term above we find that

|χ̂J(k)| ≤
1

br+1

2

|ωκrb − 1| =
1

br+1

1

| sin(πκr/b)|
.

Since κr ∈ {1, . . . , b − 1} it follows that 0 < πκr/b < π and hence we can

omit the absolute value for the sine function in the above term and the

lemma is proved.

Remark 3.30 In Lemma 14.8 below we provide the Walsh series expansion

of the function χ̂[0,x)(k).

Proof of Theorem 3.28 Let x = (x1, . . . , xs) ∈ [0, 1]s. For 1 ≤ i ≤ s define

ai := min{a ∈ {1, . . . , bm} : xi ≤ a · b−m} and set y := 1
bma with a =

(a1, . . . , as). Then we have

|∆P(x)| ≤ |∆P(x)−∆P(y)|+ |∆P(y)|.

As P ⊆ 1
bmZs (mod 1) it follows that A([0,x), N,P) = A([0,y), N,P) and

hence

|∆P(x)| ≤ |x1 · · · xs − y1 · · · ys|+ |∆P(y)|. (3.11)

Since |xi − yi| ≤ 1
bm for all 1 ≤ i ≤ s we obtain with Lemma 3.18 that

|x1 · · · xs − y1 · · · ys| ≤ 1−
(
1− 1

bm

)s
. (3.12)

It remains to estimate |∆P(y)|. Obviously, the interval G := [0,y) can be

written as a finite disjoint union of b-adic elementary intervals of the form∏s
i=1

[
ci
bm ,

ci+1
bm

)
with integers 0 ≤ ci < bm for all 1 ≤ i ≤ s. Hence it follows

from Lemma 3.9 that χ̂G(k) = 0 for all k ∈ Ns0 with |k|∞ ≥ bm. Therefore,
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and by invoking the identity χ̂G(0) = λs(G), we find

∆P(y) =
1

N

N−1∑

n=0

(χG(xn)− λs(G)) =
∑

k∈Ns
0

0<|k|∞<bm

χ̂G(k)

(
1

N

N−1∑

n=0

bwalk(xn)

)
.

Using Lemma 3.29 it follows that |χ̂G(k)| ≤ ρb(k) and hence we obtain

|∆P(y)| ≤
∑

k∈Ns
0

0<|k|∞<bm

ρb(k)

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn)

∣∣∣∣∣ . (3.13)

From (3.11), (3.12) and (3.13) we now get

|∆P (x)| ≤ 1−
(
1− 1

bm

)s
+

∑

k∈Ns0
0<|k|∞<bm

ρb(k)

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn)

∣∣∣∣∣ .

As this bound holds for any x ∈ [0, 1]s, it follows that the star discrepancy

of P also satisfies this bound and hence the result is proved.

Remark 3.31 Note that for the point set P as considered in Theorem 3.28

we also have

D∗
N (P) ≥ 1−

(
1− 1

bm

)s
.

This follows easily from the assumption that the components of the points of

P are of the form a/bm with a ∈ {0, . . . , bm−1} and hence P ⊆ [0, 1−b−m]s.

3.4 Discrepancy of special point sets and sequences

In this section we analyse the discrepancy of some classical constructions of

point sets in [0, 1)s.

The regular lattice

If we think of a point set whose points are very uniformly distributed in the

unit cube one immediately might have a regular lattice (or equidistant grid)

in mind.

By a regular lattice of N = ms points in the s-dimensional unit cube we

understand the point set

Γm :=
1

m
Zs (mod 1) =

{(n1
m
, . . . ,

ns
m

)
: 0 ≤ ni < m for 1 ≤ i ≤ s

}
.

(3.14)
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Figure 3.4 Regular lattice Γ6 in [0, 1)2, i.e., s = 2 and m = 6.

However, we show in the next result that, with respect to discrepancy,

this is not a good choice.

Proposition 3.32 Let m ≥ 2 be an integer. For the star discrepancy of

the regular lattice Γm consisting of N = ms points in [0, 1)s we have

D∗
N (Γm) = 1−

(
1− 1

m

)s
.

Remark 3.33 Note that N−1/s ≤ 1 − (1 − 1/m)s ≤ s/m = sN−1/s, and

hence for the star discrepancy of the regular lattice (3.14) we have

1

N1/s
≤ D∗

N (Γm) ≤
s

N1/s
.

Proof of Proposition 3.32 As in Remark 3.31 we find that

D∗
N (Γm) ≥ 1−

(
1− 1

m

)s
.

Now consider an arbitrary interval of the form J = [0, α1) × · · · × [0, αs).

For 1 ≤ i ≤ s let ai ∈ {0, . . . ,m− 1} be such that ai/m < αi ≤ (ai + 1)/m.

Then we have A(J,N,Γm) =
∏s
i=1(ai + 1) and

0 ≤ A(J,N,Γm)

N
− λs(J) ≤

s∏

i=1

ai + 1

m
−

s∏

i=1

ai
m
.

Therefore, and by invoking Lemma 3.18, we obtain

∣∣∣∣
A(J,N,Γm)

N
− λs(J)

∣∣∣∣ ≤
∣∣∣∣∣
s∏

i=1

ai + 1

m
−

s∏

i=1

ai
m

∣∣∣∣∣ ≤ 1−
(
1− 1

m

)s
.
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As J was chosen arbitrarily the result follows. (Alternatively, one may also

use Theorem 3.27; see Exercise 3.21.)

For dimension s > 1 the star discrepancy of the regular lattice is very

poor. But for dimension s = 1 the order of the star discrepancy of the

regular lattice is best possible.

For the centred regular lattice Γc
m consisting of N = ms points defined by

(1.1) one can show in the same way as above (see Exercise 3.22) that

D∗
N (Γ

c
m) = 1−

(
1− 1

2m

)s
.

Moreover, in dimension s = 1 it can be shown that the centred regular

lattice Γc
N = {xn = 2n+1

2N : 0 ≤ n < N} has star discrepancy D∗
N (Γ

c
N ) =

1
2N

(see Exercise 2.1). This is best possible among all point sets consisting of N

points in [0, 1). For a proof we refer to [128, Chapter 2, Corollary 1.2] or to

[175, Theorem 2.6].

The van der Corput-Halton sequence

Now we turn to another construction which is a multidimensional generali-

sation of the van der Corput sequence as introduced in Definition 3.10.

Definition 3.34 Let b1, . . . , bs ≥ 2 be integers. The van der Corput-Halton

sequence is the sequence S = (xn)n≥0 with xn = (ϕb1(n), . . . , ϕbs(n)) for

all n ∈ N0. Here ϕb is the b-adic radical inverse function as defined in

Definition 3.10. The integers b1, . . . , bs are often called the bases of the van

der Corput-Halton sequence.

Example 3.35 For dimension s = 2 and bases b1 = 2 and b2 = 3. The

first points of the van der Corput-Halton sequence are given by x0 = (0, 0),

x1 = (1/2, 1/3), x2 = (1/4, 2/3), x3 = (3/4, 1/9), x4 = (1/8, 4/9), and so

on. The first 1000 points of this sequence are shown in Figure 3.5.

It was known for a long time that, provided that the bases b1, . . . , bs
are chosen to be pairwise relatively prime, the star discrepancy of the first

N elements of the van der Corput-Halton sequence can be bounded by

c(b1, . . . , bs)(logN)s/N +O((logN)s−1/N). For example, this was shown in

[64, 87, 112, 161, 175]. Informally, one calls a sequence in the s-dimensional

unit cube a low-discrepancy sequence, if its star discrepancy is of order

(logN)s/N . While it is widely believed that this order of convergence is

best possible for any infinite sequence in the s-dimensional unit cube, those

results have a disadvantage for practical applications. Namely, the constant
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Figure 3.5 The first 1000 points of the two-dimensional van der Corput-
Halton sequence in bases b1 = 2 and b2 = 3.

c(b1, . . . , bs) > 0 depends very strongly on the dimension s. The minimal

value for this quantity can be obtained if one chooses for b1, . . . , bs the first

s prime numbers. But also in this case c(b1, . . . , bs) grows very fast to infinity

if s increases.

This deficiency was remedied by Atanassov [6] who proved the following

result.

Theorem 3.36 Let b1, . . . , bs ≥ 2 be pairwise relatively prime integers and

let S be the van der Corput-Halton sequence with bases b1, . . . , bs. Then for

any N ≥ 2 we have

ND∗
N (S) ≤

1

s!

s∏

i=1

(⌊bi/2⌋ logN
log bi

+ s

)
+

s−1∑

k=0

bk+1

k!

k∏

i=1

(⌊bi/2⌋ logN
log bi

+ k

)
.

In the following we present the proof of this result due to Atanassov [6].

From now on let b1, . . . , bs ≥ 2 be pairwise relatively prime integers and let

S be the van der Corput-Halton sequence with bases b1, . . . , bs.

Lemma 3.37 Let J be an interval of the form J =
∏s
i=1 [ui/b

mi
i , vi/b

mi
i )

with integers 0 ≤ ui < vi < bmi
i and mi ≥ 1 for all 1 ≤ i ≤ s. Then for the

van der Corput-Halton sequence S the inequality

|A(J,N,S) −Nλs(J)| ≤
s∏

i=1

(vi − ui)

holds for every N ∈ N. Furthermore, for every N ≤ ∏s
i=1 b

mi
i we have

A(J,N,S) ≤∏s
i=1(vi − ui).
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Proof For n ∈ N0 we denote the bi-adic expansion by n = n
(i)
0 +n

(i)
1 bi+ · · · .

Choose l = (l1, . . . , ls) ∈ Ns0 with 0 ≤ li < bmi
i and with bi-adic expansion

li = li,mi−1 + li,mi−2bi + · · · + li,0b
mi−1
i for all 1 ≤ i ≤ s. We consider the

interval

Jl =

s∏

i=1

[
li
bmi
i

,
li + 1

bmi
i

)
.

Then the nth element xn of the van der Corput-Halton sequence is contained

in Jl, if and only if

li,0
bi

+ · · ·+ li,mi−1

bmi
i

≤ n
(i)
0

bi
+
n
(i)
1

b2i
+ · · · < li,0

bi
+ · · ·+ li,mi−1

bmi
i

+
1

bmi
i

for all 1 ≤ i ≤ s. This, however, is equivalent to n
(i)
0 = li,0, . . . , n

(i)
mi−1 =

li,mi−1 which in turn is equivalent to n ≡ li,0 + li,1bi + · · · + li,mi−1b
mi−1
i

(mod bmi
i ) for all 1 ≤ i ≤ s.

As b1, . . . , bs are pairwise relatively prime we obtain from the Chinese

Remainder Theorem that among every bm1
1 · · · bms

s consecutive elements of

the van der Corput-Halton sequence exactly one element is contained in Jl
or, in other words, A(Jl, tb

m1
1 · · · bms

s ,S) = t for all t ∈ N and hence

A(Jl, tb
m1
1 · · · bms

s ,S)− tbm1
1 · · · bms

s λs(Jl) = 0.

Therefore, for every N ∈ N we obtain

|A(Jl, N,S) −Nλs(Jl)| ≤ 1.

Now we write the interval J as a disjoint union of intervals of the form Jl,

J =

v1−1⋃

l1=u1

. . .

vs−1⋃

ls=us

Jl,

where l = (l1, . . . , ls). Then we have

|A(J,N,S)−Nλs(J)| ≤
v1−1∑

l1=u1

· · ·
vs−1∑

ls=us

|A(Jl, N,S)−Nλs(Jl)| ≤
s∏

i=1

(vi−ui),

which proves the first assertion.

For N ≤ bm1
1 · · · bms

s we have A(Jl, N,S) ≤ 1 for all l = (l1, . . . , ls) ∈ Ns0
with 0 ≤ li < bmi

i for 1 ≤ i ≤ s and hence

A(J,N,S) =
v1−1∑

l1=u1

· · ·
vs−1∑

ls=us

A(Jl, N,S) ≤
s∏

i=1

(vi − ui).

This was the second assertion of the lemma.
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Lemma 3.38 Let k ∈ N and let b1, . . . , bk ≥ 2 be integers. For N ∈
N let d(b1, . . . , bk;N) be the number of tuples (j1, . . . , jk) ∈ Nk such that

bj11 · · · b
jk
k ≤ N . Then we have

d(b1, . . . , bk;N) ≤ 1

k!

k∏

i=1

logN

log bi
.

Proof Assume that j = (j1, . . . , jk) ∈ Nk satisfies bj11 · · · b
jk
k ≤ N . Then

the interval Ej :=
∏k
i=1[ji − 1, ji) of volume one is entirely contained in the

simplex

S := {(x1, . . . , xk) ∈ [0,∞)k : x1 log b1 + · · ·+ xk log bk ≤ logN}

of volume 1
k!

∏s
i=1

logN
log bi

. Hence

d(b1, . . . , bk;N) = λk


 ⋃

Ej⊆S
Ej


 ≤ λk(S) =

1

k!

s∏

i=1

logN

log bi
.

Lemma 3.39 Let N ∈ N and let b1, . . . , bk ≥ 2 be integers. Furthermore,

for 1 ≤ i ≤ k let c
(i)
0 , c

(i)
1 , . . . ≥ 0 be given such that c

(i)
0 ≤ 1 and c

(i)
j ≤ fi for

all j ≥ 1 and all 1 ≤ i ≤ k. Then we have

∑

(j1,...,jk)∈Nk
0

b
j1
1

···b
jk
k

≤N

k∏

i=1

c
(i)
ji
≤ 1

k!

k∏

i=1

(
fi
logN

log bi
+ k

)
.

Proof Let u ⊆ {1, . . . , k}. Then the number of k-tuples (j1, . . . , jk) with

ji > 0 if i ∈ u, ji = 0 if i 6∈ u and
∏
i∈u b

ji
i ≤ N is by Lemma 3.38 bounded

above by 1
|u|!
∏
i∈u

logN
log bi

. Furthermore, each of these k-tuples contributes at

most
∏
i∈u fi to the sum on the left hand side in the statement of the lemma.

From this, and invoking the inequality 1
|u|! ≤ kk−|u|

k! , we obtain

∑

(j1,...,jk)∈Nk
0

b
j1
1

···b
jk
k

≤N

k∏

i=1

c
(i)
ji
≤

∑

u⊆{1,...,k}

1

|u|!
∏

i∈u
fi
logN

log bi

≤ 1

k!

∑

u⊆{1,...,k}
kk−|u|∏

i∈u
fi
logN

log bi
=

1

k!

k∏

i=1

(
fi
logN

log bi
+ k

)
,

and this is the desired result.
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Now we need to introduce some notation: let J ⊆ Rs be an interval. Then

a signed splitting of J is a collection of not necessarily disjoint intervals

J1, . . . , Jr together with signs ε1, . . . , εr ∈ {−1, 1} such that for all x ∈ J we

have
r∑

i=1
x∈Ji

εi = 1.

As a consequence, for any additive function ν on the class of intervals in Rs

we have

ν(J) =
r∑

i=1

εiν(Ji).

Here, as usual, a function ν on the class of intervals in Rs is said to be

additive if, whenever A and B are disjoint intervals, then ν(A∪B) = ν(A)+

ν(B).

Lemma 3.40 Let J =
∏s
i=1 [0, zi) be an s-dimensional interval and let

for each 1 ≤ i ≤ s be given a finite sequence (zj,i)j=1,...,ni of numbers in

[0, 1]. Define further z0,i := 0 and zni+1,i := zi for all 1 ≤ i ≤ s. Then the

collection of intervals

s∏

i=1

[min (zji,i, zji+1,i) ,max (zji,i, zji+1,i))

together with the signs εj1,...,js =
∏s
i=1 sgn(zji+1,i− zji,i) for 0 ≤ ji ≤ ni and

1 ≤ i ≤ s defines a signed splitting of the interval J .

Proof First we show the result for s = 1. For simplicity we omit the index

i for the dimension. Let J = [0, z) and let z0, . . . , zn+1 ∈ [0, 1) with z0 = 0

and zn+1 = z. Assume we are given a point x ∈ [0, z). If zj ≤ x for all

j = 0, . . . , n + 1, then it follows that x 6∈ J . Now we define finite sequences

j
k
, k = 0, . . . ,K and jk, k = 0, . . . ,K−1 in the following way: let j0 > 0 be

minimal, such that zj0 > x and let j
0
> j0 be minimal such that zj

0
≤ x, let

j1 > j
0
be minimal, such that zj1 > x and let j

1
> j1 be minimal such that

zj
1
≤ x. We repeat this procedure and finally we choose jK > j

K−1
to be

minimal, such that zjK > x and zj > x for all j ≥ jK . Since zn+1 = z > x,

we always end in such a case.

With this definition we have zjk−1 ≤ x < zjk for k = 0, . . . ,K and

zj
k
≤ x < zj

k
−1 for k = 0, . . . ,K − 1

For Jj := [min(zj , zj+1),max(zj , zj+1)) and εj := sgn(zj+1 − zj) we then
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have x ∈ Jjk−1 with εjk−1 = +1 and x ∈ Jj
k
−1 with εj

k
−1 = −1 and x 6∈ Jj

for j 6= j
k
− 1 or j 6= jk − 1. Hence

n∑

j=0
x∈Jj

εj =
n∑

j=0
zj≤x<zj+1

1−
n∑

j=0
zj+1≤x<zj

1 =
K∑

k=0

1−
K−1∑

k=0

1 = 1,

and thus we have a signed splitting of the interval J = [0, z).

Now we turn to the multi-dimensional case: assume we are given a point

x = (x1, . . . , xs) ∈ J . Then we have

x ∈ Jj1,...,js =
s∏

i=1

Jji,i :=

s∏

i=1

[min (zji,i, zji+1,i) ,max (zji,i, zji+1,i)) ,

if and only if xi ∈ Jji,i for all 1 ≤ i ≤ s. Then we have

n1∑

j1=0

. . .

ns∑

js=0︸ ︷︷ ︸
x∈Jj1,...,js

εj1,...,js =
s∏

i=1

ni∑

ji=0
xi∈Jji,i

sgn(zji+1,i − zji,i) = 1,

where the last equality follows from the fact that for each 1 ≤ i ≤ s the

collection of intervals Jji,i together with the signs εji = sgn(zji+1,i − zji,i)
for 0 ≤ ji ≤ ni, defines a signed splitting of the interval [0, zi) as shown

above.

For the proof of Theorem 3.36 we need a digit expansion of reals z ∈ [0, 1)

in an integer base b ≥ 2 which uses signed digits. The next lemma shows

that such an expansion exists.

Lemma 3.41 Let b ≥ 2 be an integer. Then every z ∈ [0, 1) can be written

in the form

z = a0 +
a1
b

+
a2
b2

+ · · ·

with integer digits a0, a1, a2, . . . such that −
⌊
b−1
2

⌋
≤ aj ≤

⌊
b
2

⌋
for all j ∈ N0.

This expansion is called the signed b-adic digit expansion of z.

Proof For b = 2 we may use the usual b-adic digit expansion. For b ≥ 3 let

c = ⌊ b−1
2 ⌋ and x = cb−1 + cb−2 + cb−3 + · · · ∈ [0, 1). For z ∈ [0, 1) we have

z+x ∈ [0, 2) with b-adic expansion z+x = u0 +u1b
−1 +u2b

−2 + · · · , where
u0 ∈ {0, 1} and u1, u2, . . . ∈ {0, . . . , b− 1}. Hence

z = u0 +
u1 − c
b

+
u2 − c
b2

+ · · ·
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with −⌊ b−1
2 ⌋ ≤ 0 ≤ u0 ≤ 1 ≤ ⌊ b2⌋ and −⌊ b−1

2 ⌋ ≤ uj−c ≤ b−1−⌊ b−1
2 ⌋ = ⌊ b2⌋

for j ∈ N.

Proof of Theorem 3.36 Let J = [0,z) ⊆ [0, 1)s with z = (z1, . . . , zs). Ac-

cording to Lemma 3.41 for all 1 ≤ i ≤ s we consider the signed bi-adic digit

expansion of zi of the form zi = ai,0 + ai,1b
−1
i + ai,2b

−2
i + ai,3b

−3
i + · · · with

−⌊(bi − 1)/2⌋ ≤ ai,j ≤ ⌊bi/2⌋.
For all 1 ≤ i ≤ s let ni := ⌊logN/ log bi⌋ and for 1 ≤ l ≤ ni define

the truncations of the expansions zl,i =
∑l−1

j=0 ai,jb
−j
i and let z0,i = 0 and

zni+1,i = zi.

According to Lemma 3.40 the collection of intervals

Jj =
s∏

i=1

[min (zji,i, zji+1,i) ,max (zji,i, zji+1,i))

together with the signs εj =
∏s
i=1 sgn(zji+1,i − zji,i) for j = (j1, . . . , js) and

0 ≤ ji ≤ ni, 1 ≤ i ≤ s defines a signed splitting of the interval J = [0,z).

Since both, λs and A(·, N,S) are additive functions on the set of intervals,

we obtain

A(J,N,S) −Nλs(J) =
n1∑

j1=0

· · ·
ns∑

js=0

εj(A(Jj , N,S)−Nλs(Jj)) =: Σ1 +Σ2,

where Σ1 denotes the sum over all j = (j1, . . . , js) such that bj11 · · · b
js
s ≤ N

and Σ2 denotes the remaining part of the above sum.

First we deal with the sum Σ1. For any 1 ≤ i ≤ s the length of the interval

[min (zji,i, zji+1,i) ,max (zji,i, zji+1,i)) is |ai,jib−jii | and also the limit points of

this interval are rationals with denominator bjii . Hence, the intervals Jj are

of the form as considered in Lemma 3.37 from which we obtain now

|A(Jj , N,S)−Nλs(Jj)| ≤
s∏

i=1

|ai,ji | .

We have |ai,ji | ≤ ⌊bi/2⌋ =: fi. An application of Lemma 3.39 yields then

Σ1 ≤
1

s!

s∏

i=1

(⌊bi/2⌋ logN
log bi

+ s

)
.

It remains to estimate Σ2. To this end we split the set of s-tuples j =

(j1, . . . , js) for which bj11 · · · b
js
s > N into disjoint sets B0, . . . , Bs−1, where,

for 1 ≤ k ≤ s− 1, we set

Bk = {j ∈ Ns0 : bj11 · · · bjkk ≤ N and bj11 · · · bjkk b
jk+1

k+1 > N}
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and B0 = {j ∈ Ns0 : bj11 > N}.
For a fixed 0 ≤ k ≤ s−1 and a fixed k-tuple (j1, . . . , jk) with b

j1
1 · · · bjkk ≤ N

define r to be the largest integer such that bj11 · · · bjkk br−1
k+1 ≤ N . Then the

tuple (j1, . . . , jk, jk+1, . . . , js) is contained in Bk, if and only if jk+1 ≥ r

(and jk+2, . . . , js can be chosen arbitrarily).

Therefore, for any k ≥ 0 and fixed j1, . . . , jk ∈ N0 such that bj11 · · · b
jk
k ≤ N ,

we have
∑

jk+1,...,js∈N

j∈Bk

εj(A(Jj , N,S)−Nλs(Jj)) = ±(A(K,N,S) −Nλs(K)),

where

K =
k∏

i=1

[
min

(
zji,i, zji+1,i

)
,max

(
zji,i, zji+1,i

))

× [min (zr,k+1, zk+1) ,max (zr,k+1, zk+1))×
s∏

i=k+2

[0, zi) .

Let j ∈ Bk. As

|zk+1 − zr,k+1| ≤
⌊
bk+1

2

⌋
1

brk+1

bk+1

bk+1 − 1
≤ 1

br−1
k+1

it follows that the interval [min (zr,k+1, zk+1) ,max (zr,k+1, zk+1)) is contained

in some interval
[
m1/b

r
k+1,m2/b

r
k+1

)
for m1,m2 ∈ N0 and with m2 −m1 ≤

bk+1 and hence K is contained in the interval

K ′ =
k∏

i=1

[
min

(
zji,i, zji+1,i

)
,max

(
zji,i, zji+1,i

))
×
[
m1

brk+1

,
m2

brk+1

)
× [0, 1)s−k−1.

Note that j ∈ Bk and hence N < bj11 · · · bjkk brk+1. Thus, an application of

Lemma 3.37 yields

A(K,N,S) ≤ A(K ′, N,S) ≤ bk+1

k∏

i=1

|ai,ji | .

But on the other hand we also have Nλs(K) ≤ bk+1
∏k
i=1 |ai,ji| and hence

|A(K,N,S) −Nλs(K)| ≤ bk+1

k∏

i=1

|ai,ji | ≤ bk+1

k∏

i=1

ci,ji ,

where ci,ji = 1 if ji = 0 and ci,ji = ⌊bi/2⌋ otherwise.
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Summing up we obtain

|Σ2| ≤
s−1∑

k=0

∑

j1,...,jk∈N0

b
j1
1

···b
jk
k

≤N

∣∣∣∣∣∣
∑

j∈Bk

εj(A(Jj , N,S)−Nλs(Jj))

∣∣∣∣∣∣

≤
s−1∑

k=0

∑

j1,...,jk∈N0

b
j1
1 ···b

jk
k

≤N

bk+1

k∏

i=1

ci,ji ≤
s−1∑

k=0

bk+1

k!

k∏

i=1

(⌊bi/2⌋ logN
log bi

+ k

)
,

where we used Lemma 3.39 again. Hence the result follows.

Corollary 3.42 Let b1, . . . , bs ≥ 2 be pairwise relatively prime integers

and let S be the van der Corput-Halton sequence with bases b1, . . . , bs. Then

for any N ≥ 2 we have

D∗
N (S) ≤ c(b1, . . . , bs)

(logN)s

N
+O

(
(logN)s−1

N

)
,

with

c(b1, . . . , bs) =
1

s!

s∏

i=1

⌊bi/2⌋
log bi

.

Furthermore, if b1, . . . , bs are the first s primes, then c(b1, . . . , bs) ≤ 7
2ss .

Proof The first part of the corollary follows immediately from Theorem 3.36.

Hence let us assume that b1, . . . , bs are the first s prime numbers in increasing

order. Then b2, . . . , bs are odd and hence ⌊bi/2⌋ = (bi − 1)/2 for 2 ≤ i ≤ s.

Let π(x) denote the prime counting function, i.e., π(x) counts all prime

numbers less than or equal to x. For any x ≥ 11 we have π(x) > x/ log x;

see [229, Chapter VII]. Therefore we find that for i ≥ 6 we have i − 1 =

π(bi − 1) > bi−1
log(bi−1) >

bi−1
log bi

. Consequently, for i ≥ 6, we have bi−1
i log bi

< i−1
i

and hence, for s ≥ 6 we have

c(b1, . . . , bs) ≤
25A

2s

s∏

i=6

i− 1

i

where A = 2·3·5
5! log 2·log 3·log 5·log 7·log 11 . Since 25A

∏s
i=6

i−1
i = 25A5

s <
7
s it fol-

lows that

c(b1, . . . , bs) ≤
7

2ss

for all s ≥ 6. The bound c(b1, . . . , bs) ≤ 7
2ss for 1 ≤ s ≤ 5 can be shown

numerically.



3.4 Discrepancy of special point sets and sequences 99

Remark 3.43 For s = 1 we have the one-dimensional van der Corput

sequence S as introduced in Definition 3.10. In this case Faure [65] proved

that

lim sup
N→∞

ND∗
N (S)

logN
=

{
b−1
4 log b if b is odd,

b2

4(b+1) log b if b is even.

For more exact results in the case b = 2 we refer to [13]. A Central Limit

Theorem for the star discrepancy of the van der Corput sequence in base 2

can be found in [60, Theorem 2]. Concerning results on the star discrepancy

of generalisations of the one-dimensional van der Corput sequence we refer,

for example, to [65, 68, 69, 70, 71, 125].

Based on the (infinite) (s − 1)-dimensional van der Corput Halton se-

quence one can introduce a finite s-dimensional point set which is known as

Hammersley point set.

Definition 3.44 For dimensions s ≥ 2 the Hammersley point set with

integer bases b1, . . . , bs−1 ≥ 2 consisting ofN ∈ N points in the s-dimensional

unit cube is the point set P = {x0, . . . ,xN−1} where the nth element is given

by xn =
(
n/N,ϕb1(n), . . . , ϕbs−1(n)

)
for 0 ≤ n ≤ N − 1.

We deduce a discrepancy bound for the Hammersley point set with the

help of Theorem 3.36 in combination with the following general result that

goes back to Roth [226] (see also [175, Lemma 3.7]).

Lemma 3.45 For s ≥ 2 let S = (yn)n≥0, where yn = (yn,1, . . . , yn,s−1) for

n ≥ 0, be an arbitrary sequence in the (s−1)-dimensional unit cube with star

discrepancy D∗
N (S). For N ∈ N consider the point set P = {x0, . . . ,xN−1}

in the s-dimensional unit cube given by xn = (n/N, yn,1, . . . , yn,s−1) for

0 ≤ n ≤ N − 1 with star discrepancy D∗
N (P). Then we have

D∗
N (P) ≤

1

N

(
max

1≤m≤N
mD∗

m(S) + 1

)
.

Proof Consider a sub-interval of the s-dimensional unit cube of the form

E =
∏s
i=1[0, ui). Then a point xn, 0 ≤ n ≤ N − 1, belongs to E, if and only

if 0 ≤ n < Nu1 and yn ∈
∏s
i=2[0, ui). Denoting E′ =

∏s
i=2[0, ui) we have

A(E,N,P) = A(E′,m,S) with m := ⌈Nu1⌉ and therefore

|A(E,N,P)−Nλs(E)| ≤ |A(E′,m,S)−mλs−1(E
′)|+|mλs−1(E

′)−Nλs(E)|.
We have |mλs−1(E

′)−Nλs(E)| ≤ |(⌈Nu1⌉ −Nu1)
∏s
i=2 ui| ≤ 1 and hence

|A(E,N,P) −Nλs(E)| ≤ mD∗
m(S) + 1

and the result follows.
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Now we can give an estimate for the star discrepancy of the Hammersley

point set. The proof of the subsequent result follows directly from Theo-

rem 3.36 and Lemma 3.45.

Theorem 3.46 Let b1, . . . , bs−1 ≥ 2 be pairwise relatively prime integers

and let N ∈ N. Then the star discrepancy of the Hammersley point set P
with bases b1, . . . , bs−1 consisting of N points in the s-dimensional unit cube

is bounded by

ND∗
N (P) ≤

1

(s − 1)!

s−1∏

i=1

(⌊bi/2⌋ logN
log bi

+ s− 1

)

+
s−2∑

k=0

bk+1

k!

k∏

i=1

(⌊bi/2⌋ logN
log bi

+ k

)
+ 1.

It follows from Theorem 3.46 that for the star discrepancy of the s-

dimensional Hammersley point set P in pairwise relatively prime bases

b1, . . . , bs−1 consisting of N points we have

D∗
N (P) ≤ c(b1, . . . , bs−1)

(logN)s−1

N
+O

(
(logN)s−2

N

)
,

where c(b1, . . . , bs−1) = 1
(s−1)!

∏s−1
i=1

⌊bi/2⌋
log bi

. In the case that b1, . . . , bs−1 are

the first s− 1 prime numbers we have c(b1, . . . , bs−1) ≤ 7
2s−1(s−1)

.

An exact formula for the star discrepancy of the two-dimensional Ham-

mersley point set can be found in [32], see also [88, 142] for the base 2 case

and [67, Theorem 1] for a bound and [72] for exact results on the star dis-

crepancy of generalised versions of the two-dimensional Hammersley point

set.

Informally, one calls a point set consisting of N points in the s-dimensional

unit cube a low-discrepancy point set, if its star discrepancy is of order

(logN)s−1/N . In this sense the Hammersley point set in pairwise relatively

prime bases is a low-discrepancy point set. Recall that it is widely believed

that this order is the best possible for the star discrepancy of a finite point

set.

Lattice point sets

Now we turn to a further construction of finite point sets with low star

discrepancy which is often called the method of good lattice points. Those

point sets originated independently by Hlawka [111] and Korobov [121].
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Definition 3.47 Let g ∈ Ns and letN ∈ N. A point set P = {x0, . . . ,xN−1}
in the s-dimensional unit cube with xn = {ng/N} for all 0 ≤ n ≤ N − 1

is called lattice point set and g is called the generating vector of the lattice

point set. A QMC rule that uses a lattice point set as underlying quadrature

points is often called a lattice rule.

Example 3.48 For example if we choose N = 34 and g = (1, 21), then

we obtain the point set shown in the left picture of Figure 3.6. For N = 144

and g = (1, 89) we obtain the point set shown on the right of Figure 3.6.

Figure 3.6 Two-dimensional lattice point sets with N = 34 and g = (1, 21)
(left picture) and with N = 144 and g = (1, 89) (right picture).

For a lattice point set P = {x0, . . . ,xN−1} consisting of N points and

with generating vector g ∈ Ns we have that each point xn is of the form

xn = {yn/N} with yn = ng ∈ Zs. Hence we can apply Theorem 3.27 from

which we obtain

DN (P) ≤ 1−
(
1− 1

N

)s
+

∑

h∈C∗
s (N)

1

r(h, N)

∣∣∣∣∣
1

N

N−1∑

n=0

e2πinh·g/N
∣∣∣∣∣ .

Using the formula for a geometric sum we obtain

N−1∑

n=0

e2πinh·g/N =

{
N if h · g ≡ 0 (mod N),

0 if h · g 6≡ 0 (mod N).
(3.15)

Furthermore, for h ∈ C∗
s (N) we have r(h, N) ≥ 2r(h) where r(h) =∏s

i=1 r(hi) for h = (h1, . . . , hs) and r(h) = max(1, |h|). This follows from

the fact that sin(πt) ≥ 2t for 0 ≤ t ≤ 1
2 . Altogether we obtain the following

bound on the extreme discrepancy of a lattice point set.
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Proposition 3.49 For the extreme discrepancy of a lattice point set P
consisting of N points and with generating vector g ∈ Ns we have

DN (P) ≤
s

N
+

1

2

∑

h∈C∗
s (N)

h·g≡0 (mod N)

1

r(h)
.

Starting from this bound one can show (see, for example, [175, Section 5])

by using an average argument that for every dimension s and every N ∈
N there exist generating vectors g = (g1, . . . , gs) with 0 ≤ gi < N and

gcd(gi, N) = 1 for all 1 ≤ i ≤ s such that the corresponding lattice point

set has extreme discrepancy of order (logN)s/N . Such a vector is often

called a good lattice point. However, this result is by no means constructive,

i.e, it is not known how a general construction principle for a good lattice

point can be deduced from it. For a long time one had to rely on time

consuming computer searches for good lattice points. A considerably faster

search algorithm was introduced by Sloan & Reztsov [246] which allows one

to find good lattice points in reasonably high dimension with a reasonably

large number of points. This method is nowadays known as component-by-

component construction or short cbc-construction. Here the basic idea is to

start with a good one-dimensional lattice point and then one appends step

by step a further dimension to the already constructed good lattice point

such that also the new lattice point is a good one. Joe [113] was the first who

used this approach for searching for lattice point sets with low discrepancy.

First we mention that by using (3.15), the sum which appeared in Propo-

sition 3.49 can be written as

RN (g) :=
∑

h∈C∗
s (N)

h·g≡0 (mod N)

1

r(h)

= −1 + 1

N

N−1∑

n=0

s∏

i=1


1 +

∑

−N/2<h≤N/2
h6=0

e2πihngi/N

|h|


 . (3.16)

Therefore, for given dimension s, the calculation of RN (g) would require

O(N2s) operations which can be reduced to O(Ns) operations by using an

asymptotic expansion due to Joe & Sloan [116].

Now we use the following component-by-component algorithm for the con-

struction of a good lattice point.

Algorithm 3.50 Let N ∈ N and let GN = {1, . . . , N − 1}.

1. Choose g1 = 1.
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2. For d > 1, assume we have already constructed g1, . . . , gd−1. Then find

gd ∈ GN which minimises RN ((g1, . . . , gd−1, gd)) as a function of gd.

If N is a prime number, then one can show that Algorithm 3.50 provides

a good lattice point. (For results concerning composite N we refer to [240].)

Theorem 3.51 Let N be a prime number and suppose that g = (g1, . . . , gs)

is constructed according to Algorithm 3.50. Then for all 1 ≤ d ≤ s we have

RN ((g1, . . . , gd)) ≤
1

N − 1
(1 + SN )

d,

where SN =
∑

h∈C∗
1 (N) |h|−1.

Proof SinceN is a prime number it follows that RN (g1) = 0 for all g1 ∈ GN .
Let d ≥ 1 and assume that we have

RN (g) ≤
1

N − 1
(1 + SN )

d,

where g = (g1, . . . , gd). Now we consider (g, gd+1) := (g1, . . . , gd, gd+1).

As gd+1 minimises RN ((g, ·)) over GN we obtain

RN ((g, gd+1))

≤ 1

N − 1

N−1∑

gd+1=1

∑

(h,hd+1)∈C∗
d+1

(N)

h·g+hd+1gd+1≡0 (mod N)

1

r(h)

1

r(hd+1)

=
∑

(h,hd+1)∈C∗
d+1(N)

1

r(h)

1

r(hd+1)

1

N − 1

∑

gd+1∈GN
h·g+hd+1gd+1≡0 (mod N)

1,

where we just changed the order of summation. Separating out the term

where hd+1 = 0 we obtain

RN ((g, gd+1))

≤ RN (g) +
∑

h∈Cd(N)

1

r(h)

∑

hd+1∈C∗
1 (N)

1

r(hd+1)

1

N − 1

∑

gd+1∈GN
hd+1gd+1≡−h·g (mod N)

1.

Since N is a prime, the congruence hd+1gd+1 ≡ −h ·g (mod N) has exactly

one solution gd+1 ∈ GN if h · g 6≡ 0 (mod N) and no solution in GN if

h · g ≡ 0 (mod N). From this insight it follows that

RN ((g, gd+1)) ≤ RN (g) +
1

N − 1

∑

h∈Cd(N)

1

r(h)

∑

hd+1∈C∗
1 (N)

1

r(hd+1)
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= RN (g) +
SN
N − 1

∑

h∈Cd(N)

1

r(h)

= RN (g) +
SN
N − 1

(1 + SN )
d

≤ 1

N − 1
(1 + SN )

d +
SN
N − 1

(1 + SN )
d

=
1

N − 1
(1 + SN )

d+1,

where we used the induction hypotheses to bound RN (g). This completes

the proof of Theorem 3.51.

It can be shown that SN ≤ 2 logN+2γ−log 4+4N−2, where γ = 0.577 . . .

is the Euler constant (for a proof of this fact see [166, Lemmas 1 & 2]).

Therefore, from Proposition 3.49 and Theorem 3.51 we obtain the following

bound on the extreme discrepancy of the lattice point set whose generating

vector is constructed with Algorithm 3.50.

Corollary 3.52 Let N be a prime number and suppose that g = (g1, . . . , gs)

is constructed according to Algorithm 3.50. For 1 ≤ d ≤ s let Pd to denote

the lattice point set generated by the lattice point (g1, . . . , gd). Then we have

DN (Pd) ≤
d

N
+

1

N

(
2 logN + 2γ + 1− log 4 +

4

N2

)d
.

Hence, with Algorithm 3.50, one can construct a lattice point set in the

s-dimensional unit cube whose extreme discrepancy is of order (logN)s/N .

This is not quite as good as possible. For example, for the Hammersley point

set we had an order of (logN)s−1/N . Nevertheless, the bound on RN (g) is

best possible in the order of magnitude in N . This follows from a general

lower bound due to Larcher [130], which states that for every s ≥ 2 there

exists a cs > 0 such that for all N ∈ N and all lattice points g we have

RN (g) ≥ cs(logN)s/N . For dimensions s > 3 it is still an open problem

whether there are lattice point sets with discrepancy of order (logN)s−1/N .

For dimension s = 2, such an order can be obtained with so-called Fibonacci

lattice rules; see [175, Section 5].

Lattice point sets can have small extreme- and star discrepancy. However,

one should mention that the full power of lattice point sets lies in QMC

integration of smooth, one-periodic functions. For a detailed treatment of

this topic we refer to [175, Section 5] or to [243].
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3.5 Tractability of discrepancy

In many applications the dimension s can be rather large. But in this case,

the asymptotically very good bounds on the discrepancy from the previous

section are not useful already for modest cardinality N of a point set. For

example, assume that for every s,N ∈ N we have a point set Ps,N in the

s-dimensional unit cube of cardinality N with star discrepancy of at most

D∗
N (Ps,N ) ≤ cs

(logN)s

N
,

for some cs > 0. Hence for any ε > 0 the star discrepancy behaves asymp-

totically like N−1+ε which is of course excellent. However, the function

N → (logN)s/N decreases to zero not until N ≥ es. For N ≤ es this

function is increasing which means that for cardinality N in this range our

discrepancy bounds are useless. But already for moderately large dimension

s, the value of es is huge, and even as huge, such that point sets with car-

dinality N ≥ es cannot be used for practical applications. For example the

case s = 10, which is not considered to be large in practical applications, is

shown in Figure 3.7.

0 50000 100000

300000

375000

450000

Figure 3.7 The function N 7→ (logN)s/N for s = 10.

Hence we are also interested in the discrepancy of point sets with not too

large cardinality. To analyse this problem systematically we introduce the

following quantity.

Definition 3.53 For integers s,N ∈ N let

disc∗(N, s) = inf
P
D∗
N (P),

where the infimum is extended over all point sets P consisting of N points
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in the s-dimensional unit cube. Then disc∗(N, s) is called the N th minimal

star discrepancy. Furthermore, for ε > 0 we define

N∗(s, ε) = min {N ∈ N : disc∗(N, s) ≤ ε} ,

the so-called inverse of star discrepancy.

For example, consider point sets consisting of N = 2s points in the s-

dimensional unit cube (for s ≥ 30 this is already a huge cardinality). Can we

say then that in each dimension s there exists a point set of such a cardinality

such that its star discrepancy tends to zero as s grows to infinity? In terms of

Definition 3.53 this would mean whether we can say that disc∗(2s, s) goes to
zero as s→∞ or not? But from the upper bounds on the star discrepancy

of special point sets that we know so far, it is not known how to deduce an

answer to such a question.

The best bounds on the star discrepancy that we know are all of asymp-

totic order (logN)s/N . If we insert here for the cardinality N = 2s, then we

obtain upper bounds of order

(log 2s)s

2s
≈
(s
2

)s

which goes rapidly to infinity with s (and also the small constant cs =

7/(s2s) from the star discrepancy bound for the van der Corput-Halton

sequence cannot invert this behaviour).

As another example (see [196]) consider for an integer m ≥ 2 the regular

lattice Γm with N = ms points in the s-dimensional unit cube as defined

in (3.14). From Proposition 3.32 we know that the star discrepancy of this

point set is exactly

D∗
N (Γm) = 1−

(
1− 1

m

)s
.

Hence to obtain a star discrepancy of at most ε > 0 one needs a regular

lattice with at least (
s

| log(1− ε)|

)s

points. This number grows superexponentially in the dimension s. For ex-

ample, N has to be at least (1.45s)s to obtain a star discrepancy smaller

than one half.

Nevertheless, in spite of our negative results we found so far, the answer

to the initially stated question whether there exist point sets consisting of

N = 2s points in the s-dimensional unit cube whose star discrepancy tends

to zero as s grows to infinity is Yes, and even much more is possible. This
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was shown first by Heinrich, Novak, Wasilkowski & Woźniakowski [93]. They

showed that there exists a constant c > 0 such that

disc∗(N, s) ≤ c
√

s

N
(3.17)

for all N, s ∈ N from which it follows that

N∗(s, ε) ≤ Csε−2 (3.18)

for some constant C > 0. Hence, the inverse of star discrepancy depends

only polynomially on s and ε−1. In Complexity Theory such a behaviour is

called polynomial tractability.

Furthermore it is known that the dependence on the dimension s of

the upper bound on the Nth minimal star discrepancy in (3.18) cannot

be improved. It was shown by Hinrichs [107, Theorem 1] that there ex-

ist constants c, ε0 > 0 such that N∗(s, ε) ≥ cs/ε for 0 < ε < ε0 and

disc∗(N, s) ≥ min(ε0, cs/n).

In comparison to (3.17) the law of the iterated logarithm for the star

discrepancy (see [61, Theorem 1.193]) states that

lim sup
N→∞

√
2ND∗

N (S)√
log logN

= 1

for almost all random sequences S in [0, 1)s. However, this result gives abso-

lutely no information about the dependence of the star discrepancy on the

dimension s.

Here we show a slightly weaker bound than those given in (3.17). This

result, which was also shown first in [93], has the advantage that its proof

is more or less elementary and that it contains no unknown constants. Im-

provements can be found in [57, Theorem 3.2] (see also Exercise 3.28) and

in [84, Theorem 2.1]. A similar result for the extreme discrepancy can be

found in [84, Theorem 2.2].

Theorem 3.54 For all N, s ∈ N we have

disc∗(N, s) ≤ 2
√
2√
N

(
s log

(⌈
s
√
N

2(log 2)1/2

⌉
+ 1

)
+ log 2

)1/2

. (3.19)

For all s ∈ N and all ε > 0 we have

N∗(s, ε) ≤ ⌈8ε−2(s log(⌈2s/ε⌉ + 1) + log 2)⌉. (3.20)

Proof The proof is based on Hoeffding’s inequality from Probability Theory

which states the following: assume that X1, . . . ,Xn are independent random
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variables with expectation 0 and Xi ∈ [ai, bi] almost sure for 1 ≤ i ≤ n,

where ai < 0 < bi, and let Sn := X1 + · · · +Xn. Then for every t ≥ 0 we

have

Prob [|Sn| ≥ t] ≤ 2e−2t2/
∑n

i=1(bi−ai)2 .

Now let τ 1, . . . , τN be independent, identically and uniformly on [0, 1)s

distributed random variables. For x = (x1, . . . , xs) in [0, 1]s and 1 ≤ i ≤ N

let

ζ
(i)
x := χ[0,x)(τ i)− x1 · · · xs.

Then the expected value of ζ
(i)
x is E[ζ

(i)
x ] = 0 and further we obviously have

|ζ(i)x | ≤ 1 for all 1 ≤ i ≤ N . Let δ > 0. Using Höffding’s inequality it follows

that for all x ∈ [0, 1]s we have

Prob

[∣∣∣∣∣
1

N

N∑

i=1

ζ
(i)
x

∣∣∣∣∣ ≥ δ
]
≤ 2e−δ

2N/2.

Let Γm be the equidistant grid on [0, 1]s with mesh-size 1/m, where m =

⌈s/δ⌉. Using Proposition 3.17 we obtain now

Prob [D∗
N ({τ 1, . . . , τN}) ≤ 2δ]

≥ Prob

[
max
x∈Γm

∣∣∣∣
A([0,x), N, {τ 1, . . . , τN})

N
− x1 · · · xs

∣∣∣∣ ≤ δ
]

≥ 1− 2(m+ 1)se−δ
2N/2.

The last expression is strictly larger than c ≥ 0, if

log
2

1− c + s log
(⌈s
δ

⌉
+ 1
)
− δ2N

2
< 0. (3.21)

This inequality holds for all δ > δ0 = δ0(N, s) where

δ20 =
2

N

(
s log

(⌈
s

δ0

⌉
+ 1

)
+ log

2

1− c

)
. (3.22)

Hence 1
δ0
≤
(

N
4 log 2

)1/2
and substituting this result back into (3.22), it follows

that

δ20 ≤
2

N

(
s log

(⌈
s
√
N

2(log 2)1/2

⌉
+ 1

)
+ log

2

1− c

)
.

Choosing c = 0, it follows that for all δ > δ0 there exist τ 1, . . . , τN ∈ [0, 1)s

such that D∗
N ({τ 1, . . . , τN}) ≤ 2δ0. Therefore we obtain (3.19).

We also have that there exist τ 1, . . . , τN ∈ [0, 1)s withD∗
N ({τ 1, . . . , τN}) ≤
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ε whenever inequality (3.21) with c = 0 is fulfilled with δ = ε/2. This is the

case for

N > 8ε−2(s log(⌊2s/ε⌋ + 1) + log 2)

and hence (3.20) follows.

Remark 3.55 From the proof of Theorem 3.54 we even obtain a little bit

more. Namely, for c ∈ [0, 1) we have that the probability to choose randomly

a point set P consisting of N points in the s-dimensional unit cube with star

discrepancy of at most

D∗
N (P) ≤

2
√
2√
N

(
s log

(⌈
s
√
N

2(log 2)1/2

⌉
+ 1

)
+ log

2

1− c

)1/2

is strictly larger than c.

The main disadvantage of Theorem 3.54 is that it is purely probabilistic

and therefore by no means constructive. A first constructive approach is

given in [57] which is further improved in [55]. Here a deterministic algorithm

is presented that constructs point sets PN,s consisting of N points in the

s-dimensional unit cube satisfying

D∗
N (PN,s) = O

(
s1/2

N1/2
(log(N + 1))1/2

)

in run-timeO(s log(sN)(σN)s), where σ = σ(s) = O((log s)2/(s log log s))→
0 as s→∞ and where the implied constant in the O-notation is independent

of s and N . This is by far too expensive for high dimensional applications.

An implementation and numerical tests of the algorithm can be found in

[59].

A further improvement is presented in [56]. Here a component-by-component

approach is used to construct point sets PN,s consisting of N points in the

s-dimensional unit cube satisfying

D∗
N (PN,s) = O

(
s3/2

N1/2

(
log

(
N

s
+ 1

))1/2
)

in run-time O(csN (s+3)/2
(
log N

s

)−(s+1)/2
s1/4−s/2), where c > 0 is a constant

and where the implied constant in the O-notation is independent of s and

N . The improved run-time has to be payed with a worse dependence of the

bound for the star discrepancy on the dimension s. Nevertheless, numerical

tests of the component-by-component algorithm in [58] suggest that the star

discrepancy only grows linearly in s rather than with s3/2.
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An overview of many open questions concerning this topic can be found

in [91, 200]. An effective construction of point sets whose star discrepancy

satisfies a bound like in Theorem 3.54 is still not known. An answer to this

question would be certainly a major contribution, especially for users of

QMC rules.

Let us turn now our attention to this problem but for the L2-discrepancy

instead of star discrepancy. Similarly as for the star discrepancy we define

the following quantity.

Definition 3.56 For integers s,N ∈ N let

disc2(N, s) = inf
P
L2,N (P),

where the infimum is extended over all point sets P consisting of N points

in the s-dimensional unit cube. Then disc2(N, s) is called the N th minimal

L2-discrepancy.

In contrary to the star discrepancy here it makes little sense to ask for the

smallest cardinality of a point set with L2-discrepancy of at most some ε > 0.

The reason for this is that the L2-discrepancy of the empty point set in the s-

dimensional unit cube is exactly 3−s/2, which follows from Proposition 2.15,

or in other words, disc2(0, s) = 3−s/2. Thus for s large enough, the empty

set has always L2-discrepancy smaller than ε. (This is not the case for the

star discrepancy which is always one for the empty set.) This may suggest

that for large s, the L2-discrepancy is not properly scaled.

We define the following quantity.

Definition 3.57 For ε > 0 we define

N2(s, ε) = min {N ∈ N : disc2(N, s) ≤ εdisc2(0, s)} ,

the so-called inverse of L2-discrepancy.

Here the situation is quite different. The inverse of L2-discrepancy depends

at least exponentially on the dimension s. This was shown in [247, 264] in a

much more general setting. In Complexity Theory this exponential depen-

dence on the dimension is called intractability or the curse of dimensionality.

Proposition 3.58 For ε ∈ (0, 1) we have

N2(s, ε) ≥ (1− ε2)
(
9

8

)s
.

Proof Proposition 2.15 states that for any point set P = {x0, . . . ,xN−1}
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in [0, 1)s we have

(L2,N (P))2 =
1

3s
− 2

N

N−1∑

n=0

s∏

i=1

1− x2n,i
2

+
1

N2

N−1∑

m,n=0

s∏

i=1

min(1−xm,i, 1−xn,i),

where xn,i is the ith component of the point xn.

With

κs := sup
x∈[0,1]s

3s/2
s∏

i=1

1− x2j
2
√
1− xi

≤
(
8

9

)s/2

(note that the function x 7→ (1− x2)/
√
1− x for x ∈ [0, 1] attains its maxi-

mum at x = 1/3) we obtain
∏s
i=1

1−x2n,i

2 ≤ κs
3s/2

∏s
i=1

√
1− xn,i and hence

1

N

N−1∑

n=0

s∏

i=1

1− x2n,i
2

≤ κs
3s/2

1

N

N−1∑

n=0

s∏

i=1

√
1− xn,i

≤ κs

3s/2

√√√√ 1

N

N−1∑

n=0

s∏

i=1

(1− xn,i),

where we used Cauchy-Schwarz’ inequality for the second estimate.

On the other hand we have

1

N2

N−1∑

m,n=0

s∏

i=1

min(1− xm,i, 1− xn,i) ≥
1

N2

N−1∑

n=0

s∏

i=1

(1− xn,i) .

Letting y :=
(

1
N

∑N−1
n=0

∏s
i=1 (1− xn,i)

)1/2
we therefore obtain

(L2,N (P))2 ≥
1

3s
− 2κs

3s/2
y +

y2

N
.

The last term becomes minimal for y = Nκs3
−s/2 and hence,

(L2,N (P))2 ≥
1

3s
(
1−Nκ2s

)
≥ 1

3s

(
1−N

(
8

9

)s)
.

If we assume now that L2,N (P) ≤ ε · 3−s/2, then it follows that ε2 ≥
1−N (8/9)s and hence

N ≥
(
1− ε2

)(9

8

)s
.

For a more detailed discussion of tractability of various notions of discrep-

ancy we refer to the work of Novak & Woźniakowski [197, 198, 199, 200].
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3.6 Weighted discrepancy

Apart from the classical concept of discrepancy there is also the idea of

weighted discrepancy as introduced by Sloan & Woźniakowski [247], who ob-

served that different coordinates may have different influence on the quality

of approximation of an integral by a QMC rule.

We assume that we are given nonnegative real numbers γu,s for u ⊆ Is, the
so-called weights corresponding to the projection on the coordinates whose

indices are in u. We collect these weights in the set γ = {γu,s : u ⊆ Is}.
Definition 3.59 For a point set P consisting ofN points in the s-dimensional

unit cube and given weights γ, the weighted star discrepancy D∗
N,γ is given

by

D∗
N,γ(P) = sup

z∈(0,1]s
max

∅6=u⊆Is
γu,s|∆P((zu, 1))|.

For 1 ≤ q <∞, the weighted Lq-discrepancy Lq,N,γ of P is given by

Lq,N,γ(P) =


 ∑

∅6=u⊆Is
γu,s

∫

[0,1]|u|
|∆P ((zu, 1))|q dzu




1/q

.

Here ∆P is the discrepancy function of P as defined in Definition 2.13.

In the literature, mainly the following kind of weights are studied:

• Product weights which are weights of the form γu,s =
∏
i∈u γi,s, for ∅ 6=

u ⊆ Is, where γi,s is the weight associated with the ith component. In

this case we simply write γ = (γi,s)
s
i=1. Often the weights γi,s have no

dependence on s, i.e., γi,s = γi.

• Finite-order weights of fixed order k ∈ N which are weights with γu,s = 0

for all u ⊆ Is with |u| > k.

Within this book we restrict ourselves mainly to the case of product weights.

If it is not important, we suppress a possible dependence of the weights

on the dimension s in the following and we simply write γu instead of γu,s.

Note that for γIs,s = 1 and γu,s = 0 for all u ( Is we obtain the usual def-

initions of Lq- or star discrepancy. Hence Definition 3.59 is a generalisation

of Definition 2.14 and Definition 3.19, respectively. Furthermore, in the case

of product weights, we also have D∗
1,N = D∗

N when 1 = (1)i≥1, the sequence

of weights where every weight is equal to one.

The two most important cases for weighted discrepancies are those of

the weighted L2-discrepancy and the weighted star discrepancy. Many re-

sults for the classical definitions can easily be generalised to results for the
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weighted discrepancies. For example, also here we have a compact formula

for the evaluation of the weighted L2-discrepancy of a finite point set (see

Proposition 2.15 for the unweighted case).

Proposition 3.60 For any point set P = {x0, . . . ,xN−1} in [0, 1)s we

have

(L2,N,γ(P))2 =
∑

∅6=u⊆Is
γu,s

×


 1

3|u|
− 2

N

N−1∑

n=0

∏

i∈u

1− x2n,i
2

+
1

N2

N−1∑

m,n=0

∏

i∈u
min (1− xm,i, 1− xn,i)


 ,

where xn,i is the ith component of the point xn.

For the weighted star discrepancy we have the following generalisation of

Theorem 3.28.

Theorem 3.61 Let P = {x0, . . . ,xN−1} be a point set in [0, 1)s with xn
of the form xn = {yn/bm} with yn ∈ Zs and integers m ≥ 1 and b ≥ 2.

Then we have

D∗
N,γ(P) ≤ max

∅6=u⊆Is
γu,s

(
1−

(
1− 1

bm

)|u|)

+ max
∅6=u⊆Is

γu,s
∑

k∈N
|u|
0

0<|k|∞<bm

ρb(k)

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn,u)

∣∣∣∣∣ ,

where xn,u is the projection of xn to the coordinates given by u.

Proof We have

D∗
N,γ(P) = sup

z∈(0,1]s
max

∅6=u⊆Is
γu,s|∆P((zu, 1))| ≤ max

∅6=u⊆Is
γu,sD

∗
N (Pu),

where Pu = {x0,u, . . . ,xN−1,u} in [0, 1)|u| consists of the points of P projected

to the components whose indices are in u. For any ∅ 6= u ⊆ Is we have from

Theorem 3.28 that

D∗
N (Pu) ≤ 1−

(
1− 1

bm

)|u|
+

∑

k∈N
|u|
0

0<|k|∞<bm

ρb(k)

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn,u)

∣∣∣∣∣ ,

and the result follows.
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One of the reasons for introducing a weighted L2-discrepancy is that

with this concept one can overcome the curse of dimensionality for the

L2-discrepancy under suitable conditions on the weights γ. And also for

the weighted star discrepancy one can obtain a weaker dependence on the

dimension for suitable choices of weights.

Definition 3.62 For integers s,N ∈ N let

disc∗γ(N, s) = inf
P
D∗
N,γ(P),

and let

disc2,γ(N, s) = inf
P
L2,N,γ(P),

where the infimum is in both cases extended over all point sets P consisting

of N points in the s-dimensional unit cube. Then disc∗γ(N, s) is called the

N th minimal weighted star discrepancy and disc2,γ(N, s) is called the N th

minimal weighted L2-discrepancy. Furthermore, for ε > 0 define

N∗
γ(s, ε) = min{N ∈ N : disc∗γ(N, s) ≤ ε}

and

N2,γ(s, ε) = min{N ∈ N : disc2,γ(N, s) ≤ ε · disc2,γ(0, s)},
the inverse of weighted star and weighted L2-discrepancy, respectively.

Definition 3.63 We say that the weighted star discrepancy and the weighted

L2-discrepancy, respectively, is polynomial tractable, if there exist nonnega-

tive C,α and β such that

N∗
γ(s, ε) ≤ Csαε−β, and N2,γ(s, ε) ≤ Csαε−β ,

respectively holds for all dimensions s ∈ N and for all ε ∈ (0, 1). This

behaviour is also called tractability. The infima of α and β such that such an

inequality holds are called the s-exponent and the ε-exponent of tractability.

We say that the weighted star and the weighted L2-discrepancy, respectively,

is strongly tractable, if the above inequality holds with α = 0. In this context

one also speaks of strong tractability.

We consider the case of the weighted L2-discrepancy first.

Theorem 3.64 Assume that the weights γ are such that

Bγ := sup
s∈N

∑
∅6=u⊆Is γu,s

(
1

2|u|
− 1

3|u|

)

∑
∅6=u⊆Is γu,s

1
3|u|

<∞,

then the weighted L2-discrepancy is strongly tractable and the ε-exponent is
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at most two. Moreover, in the case of product weights (independent of s)

with decreasing weights, the weighted L2-discrepancy is strongly tractable, if

and only if
∑∞

i=1 γi <∞.

Proof Averaging the squared weighted L2-discrepancy over all τ 1, . . . , τN
from the s-dimensional unit cube yields
∫

[0,1]sN
(L2,N,γ({τ 1, . . . , τN}))2 dτ 1 · · · dτN =

1

N

∑

∅6=u⊆Is
γu,s

(
1

2|u|
− 1

3|u|

)
.

Hence there exists a point set P consisting of N points in the s-dimensional

unit cube such that

L2,N,γ(P) ≤
1√
N


 ∑

∅6=u⊆Is
γu,s

(
1

2|u|
− 1

3|u|

)


1/2

≤
√
Bγ√
N


 ∑

∅6=u⊆Is

γu,s

3|u|




1/2

.

The last term is smaller than ε
(∑

∅6=u⊆Is
γu,s
3|u|

)1/2
if N ≥ Bγε

−2. This means

that N2,γ(s, ε) ≤ ⌈Bγε
−2⌉ and hence we have strong tractability with ε-

exponent of at most two.

Assume that we are given product weights which are independent of the

dimension s, i.e. γu,s =
∏
i∈u γi with a sequence γ1, γ2, . . . ≥ 0. In this case

we have

∑
∅6=u⊆Is γu,s

(
1

2|u|
− 1

3|u|

)

∑
∅6=u⊆Is γu,s

1
3|u|

=

∏s
i=1

(
1 + γi

2

)
−∏s

i=1

(
1 + γi

3

)
∏s
i=1

(
1 + γi

3

)

=

∏s
i=1

(
1 + γi

2

)
∏s
i=1

(
1 + γi

3

) − 1 ≤
s∏

i=1

(
1 +

γi
6

)

≤ e
∑s

i=1 log(1+γi/6) ≤ e(
∑s

i=1 γi)/6.

Hence Bγ <∞ if
∑∞

i=1 γi <∞ and we obtain strong tractability.

On the other hand, using the lower bound on the unweighted L2-discrepancy

from the proof of Proposition 3.58 we have

(L2,N,γ(P))2 ≥
∑

∅6=u⊆Is
γu,s

1

3|u|

(
1−N

(
8

9

)|u|)

= −1 +
s∏

i=1

(
1 +

γi
3

)
+N −N

s∏

i=1

(
1 +

8γi
27

)
.

Assume we had strong tractability, i.e., there exist nonnegative C and β
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with the property that N2,γ(s, ε) ≤ Cε−β for all s ∈ N and all ε > 0. Then

for N = N2,γ(s, ε) we have

ε2
s∏

i=1

(
1 +

γi
3

)
≥ −1 +

s∏

i=1

(
1 +

γi
3

)
+N −N

s∏

i=1

(
1 +

8γi
27

)

≥
s∏

i=1

(
1 +

γi
3

)
−N

s∏

i=1

(
1 +

8γi
27

)
.

Hence, for 0 < ε < 1, we have

Cε−β ≥ N ≥ (1− ε2)
s∏

i=1

1 + γi
3

1 + 8γi
27

= (1− ε2)
s∏

i=1

(
1 +

γi
27 + 8γi

)
.

Obviously, the sequence (γi)i≥1 must be bounded since otherwise we would

have γi
27+8γi

≥ 1
16 for infinitely many i ∈ N and hence Cε−β ≥ (1 −

ε2)
(
1 + 1

16

)d
for infinitely many d ∈ N which is certainly a contradiction.

For bounded γi’s, say γi ≤M for all i ∈ N we obtain

Cε−β ≥ (1− ε2)
s∏

i=1

(
1 +

1

27 + 8M
γi

)
≥ (1− ε2) 1

27 + 8M

s∑

i=1

γi

and thus we must have
∑∞

i=1 γi <∞.

For the star discrepancy we have tractability already for the unweighted

case (with s-exponent of at most one and ε-exponent of at most two).

From this it follows immediately that the weighted star discrepancy is also

tractable with s-exponent of at most one and ε-exponent of at most two as

long as the weights are bounded. However, under a very mild condition on

the weights one can even obtain tractability with s-exponent equal to zero.

The following result was first proved in [108].

Theorem 3.65 If

Cγ := sup
s=1,2,...

max
∅6=u⊆Is

γu,s
√
|u| <∞, (3.23)

then for all N, s ∈ N we have

disc∗γ(N, s) ≤
2
√
2Cγ√
N

(
log
(⌈
ρs
√
N
⌉
+ 1
)
+ log (2(e− 1)s)

)1/2
, (3.24)

where ρs = s
2(log 2)1/2

. Hence for any 0 < δ < 1 there exists a cδ > 0 such

that

N∗
γ(s, ε) ≤

⌈
cδε

−2/(1−δ)(log s+ 1)1/(1−δ)
⌉
, (3.25)
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i.e., the weighted star discrepancy is tractable with s-exponent equal to zero

and with ε-exponent at most two.

We stress that we do not have strong tractability in this case as we still

have the logarithmic dependence on the dimension s.

Note that condition (3.23) is a very mild condition on the weights. For

example for bounded finite order weights it is always fulfilled. In the case

of product weights (independent of s) it is enough that the weights γj are

decreasing and that γj < 1 for an index j ∈ N. In fact, we have

max
∅6=u⊆Is

γu,s
√
|u| = max

u=1,...,s

√
u

u∏

i=1

γi

and hence Cγ = sups=1,2,...

√
s
∏s
i=1 γi. We have

√
s
∏s
i=1 γi√

s+ 1
∏s+1
i=1 γi

=

√
s

s+ 1

1

γs+1
> 1

for s large enough and therefore it follows that Cγ < ∞. For example, if

γi = 1/ log(i+ 1), then Cγ =
√
2

log 2 log 3 .

Proof of Theorem 3.65 For given number of points N and dimension s and

0 < cu ≤ 1 for all ∅ 6= u ⊆ Is we consider the set

A :=

{
PN,s ⊆ [0, 1)s : |PN,s| = N and for all ∅ 6= u ⊆ Is

D∗
N (PN,s,u) ≤

2
√
2√
N

(
|u| log

(⌈
ρ|u|
√
N
⌉
+ 1
)
+ log

(
2

cu

))1/2
}
,

where PN,s,u := {x0,u, . . . ,xN−1,u} if PN,s = {x0, . . . ,xN−1} and where

ρ|u| =
|u|

2(log 2)1/2
. Furthermore, for ∅ 6= u ⊆ Is, we define

Au = Au(cu)

:=

{
PN,s ⊆ [0, 1)s : |PN,s| = N and

D∗
N (PN,s,u) ≤

2
√
2√
N

(
|u| log

(⌈
ρ|u|
√
N
⌉
+ 1
)
+ log

(
2

cu

))1/2
}
.

From Remark 3.55 we know that Prob[Au(cu)] > 1 − cu. Then we have
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A =
⋂

∅6=u⊆Is Au and hence

Prob[A] = Prob


 ⋂

∅6=u⊆Is
Au


 = 1− Prob


 ⋃

∅6=u⊆Is
Ac

u




≥ 1−
∑

∅6=u⊆Is
Prob [Ac

u
] ≥ 1−

∑

∅6=u⊆Is
cu.

If we choose cu := cs−|u| with a constant 0 < c ≤ (e− 1)−1, then we obtain

Prob[A] ≥ 1−
s∑

u=1

(
s

u

)
c

su
= 1 + c− c

(
1 +

1

s

)s
> 1 + c− c · e ≥ 0.

Thus we have shown that there exists a point set PN,s ⊆ [0, 1)s such that

for each ∅ 6= u ⊆ Is we have

D∗
N (PN,s,u) ≤

2
√
2√
N

(
|u| log

(⌈
ρ|u|
√
N
⌉
+ 1
)
+ log

(
2(e− 1)s|u|

))1/2

≤ 2
√
2
√
|u|√

N

(
log
(⌈
ρ|u|
√
N
⌉
+ 1
)
+ log (2(e− 1)s)

)1/2
.

For the weighted star discrepancy of this point set we obtain

D∗
N,γ(PN,s)

≤ 2
√
2√
N

(
log
(⌈
ρ|u|
√
N
⌉
+ 1
)
+ log (2(e − 1)s)

)1/2
max

∅6=u⊆Is
γu,s
√
|u|.

Assume now that Cγ := sups=1,2,...max∅6=u⊆Is γu,s
√
|u| < ∞. Then we ob-

tain

D∗
N,γ(PN,s) ≤

2
√
2Cγ√
N

(
log
(⌈
ρ|u|
√
N
⌉
+ 1
)
+ log (2(e − 1)s)

)1/2

and (3.24) follows.

For any δ > 0 there exists a cδ > 0 such that

Cγ2
√
2
(
log
(⌈
ρs
√
N
⌉
+ 1
)
+ log (2(e − 1)s)

)1/2
≤
(
cδN

δ(log s+ 1)
)1/2

.

Hence it follows from (3.24) that N ≥ cδε
−2/(1−δ)(log s + 1)1/(1−δ) implies

disc∗γ(N, s) ≤ ε and therefore

N∗
γ(s, ε) ≤

⌈
cδε

−2/(1−δ)(log s+ 1)1/(1−δ)
⌉
.
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We close this section by showing that the logarithmic factor in the dimen-

sion in the tractability result from Theorem 3.65 is indeed necessary for a

large class of weights. This implies that the star discrepancy is not strongly

tractable for such weights. In particular, this includes finite order weights

of order k ≥ 2 if all the weights of order 2 are bounded below by a constant

c > 0.

To prove this lower bound we need an elementary lemma. For u ⊆ Is and
k ∈ {0, 1} let

Bk(u) =

{
x = (x1, . . . , xs) ∈ [0, 1)s : xi ∈

[
k

2
,
k + 1

2

)
for i ∈ u

}
.

Lemma 3.66 Let PN,s ⊆ [0, 1)s with |PN,s| = N . Then there exists u ⊆ Is
with cardinality at least s/2N such that one of the sets B0(u) and B1(u)

contains at least half of the points of PN,s.
Proof There exists u0 ⊆ Is with cardinality at least s/2 and k0 ∈ {0, 1}
such that x0 ∈ Bk0(u0). Inductively, for 1 ≤ h < N , we can choose uh ⊆ uh−1

with cardinality at least s/2h+1 and kh ∈ {0, 1} such that xh ∈ Bkh(u). Set
u = uN−1 and let k ∈ {0, 1} be such that at least half of the kh, 0 ≤ h < N

are equal to k. Then the cardinality of u is at least s/2N and at least half

of the points x0, . . . ,xN−1 are in Bk(u).

Now we give the announced lower bound for the weighted star discrepancy

which was first proved in [108].

Theorem 3.67 If the weights γ = {γu,s : u ⊆ Is} are such that there

exists a constant c > 0 with γu,s ≥ c for all u ⊆ Is with cardinality two, then

for all N, s ∈ N with s ≥ 2N+1 we have

disc∗γ(N, s) ≥
c

12
.

In particular, the weighted star discrepancy is not strongly tractable for such

weights.

Proof Let P be a point set consisting of N points in the s-dimensional

unit cube where s ≥ 2N+1. With Lemma 3.66 we find u0 ⊆ Is with car-

dinality 2 such that one of the sets B0(u0) or B1(u0) contains at least

N/2 points of P. Without loss of generality we assume that u0 = {1, 2}.
Let z(0) = (1/2, 1/2, 1/2, . . . , 1/2), z(1) = (1, 1/2, 1/2, . . . , 1/2) and z(2) =

(1/2, 1, 1/2, . . . , 1/2). Furthermore, let n0, n1, n2 be the number of points

in the point set P which are contained in the boxes I1 × I2 × [0, 1)s−2 for

I1 = I2 = [0, 1/2), I1 = [1/2, 1), I2 = [0, 1/2) and I1 = [0, 1/2), I2 = [1/2, 1),

respectively.
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Let us first assume that the set B0(u0) contains at least N/2 points. Then

∆P(z
(0)
u0 , 1) =

A(B0(u0), N,P)
N

− 1

4
≥ 1

4

which implies

D∗
N,γ(P) ≥

c

4
.

We now treat the case that the set B1(u0) contains at least N/2 points so

that its complement contains at most N/2 points, i.e.

n0 + n1 + n2 ≤ N/2.
Then at least one of the following three inequalities holds

n0 + n1 ≤
5N

12
, n0 + n2 ≤

5N

12
, n0 ≥

N

3
.

If the first inequality holds then it follows that

∆P(z
(1)
u0 , 1) =

n0 + n1
N

− 1

2
≤ − 1

12
.

If the second inequality holds, we have

∆P(z
(2)
u0 , 1) =

n0 + n2
N

− 1

2
≤ − 1

12
.

If the third inequality is true then

∆P(z
(0)
u0 , 1) =

n0
N
− 1

4
≥ 1

12
.

In any case D∗
N,γ(P) ≥ c

12 and the result follows.

Again we refer to the work of Novak & Woźniakowski [197, 198, 199, 200]

for a more detailed discussion of tractability of various notions of discrep-

ancy.

Exercises

3.1 Show that a uniformly distributed sequence is dense in the unit cube

and explain why the converse is not true.

3.2 Which one-dimensional point set P consisting of N points in [0, 1) min-

imises D∗
N (P), i.e., for which P do we have D∗

N (P) = minP ′ D∗
N (P ′),

where the minimum is taken over all point sets P ′ consisting of N

points? Which point set P consisting of N points minimises L2,N (P)?
What is the value of D∗

N (P) and L2,N (P) for this point set? Hint: Draw

the graph of the discrepancy function ∆P .
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3.3 Give a rigorous proof of Theorem 3.3. Hint: See [128, Chapter 1, Corol-

lary 1.1].

3.4 Give a proof of Theorem 3.4. Hint: See [128, Chapter 1, Corollary 1.2].

3.5 Show that for uniform distribution of the sequence ({nα})n≥0 we nec-

essarily need that 1, α1, . . . , αs are linearly independent over Q.

3.6 Show that the b-adic van der Corput sequence is uniformly distributed

modulo one just by counting elements of the sequence in intervals,

i.e., without the use of Theorem 3.7. Hint: Consider elementary b-adic

intervals first.

3.7 For b ≥ 2 the b-adic diaphony Fb,N (see [86] or [97]) of the first N

elements of a sequence S = (xn)n≥0 is defined by

Fb,N (S) =




1

(b+ 1)s − 1

∑

k∈Ns
0

k 6=0

1

ψb(k)2

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn)

∣∣∣∣∣

2




1/2

,

where for k = (k1, . . . , ks) ∈ Ns0 it is ψb(k) =
∏s
i=1 ψb(ki) and for

k ∈ N0,

ψb(k) =

{
1 if k = 0,

br if br ≤ k < br+1 where r ∈ N0.

Show that a sequence S is uniformly distributed modulo one if and

only if limN→∞ Fb,N (S) = 0 for b ≥ 2. Remark: Compare the b-adic

diaphony with the worst-case error for a QMC rule in the Walsh space

Hwal,s,b,α,γ as given in Exercise 2.15 (especially in the unweighted case

and with α = 2). Hint: See [97, Theorem 3.1].

3.8 For b ≥ 2 the b-adic spectral test σb,N (S) (see [95]) of the first N

elements of a sequence S = (xn)n≥0 is defined by

σb,N (S) = sup
k∈Ns0
k6=0

1

ψb(k)

∣∣∣∣∣
1

N

N−1∑

n=0

bwalk(xn)

∣∣∣∣∣ ,

where ψb is defined as in Exercise 3.7. Show that a sequence S is uni-

formly distributed modulo one if and only if limN→∞ σb,N (S) = 0 for

b ≥ 2.

3.9 Show that a sequence S is uniformly distributed modulo one if and

only if limN→∞DN (S) = 0. Hint: See [128, Chapter 2, Theorem 1.1].

3.10 Give a rigorous proof of the right hand inequality in Proposition 3.14

(draw a picture).

3.11 Prove Proposition 3.16. Hint: See [128, Chapter 2, Theorem 2.6].
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3.12 Let ui, vi, δi ∈ [0, 1] be such that |ui− vi| ≤ δi for 1 ≤ i ≤ s. Show that
∣∣∣∣∣
s∏

i=1

ui −
s∏

i=1

vi

∣∣∣∣∣ ≤ 1−
s∏

i=1

(1− δi) ≤ s max
1≤i≤s

δi.

3.13 A finite set Γ ⊆ [0, 1]s is a δ-cover of [0, 1]s if for every x = (x1, . . . , xs) ∈
[0, 1]s there exist y1 = (y1,1, . . . , y1,s),y2 = (y2,1, . . . , y2,s) ∈ Γ ∪ {0}
with λs([0,y2))− λs([0,y1)) ≤ δ and y1,i ≤ xi ≤ y2,i for all 1 ≤ i ≤ s.

Let Γ be a δ-cover of [0, 1]s. Show that then for any N -point set

P ⊆ [0, 1)s we have

D∗
N (P) ≤ max

y∈Γ
|∆P(y)|+ δ.

3.14 Prove a similar formula to that in Proposition 2.15 for the Lq-discrepancy

with an even integer q.

3.15 Show that
∫

[0,1]sN
(L2,N ({τ 1, . . . , τN}))2 dτ 1 · · · dτN =

1

N

(
1

2s
− 1

3s

)
.

Thus, there exists a point set P consisting of N points in the s-

dimensional unit cube such that

L2,N (P) ≤
1√
N

(
1

2s
− 1

3s

)1/2

.

Hint: Use Proposition 2.15.

3.16 Let Ts,N(α) be the set of all tuples (τ 1, . . . , τN ) with τ j ∈ [0, 1]s for

1 ≤ j ≤ N such that

L2,N ({τ 1, . . . , τN}) ≤
α√
N

(
1

2s
− 1

3s

)1/2

.

Use Exercise 3.15 to show that for all α ≥ 1 we have

λsN (Ts,N(α)) > 1− α−2.

3.17 Use Theorem 3.26 to show that the point set {0, 1/N, . . . , (N − 1)/N}
in the unit interval has extreme discrepancy of order 1/N .

3.18 Prove a similar result to that of Theorem 3.28 also for the extreme

discrepancy. Hint: See [94, Theorem 1].

3.19 For integers m1, . . . ,ms ≥ 2 let

Γm1,...,ms =

{(
n1
m1

, . . . ,
ns
ms

)
: 0 ≤ ni < mj for 1 ≤ i ≤ s

}
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be the regular lattice consisting of N = m1 · · ·ms points. Show that

then

D∗
N (Γm1,...,ms) = 1−

s∏

i=1

(
1− 1

mi

)
.

3.20 Let Ps =
{(

a1
4 , . . . ,

as
4

)
: ai ∈ {1, 3} for all 1 ≤ i ≤ s

}
be the regular

lattice consisting of 2s points in [0, 1)s. Show that lims→∞D∗
2s(Ps) = 1.

3.21 Let Γm be the regular lattice defined by (3.14). Use Theorem 3.27

to show that the extreme discrepancy of Γm is given by DN (Γm) =

1− (1− 1/m)s.

3.22 Show that the star discrepancy of the centred regular lattice Γc
m con-

sisting of N = ms points defined by (1.1) is

D∗
N (Γ

c
m) = 1−

(
1− 1

2m

)s
.

3.23 In dimensions s = 1 and s = 2, draw a picture to make the result from

Lemma 3.40 more plausible.

3.24 Let b1, . . . , bs ≥ 2 be pairwise relatively prime integers and let S be

the van der Corput-Halton sequence with bases b1, . . . , bs. Show that

for any N ≥ 2 we have

DN (S) ≤ c̃(b1, . . . , bs)
(logN)s

N
+O

(
(logN)s−1

N

)
,

with

c̃(b1, . . . , bs) =
2s

s!

s∏

i=1

⌊bi/2⌋
log bi

.

Show further that if b1, . . . , bs are the first s prime numbers, then

c̃(b1, . . . , bs) = O(s−1).

3.25 For integers s ≥ 2 and N ≥ 2 consider a generating vector of the

form g = (1, g, g2, . . . , gs−1) ∈ Zs. Such a choice was first proposed by

Korobov [122] and therefore such lattice points are often called Korobov

vectors or Korobov lattice points. A lattice point set which is generated

by a Korobov vector is often called Korobov lattice point set.

Show, by averaging over all g ∈ GN that there exists a Korobov

vector for which we have

RN ((1, g, g
2 , . . . , gs−1)) ≤ s− 1

N − 1
(1 + SN )

s.

Hint: Recall that any nonzero polynomial of degree k over an integral

domain has at most k zeros.
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3.26 Let P be a lattice point set consisting of N points in [0, 1)s with gen-

erating vector g ∈ Zs. Show that the worst-case error for the lattice

rule based on P in the s-dimensional Korobov space Hkor,s,α from Ex-

ercise 2.13 is given by

e2(Hkor,s,α,P) =
∑

h∈Zs\{0}
g·h≡0 (mod N)

1

rα(h)
,

where rα(h) is as in Exercise 2.13.

3.27 Let e2α(g, N) be the worst-case integration error for a lattice rule in the

s-dimensional Korobov space Hkor,s,α for a lattice point set consisting

of N points in [0, 1)s with generating vector g ∈ Zs. Let N be a prime.

Show that

1

N s

∑

g∈{0,...,N−1}s
e2α(g, N) =

1

N
(−1 + (1 + 2ζ(α))s) .

Deduce from this result that for any 1/α < λ ≤ 1 there exists a gener-

ating vector g ∈ {0, . . . , N − 1}s such that

e2α(g, N) ≤ 1

N1/λ
(−1 + (1 + 2ζ(αλ))s)1/λ .

Hint: Use Jensen’s inequality which states that for a sequence (ak) of

nonnegative reals and for any 0 < λ < 1 we have (
∑
ak)

λ ≤∑ aλk .

3.28 It has been shown in [57, Theorem 2.3] that there exists a δ-cover Γ of

[0, 1]s such that |Γ| ≤
(⌈

s
s−1

log s
δ

⌉
+ 1
)d

. Use this result together with

Exercise 3.13 to show that

disc∗(N, s) ≤
√
2n−1/2(s log(⌈ρn1/2⌉+ 1) + log 2),

where ρ = 3 log 3√
2(3 log 3+log 2)

. Hint: Follow the proof of Theorem 3.54.

Remark: This is [57, Theorem 3.2]. Smaller δ-covers as the one from

[57, Theorem 2.3] have been constructed in [84].

3.29 Prove Proposition 3.60.

3.30 Prove a similar formula to that of Proposition 3.60 for the weighted

Lq-discrepancy with an even integer q. Hint: See [154, Theorem 2.1].

3.31 Generalise Proposition 3.16 to the case of weighted star discrepancy.

3.32 For product weights, show that the weighted L2-discrepancy is tractable,

if and only if

lim sup
s→∞

∑s
j=1 γj

log s
<∞.



4

Nets and sequences

In this chapter we give an introduction to the concept of (t,m, s)-nets and

(T, s)-sequences. Compared to classical types of point sets and sequences,

like Hammersley point sets or van der Corput-Halton sequences, the general

concept of (t,m, s)-nets and (T, s)-sequences is a more natural one. Whereas

in former examples a certain generation algorithm was the centre and origin

of the investigation, here the starting point is the central property of uni-

form distribution modulo one that all intervals have to contain the correct

portion of points of a sequence. With this definition in mind we search for a

reasonably large class of intervals which are “fair” in this sense with respect

to a finite point set. This leads to the definition of (t,m, s)-nets and their

infinite analogues, to (T, s)-sequences.

The generation of such point sets and sequences is mainly based on the

digital construction scheme which leads to the notion of digital nets and se-

quences. Although such constructions go back to Sobol′ [251] and Faure [66]

the detailed introduction and investigation of the general concept was given

by Niederreiter [170]. This paper can be seen nowadays as the initiation of

the whole theory of (t,m, s)-nets and (T, s)-sequences. An introduction can

also be found in [175, Chapter 4].

4.1 Motivation, fair intervals

The origin of studying (t,m, s)-nets, and, more generally, “fair intervals”,

is the property of uniform distribution modulo one (see Definition 3.1). For

a finite point set P = {x0, . . . ,xN−1} in [0, 1)s it is never possible that

it is absolutely uniformly distributed. That is, there are always subsets J ,

moreover there are always even intervals J in [0, 1)s, for which

A(J,N,P)
N

= λs(J)
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does not hold. For instance, take an interval J of positive volume containing

none of the points x0, . . . ,xN−1 (see Figure 4.1). Then A(J,N,P)/N = 0 <

λs(J). If P is finite such intervals J can always be found.

J

Figure 4.1 An interval J containing no point of P .

Let us use the following notation.

Definition 4.1 For a given set P consisting of N points in [0, 1)s, we say

for a subset J of [0, 1)s that it is fair (with respect to P), if
A(J,N,P)

N
= λs(J).

This notation is also used the other way round.

Definition 4.2 For a given subset J of [0, 1)s, we say that a set P con-

sisting of N points in [0, 1)s is fair (with respect to J), if

A(J,N,P)
N

= λs(J).

As we have seen, it is never possible that all intervals J are fair with

respect to a given finite point set P. Indeed from the result of Roth, see

Theorem 3.20, it follows that there even always exists an interval J with
∣∣∣∣
A(J,N,P)

N
− λs(J)

∣∣∣∣ ≥ cs
(logN)(s−1)/2

N

with a constant cs > 0, depending only on the dimension s. However, for

given s and N we could try to consider a certain class C of intervals J in

[0, 1)s and to find point sets P in [0, 1)s such that any J ∈ C is fair with

respect to P.
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Definition 4.3 For a given set C of subsets J of [0, 1)s, C ⊆ {J : J ⊆
[0, 1)s}, we say that a set P consisting of N points in [0, 1)s is fair (with

respect to C), if
A(J,N,P)

N
= λs(J) for all J ∈ C.

Of course we would like to consider classes C of intervals as large as

possible, with the hope that then for all intervals J in [0, 1)s the fraction

A(J,N,P)/N is at least approximately equal to λs(J).

Let us consider one concrete example. Choose s = 2, N = 16 and

C = {JA,B = [A/4, (A + 1)/4) × [B/4, (B + 1)/4) : A,B ∈ {0, 1, 2, 3}},

see Figure 4.2. We remark that the choice of half-open intervals here and in

the following is of minor importance.

J0,3 J2,3

J3,2

J1,1

Figure 4.2 Intervals J0,1, J1,1, J2,3, J3,2 from the class C for s = 2 and
N = 16.

If we choose for P = {x0, . . . ,x15} the regular lattice (for convenience

with the points centred in the intervals, see Figure 4.3), then clearly every

JA,B ∈ C is fair with respect to P, i.e.,
A(JA,B , 16,P)

16
=

1

16
= λ2(JA,B).

Trivially, any interval J , which is a union of some of the disjoint intervals

JA,B is fair as well. Consider, for example, J := J0,1 ∪ J1,1 ∪ J2,1, for which
we have A(J, 16,P)/16 = 3/16 = λ2(J).

Instead of C we could even choose the larger class

C1 = {[A/4, C/4) × [B/4,D/4) : 0 ≤ A < C ≤ 4, 0 ≤ B < D ≤ 4}

containing all intervals, which are unions of intervals of C. Every interval
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J

Figure 4.3 The class C for s = 2 and N = 16 and the regular lattice with
16 points.

in C1 is fair with respect to the regular lattice P = {x0, . . . ,x15}. But this
fact does not give more information than the fact that the set C of “more

elementary” intervals is fair. This consideration can be extended to arbitrary

dimension s and to arbitrary N of the form N = bs with an integer b ≥ 2.

The regular lattice P = {x0, . . . ,xbs−1} then has the property that

C :=
{

s∏

i=1

[
Ai
b
,
Ai + 1

b

)
: 0 ≤ Ai < b for 1 ≤ i ≤ s

}

and therefore

C1 :=
{

s∏

i=1

[
Ai
b
,
Bi
b

)
: 0 ≤ Ai < Bi ≤ b for 1 ≤ i ≤ s

}

is fair with respect to P. Thus we have a reasonably large class of fair

intervals for the regular lattice.

However, we have already seen that the (star) discrepancy of the regu-

lar lattice (centred or not) is rather large (see Proposition 3.32 and Re-

mark 3.33). Consider, for example, the rather large intervals J1 = [0, 18) ×
[0, 1) or J2 = [0, 1)× (38 ,

5
8), which do not contain any point and so they are,

by far, not fair (we should have A(J1, 16,P) = 2 and A(J2, 16,P) = 4). In

general, the interval

J =
s−1∏

i=1

[0, 1) ×
(
1

2

1

b
,
3

2

1

b

)

is empty, whereas we should have A(J, bs,P) = bs−1, and hence we have

DN (P) ≥
∣∣∣∣
A(J,N,P)

N
− λs(J)

∣∣∣∣ =
∣∣∣∣0−

1

b

∣∣∣∣ =
1

b
=

1

N1/s
.
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This means that to obtain point sets with a small (star) discrepancy we

certainly have to demand fairness for larger, and in some sense, finer classes

C of intervals.

Now let us try to extend C to a class C̃ such that fairness still can be

attained with respect to certain point sets.

For simplicity let us again restrict ourselves to half-open intervals. Since

for J ∈ C̃ we demand A(J, 16,P)/16 = λs(J), we must have λs(J) = k/16

for an integer k ≥ 1. Since any interval J of volume k/16 can be represented

by the union of disjoint intervals of volume 1/16, let us restrict ourselves to

intervals of volume 1/16.

Examples of such intervals are intervals of the “elementary” form [0, 1)×
[ B16 ,

B+1
16 ) or [A2 ,

A+1
2 ) × [B8 ,

B+1
8 ) or [A4 ,

A+1
4 ) × [B4 ,

B+1
4 ) and similar ones

(see Figure 4.4).

Figure 4.4 “Elementary” intervals of area 1/16.

Considering these intervals means a considerable extension of the class

C. Obviously there are many other intervals of volume 1/16, for example

J1 := [0, 1π )× [0, π16 ) or J2 := [ 7
16 ,

7
16 + 1

4)× [ 716 ,
7
16 +

1
4 ), see Figure 4.5.

J2

J1

Figure 4.5 The intervals J1 and J2.
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It is quite obvious that including intervals of the “J1-type” (any interval

of prescribed volume) together with the “elementary” intervals in C̃ would

cause problems with finding a point set P in [0, 1)s, which is fair for all these

J ∈ C̃. Although it is not so obvious, also including intervals of the form

J2 (all translates of intervals from C̃) together with the elementary intervals

in C̃, at least in most cases, is a too restrictive demand (see the example

below).

Let us consider

C̃ :=
{[

A

2d
,
A+ 1

2d

)
×
[
B

24−d
,
B + 1

24−d

)
:

d ∈ {0, 1, 2, 3, 4}, 0 ≤ A < 2d, 0 ≤ B < 24−d
}
.

Obviously C ⊆ C̃. The question is the following. Is there a point set P =

{x0, . . . ,x15} in [0, 1)2 which is fair with respect to C̃? That is, such that

any J ∈ C̃ contains exactly one point of P? The answer is yes! Take, for

example, the 2-dimensional 16-point Hammersley point set in base 2 from

Definition 3.44, see Figure 4.6.

Figure 4.6 The 16 point Hammersley point set in base 2.

We shall show now that it is not possible to satisfy the fairness condition

if we include also intervals of the type J2 in C̃.
Consider the left lower quarter [0, 1/2)2 of the unit square. It must contain

exactly four points. Any of the four (right half-open) rows R1, R2, R3, R4
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and any of the four (right half-open) columns C1, C2, C3, C4, indicated in

Figure 4.7, must contain exactly one point.

1
2

1
2

1
2

0

1
2

0
1
2

1
2

R4

R3

R2

R1

0
0 C1 C2 C3 C4 0 0

P

S

Q

Figure 4.7 Placing four points in [0, 1/2)2 which are fair with respect to
R1, R2, R3, R4 and to C1, C2, C3, C4.

In what way ever one tries to place four points in the above square (see

again Figure 4.7), there are either two small sub-squares of type Q, contain-

ing one point each, which are joined at one vertex, or the square P remains

empty. The intervals S and P are of type J2, are of volume 1/16, and there-

fore should contain exactly one point. Hence it is useless to demand the

fairness condition for a class of intervals containing the elementary as well

as also the J2-type intervals.

In general it is reasonable to ask the following. Given a dimension s and

a number N , which is a power of any integer base b ≥ 2, say N = bm

(in the above example we restricted N = bs), is there always a point set

P = {x0, . . . ,xN−1} in [0, 1)s which is fair with respect to the class C̃ of

elementary intervals of order m (see Definition 3.8)? That is, is there a

point set P = {x0, . . . ,xN−1} which is fair with respect to

C̃ =
{ s∏

i=1

[
Ai
bdi
,
Ai + 1

bdi

)
: d1, . . . , ds ∈ N0, d1 + · · ·+ ds = m,

0 ≤ Ai < bdi for 1 ≤ i ≤ s
}
?

The answer is, in general, no. A proof of this fact was given by Sobol′ [251].

Example 4.4 We show that even for s = 4 and N = 22 (b = 2 and m = 2)

such a point set does not exist. In our argument we follow the proof of this

result in [251, Section 5.5].

Assume to the contrary that there are four points x0,x1,x2,x3 which

are fair with respect to the corresponding C̃. For abbreviation let us write

(k1l1, k2l2, k3l3, k4l4) to denote the interval
∏4
i=1[ki, li). The four-dimensional
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unit cube [0, 1)4 is the union of the sixteen disjoint intervals

(01
2 , 0

1
2 , 0

1
2 , 0

1
2 ) type 0

(121, 0
1
2 , 0

1
2 , 0

1
2 ), . . . , (0

1
2 , 0

1
2 , 0

1
2 ,

1
21) type 1

(121,
1
21, 0

1
2 , 0

1
2 ), . . . , (0

1
2 , 0

1
2 ,

1
21,

1
21) type 2

(121,
1
21,

1
21, 0

1
2 ), . . . , (0

1
2 ,

1
21,

1
21,

1
21) type 3

(121,
1
21,

1
21,

1
21) type 4

Because of symmetry we can assume without loss of generality that x0 ∈
(01

2 , 0
1
2 , 0

1
2 , 0

1
2 ).

1. Assume that x1 is also an element of the type 0 interval or x1 is an

element of a type 1 interval, without restriction of generality say x1 ∈
(121, 0

1
2 , 0

1
2 , 0

1
2 ) or of a type 2 interval, without restriction of generality say

x1 ∈ (121,
1
21, 0

1
2 , 0

1
2 ). Then there are at least two points in the elementary

interval (01, 01, 01
2 , 0

1
2 ) of volume 1

4 which must contain exactly one point.

2. Assume that x1 is an element of the type 4 interval (121,
1
21,

1
21,

1
21). Then

with the same argument as above none of the points x2 and x3 can be

contained in a type 4 interval or a type 3 interval, and so there is no

space at all for x2 and x3.

3. Therefore x1 and x2 (and also x3) must be contained in type 3 intervals,

without loss of generality assume they are contained in (01
2 ,

1
21,

1
21,

1
21)∪

(121, 0
1
2 ,

1
21,

1
21). Then there are at least two points in the elementary

interval (01, 01, 121,
1
21) of volume 1

4 which must contain exactly one point.

Hence a fair distribution of four points in [0, 1)4, in the above sense, is not

possible.

The answer to the question, when a fair distribution can be attained

depends on the parameters b and s (and not on m) as is shown in the

next section. Alas, in general, the demand for fairness for all intervals in

C̃ must be weakened. A quite reasonable way to do this is the following. If

P = {x0, . . . ,xN−1} is fair with respect to all elementary intervals

s∏

i=1

[
Ai
bdi
,
Ai + 1

bdi

)

of volume b−m in C̃, i.e., d1 + · · · + ds = m, then of course it is also fair

with respect to all intervals
∏s
i=1[

Ai

bdi
, Ai+1
bdi

) with d1 + · · · + ds ≤ m, since

any such interval is disjoint union of elementary intervals of volume b−m.
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For example,

[
1

2
, 1

)
×
[
1

2
, 1

)
=

4⋃

k=1

([
1

2
, 1

)
×
[
3 + k

8
,
4 + k

8

))
,

see Figure 4.8.

Figure 4.8 A disjoint union of elementary intervals.

To weaken the original condition

“fairness with respect to all J =
∏s

i=1
[ Ai

bdi
, Ai+1

bdi
) with d1 + · · ·+ ds = m”,

i.e., to all b-adic elementary intervals of order m (see Definition 3.8), we

could instead demand

“fairness with respect to all J =
∏s

i=1
[ Ai

bdi
, Ai+1

bdi
) with d1 + · · ·+ ds = m− 1”,

i.e., to all b-adic elementary intervals of order m − 1. Obviously the first

condition does contain the second condition, whereas the second condition

does not contain the first one. To illustrate this, consider the example in

Figure 4.9 for s = 2, b = 2 and N = 22. The four points are fair to all 2-

Figure 4.9 An example for s = 2, b = 2 and N = 22.
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adic elementary intervals of order 1 (area 1/2), but there is no point in the

elementary interval [0, 14)× [0, 1) of order 2 (area 1/22). If this condition still

cannot be satisfied, then we can again replace the order m− 1 by m− t for
some 2 ≤ t ≤ m. Finally, by choosing t = m, we obtain the condition that

x0, . . . ,xN−1, with N = bm, is fair with respect to [0, 1)s, which is trivially

satisfied.

We motivated these considerations by starting with the (centred) regular

lattice. Let us finish this section with an example by considering the regular

lattice (centred or not) once more with respect to the above condition on

elementary intervals.

Let a dimension s and a base b be given and let N = bm be such

that we can generate a (centred) regular lattice with N points. This is

certainly possible if m = Ls for a positive integer L. Then for points

of the centred regular lattice we can choose the centres of the sub-cubes∏s
i=1[

Ai

bL
, Ai+1

bL
), 0 ≤ Ai < bL for 1 ≤ i ≤ s.

Example 4.5 For s = b = L = 2 we get the point set from Figure 4.10.

This point set is not fair with respect to all 2-adic intervals of order 4 or

Figure 4.10 Centred regular lattice Γc
4 with 16 points and an elementary

interval of order 2.

of order 3. For example, the elementary interval [0, 18) × [0, 1) of order 3

(area 1/23) contains no point of the (centred) regular lattice. However, it

is fair with respect to all elementary intervals of order 2 (area 1/22) and of

lower order, since any elementary interval of order 2 is a (disjoint) union of

sub-cubes [A1
4 ,

A1+1
4 )× [A2

4 ,
A2+1

4 ) with 0 ≤ A1, A2 < 4, all of which contain

one point, have area 1/24 and are therefore fair (see Figure 4.10).

In general we have the following result.

Lemma 4.6 The (centred) regular lattice of bLs points in [0, 1)s is fair for
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the class of all b-adic elementary intervals of order L. It is not fair for the

class of all b-adic elementary intervals of order L+ 1.

Proof The b-adic elementary interval [0, 1
bL+1 )×

∏s
i=2[0, 1) of order L+1 is

not fair with respect to the regular lattice. Any b-adic elementary interval J

of order L, say J =
∏s
i=1[

Ai

bdi
, Ai+1
bdi

) with d1 + · · ·+ ds = L and 0 ≤ Ai < bdi

for 1 ≤ i ≤ s, can be represented as the disjoint union of fair sub-cubes by

J =

bL−d1 (A1+1)−1⋃

B1=bL−d1A1

. . .

bL−ds (As+1)−1⋃

Bs=bL−dsAs

s∏

i=1

[
Bi
bL
,
Bi + 1

bL

)
.

Therefore J is fair and the result follows.

In this section we have provided the motivation for the definition of a

(t,m, s)-net in base b, which is given in the next section.

4.2 (t,m, s)-nets and their basic properties

Motivated by the discussion in the previous section we give the following

definitions (thereby we essentially follow the general definitions given for

the first time by Niederreiter in [170]).

Recall that, according to Definition 3.8, for a given dimension s ≥ 1,

an integer base b ≥ 2, and a nonnegative integer k, a b-adic s-dimensional

elementary interval of order k is an interval of the form

J =

s∏

i=1

[
Ai
bdi
,
Ai + 1

bdi

)
,

where d1, . . . , ds ∈ N0 with d1 + · · ·+ ds = k and 0 ≤ Ai < bdi for 1 ≤ i ≤ s.

Definition 4.7 For a given dimension s ≥ 1, an integer base b ≥ 2, a

positive integer m, and an integer t with 0 ≤ t ≤ m, a point set P of bm

points in [0, 1)s is called a (t,m, s)-net in base b if the point set P is fair

with respect to all b-adic s-dimensional elementary intervals of order m− t.

Definition 4.8 A (t,m, s)-net in base b with t ≥ 1 is called a strict

(t,m, s)-net in base b if it is not a (t− 1,m, s)-net in base b. Furthermore a

(0,m, s)-net in base b is called strict by definition.

Remark 4.9 1. The property for P to be a (t,m, s)-net in base b means

that every interval J =
∏s
i=1[

Ai

bdi
, Ai+1
bdi

) with d1 + · · · + ds = m− t, that
is, of volume b−m+t, contains exactly bt points of P.
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2. Since for every k ≥ 1 every b-adic s-dimensional elementary interval of

order k− 1 (volume b−k+1) is the union of b disjoint b-adic s-dimensional

elementary intervals of order k, every (t,m, s)-net in base b with t ≤ m−1
is also a (t+ 1,m, s)-net in base b.

3. Every point set of bm points in [0, 1)s is an (m,m, s)-net in base b. The

condition then is that the interval J = [0, 1)s contains bm points of the

set, which is trivially satisfied.

4. It does not make sense to define the notion of (t,m, s)-nets in base b for

negative t, since a point set of bm points can never be fair with respect

to an interval of volume less than b−m.
5. We call t the quality parameter of the (t,m, s)-net.

First examples

We provide two examples for (t,m, s)-nets.

Example 4.10 As a first nontrivial example let us consider a (centred)

regular lattice P = {x0, . . . ,xN−1} of N = bsL points in [0, 1)s. Letting

m = sL, the point set is in any case an (m,m, s)-net in base b. But, by

Lemma 4.6, we have that P is fair with respect to every b-adic s-dimensional

elementary interval of order L, and this order L is optimal. Consequently

we get the following corollary from Lemma 4.6.

Corollary 4.11 The (centred) regular lattice of bm points, with m = sL,

in [0, 1)s is a strict (m(1− 1
s ),m, s)-net in base b.

Remark 4.12 Intuitively, the strict quality parameter t = m(1− 1/s) in

the scale between 0 and m is rather large for dimension s ≥ 3. This fits

with the bad order of magnitude of the (star) discrepancy of the regular

lattice in dimensions larger than or equal to three. For s = 1 we obtain an

equidistant point set in [0, 1) of optimal star discrepancy 1/(2N), which fits

with the optimal quality parameter t = 0. For s = 2, the regular lattice has

a discrepancy of order 1/
√
N , an order which essentially coincides with the

average order of the discrepancy of N -element point sets in [0, 1)2. This again

fits with the median value m/2 for the quality parameter t. (We remark that

these results also hold for the ‘noncentred’ regular lattice.)

As a second example let us consider a two-dimensional Hammersley point

set in base b, see Definition 3.44.

Lemma 4.13 For a given base b and a given positive integer m, the two-

dimensional Hammersley point set P = {x0, . . . ,xN−1} with N = bm and

xk = (k/N,ϕb(k)) for 0 ≤ k ≤ N − 1 is a (0,m, 2)-net in base b.
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Proof First recall the definition of the b-adic radical inverse function ϕb.

For a nonnegative integer k with b-adic expansion k = κr−1b
r−1+κr−2b

r−2+

· · ·+ κ1b+ κ0 we define

ϕb(k) :=
κ0
b

+
κ1
b2

+ · · · + κr−1

br
∈ [0, 1).

For a b-adic elementary two dimensional interval J of order m, i.e.,

J =

[
A1

bd
,
A1 + 1

bd

)
×
[
A2

bm−d ,
A2 + 1

bm−d

)

with 0 ≤ A1 < bd and 0 ≤ A2 < bm−d, we have to determine the number of

xk contained in J . Recall that this number should be one.

Note that for k with 0 ≤ k < bm and b-adic representation k = κm−1b
m−1+

· · ·+ κ0 the point xk belongs to J if and only if

k

bm
∈
[
A1

bd
,
A1 + 1

bd

)
and ϕb(k) ∈

[
A2

bm−d ,
A2 + 1

bm−d

)
.

This is the case if and only if

A1b
m−d ≤ κm−1b

m−1 + · · · + κ0 < A1b
m−d + bm−d

and

A2b
d ≤ κ0bm−1 + · · ·+ κm−1 < A2b

d + bd.

By the first condition the digits κm−d, . . . , κm−1 are uniquely determined

(whereas the digits κm−d−1, . . . , κ0 can be chosen arbitrarily). By the second

condition the digits κ0, . . . , κm−d−1 are uniquely determined (whereas the

digits κm−d, . . . , κm−1 can be chosen arbitrarily). Hence there is a uniquely

determined k such that xk ∈ J .

A (0,m, s)-net in base b does not exist for all parameters m,s, and b. For

instance, in Example 4.4 it was shown that there does not exist a (0, 2, 4)-net

in base 2. Consequently we show below that there does not exist a (0,m, s)-

net in base 2 for any m ≥ 2 and s ≥ 4. Before we do so, we convince

ourselves of several, so-called, propagation rules for (t,m, s)-nets. Here, a

propagation rule is a method of constructing new (t,m, s)-nets from other,

given, (t,m, s)-nets.

Propagation rules for nets

Note that a (t,m, s)-net in base b easily looses its quality by elementary

movements. It does not loose its net property entirely since any point set of
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bm points in [0, 1)s is a (m,m, s)-net in base b. However, its quality param-

eter t has no stability with respect to even simple movements. For instance,

consider the (0, 2, 2)-net in base 2 from Figure 4.11 (left picture) and ap-

ply a translation along b or a reflection on a, considered modulo one in

each coordinate (see Figure 4.11). Then both new point sets are now strict

(2, 2, 2)-nets in base 2. As we see below, more stability can be found for

so-called digital nets (see Lemma 4.63 in Section 4.4).

a

b

Figure 4.11 (0, 2, 2)-net in base 2 with elementary movements.

We may ask what happens with the net-structure if we merge (t,m, s)-nets

in base b to one point set. Assume we have r point sets P1, . . . ,Pr, where
Pi is a (ti,mi, s)-net in base b. Assume further that bm1 + · · · + bmr = bm

for some integer m. Then the multiset union P := P1 ∪ . . . ∪Pr is of course
a (t,m, s)-net in base b, at least for t = m. But we can say even more.

Lemma 4.14 For 1 ≤ j ≤ r let Pj be (tj,mj , s)-nets in base b, with

m1, . . . ,mr such that bm1 + · · · + bmr = bm for some integer m. Then the

multiset union P := P1 ∪ . . . ∪ Pr is a (t,m, s)-net in base b with

t = m− min
1≤j≤r

(mj − tj).

Proof Let J be an elementary interval in base b of order w := min1≤j≤r(mj−
tj). For every 1 ≤ j ≤ r, J contains exactly bmj−w of the elements of Pj . Note
that any interval of order less than or equal to mj − tj is fair with respect

to Pj and that w ≤ mj − tj. Hence J contains exactly
∑r

j=1 b
mj−w = bm−w

elements of P and is therefore fair with respect to P. Consequently, the
strict quality parameter t of P is at most m−w and the result follows.

Remark 4.15 For example, the superposition of br copies of a (t,m, s)-net

in base b yields a (t+ r,m+ r, s)-net in base b. This is [190, Lemma 10].

Let P = {x0, . . . ,xbm−1} be a (t,m, s)-net in base b and let 1 ≤ n ≤ s.
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Fix now any n of the s dimensions, without restriction of generality, say, the

first n dimensions. For every xk we now consider only the first n coordinates.

We obtain an n-dimensional point set, say, P̃ = {y0, . . . ,ybm−1}. We then

have the following lemma.

Lemma 4.16 Let P be a (t,m, s)-net in base b and let P̃ be defined as

above. Then the point set P̃ is a (t,m, n)-net in base b.

Proof Let J̃ be a b-adic n-dimensional elementary interval of order m− t,
then J := J̃× [0, 1)s−n is a b-adic s-dimensional elementary interval of order

m−t and hence J contains exactly bt of the xh, 0 ≤ h < bm. Since J puts no

conditions on the last s− n coordinates this means that J̃ contains exactly

bt points of the point set P̃ (see Figure 4.12 for an example).

J

J̃

Figure 4.12 Projection of a (0, 3, 2)-net in base 2 to the first components.

The above result cannot be improved in the following sense. If P is a

strict (t,m, s)-net in base b, then we cannot conclude that P̃ is also a strict

(t,m, n)-net in base b. An extreme example is the following.

Let P = {x0, . . . ,xbm−1} be defined by xk = (0, k
bm ) for 0 ≤ k < bm.

Then P is a strict (m,m, 2)-net in base b. Its first projection is a strict

(m,m, 1)-net in base b and its second projection is a (0,m, 1)-net in base b

(see Figure 4.13).

We have now propagation rules concerning t and s (see also the collec-

tion of the propagation rules in Chapter 9). In the following we provide a

propagation rule concerning m.

It is not true in general that for a (t,m, s)-net P = {x0, . . . ,xbm−1} in base

b the truncated point set P̃ = {x0, . . . ,xbr−1}, for some r with t < r < m, is

a (t, r, s)-net in base b. (Note that the case r ≤ t is trivial since every point

set of br points is a (r, r, s)-net in base b.)
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xN−1

x0

Figure 4.13 Projection of a (m,m, 2)-net to the first and second component.

The question arises now how to propagate in this case. We use the follow-

ing approach (for an illustration see Figure 4.14):

Figure 4.14 A (0, 4, 2)-net in base 2. The points in the elementary interval
from the left picture yield a (0, 2, 2)-net in base 2 after doubling both
coordinates. The points in the elementary interval from the right picture
yield a (0, 3, 2)-net in base 2 after doubling the second coordinate.

1. Let P = {x0, . . . ,xbm−1} be a (t,m, s)-net in base b, and let t < r < m.

2. Take any elementary interval J =
∏s
i=1[

Ai

bdi
, Ai+1
bdi

) of order m − r, i.e.,
with d1 + · · · + ds = m − r. Since m − r < m − t this interval contains

exactly br elements of the net P.
3. We now translate the point ( A1

bd1
, . . . , As

bds
) of J to the origin and blow up

the translated J and the translated net-points in J to the unit cube. That
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is, we apply the affine transformation T : Rs → Rs,

x := (x1, . . . , xs) 7→
(
bd1
(
x1 −

A1

bd1

)
, . . . , bds

(
xs −

As
bds

))

to J and to the net points in J .

4. The point set obtained in this way, consisting of br points, is denoted by

P̃ = {y0, . . . ,ybr−1}.

We claim that P̃ forms a (t, r, s)-net in base b (see also [175, Lemma 4.4]).

Lemma 4.17 Let P be a (t,m, s)-net in base b, let t < r < m and let J

be an elementary interval of order m− r. Let T be an affine transformation

of J onto [0, 1)s. Then the points of P that belong to J are transformed by

T into a (t, r, s)-net P̃ in base b.

Proof Let J ′ be a b-adic s-dimensional elementary interval of order r − t.
The number of points yk from P̃ contained in J ′ equals the number of

points xk from P contained in the b-adic s-dimensional elementary interval

T−1(M ′) of order (r− t) + (m− r) = m− t. This number is exactly bt since

P is a (t,m, s)-net in base b.

Existence of (0,m, s)-nets in base b

As a corollary from Lemma 4.16 and Lemma 4.17 we obtain the following

corollary.

Corollary 4.18 A (0,m, s)-net in base 2 cannot exist if m ≥ 2 and s ≥ 4.

Proof If a (0,m, s)-net in base 2 with m ≥ 2 and s ≥ 4 exists, then, by the

above propagation rules (Lemmas 4.16 and 4.17) on m and s, a (0, 2, 4)-net

in base 2 would exist, which is a contradiction in view of Example 4.4.

Obviously, the point set
{
x0 = (0, . . . , 0),x1 = (12 , . . . ,

1
2)
}
forms a (0, 1, s)-

net in base 2 for all s. For s = 2, the two-dimensional Hammersley point

set with 2m points gives, for any integer m ≥ 1, a (0,m, 2)-net in base 2 by

Lemma 4.13. Hence, concerning the existence of (0,m, s)-nets in base 2, the

only question remaining is whether there exist (0,m, 3)-nets in base 2 for

all m ≥ 2. This question was answered in the affirmative by Sobol′ [251].
Concrete examples of (0,m, 3)-nets in base 2 for any m ≥ 2 are given in Sec-

tion 4.4. (The examples given there are also special cases of nets obtained

from Sobol′-, Faure- and Niederreiter sequences, see Chapter 8).

In arbitrary base b ≥ 2 we have the following result, which for the first

time in this form was shown by Niederreiter (see [175, Corollary 4.21]).
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Corollary 4.19 A (0,m, s)-net in base b cannot exist if m ≥ 2 and s ≥
b+ 2.

This corollary is a consequence of the following lemma:

Lemma 4.20 A (0, 2, b + 2)-net in base b ≥ 2 cannot exist.

Proof Assume to the contrary that a (0, 2, b + 2)-net P = {x0, . . . ,xb2−1}
in base b exists. Then any elementary interval of the form

[0, 1)i ×
[
A

b
,
A+ 1

b

)
× [0, 1)j ×

[
B

b
,
B + 1

b

)
× [0, 1)b−i−j

of volume b−2 contains, by the net property, exactly one point of P. We call

this the “orthogonality property” of this net.

Let us check in which interval of the form [A/b, (A + 1)/b) of length b−1,

where A ∈ {0, . . . , b − 1}, each coordinate of each net point xn contained.

That is, we describe any xn by a vector

xn ↔




a
(1)
n

...

a
(b+2)
n


 ,

where a
(i)
n ∈ {0, 1, . . . , b − 1} is chosen such that the ith coordinate xn,i of

xn is contained in the interval [a
(i)
n /b, (a

(i)
n + 1)/b).

Let us set these b2 column vectors side by side, so we get an array of

numbers of the form

x0 x1 . . . xb2−1

l l l
a
(1)
0 a

(1)
1 . . . a

(1)
b2−1

...
...

...

a
(b+2)
0 a

(b+2)
1 . . . a

(b+2)
b2−1

(4.1)

Let us now take any two of the rows of the above array, say

a
(i)
0 a

(i)
1 . . . a

(i)
b2−1

,

a
(j)
0 a

(j)
1 . . . a

(j)
b2−1

,

then the “orthogonality property” of the net is equivalent to the fact that

the above b2 two-dimensional columns
(
a
(i)
k

a
(j)
k

)

k=0,...,b2−1
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attain any possible value

(
n

r

)
, with n, r ∈ {0, . . . , b − 1}, exactly once.

Therefore, in particular, any possible value n ∈ {0, . . . , b− 1} must occur in

any row exactly b-times.

However, we show that this property cannot be satisfied for all possible

pairs of rows.

Assume to the contrary that any two of the b+2-rows satisfy the orthog-

onality property. Without restriction of generality we can assume that in

array (4.1) the values of the first column all equal 1 (a permutation of the

values r ∈ {0, . . . , b − 1} in a single row of the array does not affect the

“orthogonal property”).

Then in any of the remaining b2 − 1 columns 1 can occur at most once.

However, since in each row 1 must occur b-times, we would need place for

(b− 1)(b + 2) remaining 1’s in these b2 − 1 columns. Since (b− 1)(b + 2) =

b2 + b− 2 > b2 − 1, we obtain a contradiction.

Again, it is easy to provide a (0, 1, s)-net in base b for any dimension s.

Faure- and Niederreiter sequences (see Chapter 8) provide, for any prime-

power base b, anym ≥ 2, and any s ≤ b+1, examples of (0,m, s)-nets in base

b. Hence the question concerning the existence of (0,m, s)-nets in base b is

solved for all prime-power bases b. In general, it is not solved for composite

bases b. It is known that the maximal dimension s for which there exists a

(0,m, s)-net in base b with m ≥ 2, for composite b, is much smaller than

b+ 1. For more information see [139, Section 3] and the MinT database to

be found at

http://mint.sbg.ac.at/

We just point out the following singular result.

Lemma 4.21 There does not exist a (0, 2, 4)-net in base 6.

The above considerations can be formulated and proved more elegantly

in terms of combinatorial objects like orthogonal Latin squares or ordered

orthogonal arrays. This is done in Chapter 6.

Further propagation rules for nets

We have already shown propagation rules for the parameters t,m, and s of

a (t,m, s)-net in base b. In the following we consider possible propagation

rules for the parameter b, the base of the net.

Such propagation rules principally should be of the following form.
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1. Any (t,m, s)-net in base b is a (t′,m′, s′)-net in base b′, or
2. if there exist (tj ,mj , sj)-nets in bases bj for 1 ≤ j ≤ l, then there exists

a (t′,m′, s′)-net in base b′.

Note that for results of the first form, there must be a principal connec-

tion between the compared bases b and b′, since the number of points bm,

respectively b′m
′
remains unchanged. That is bm = b′m

′
. Therefore b and b′

must have the same prime divisors, say b = pα1
1 · · · pαr

r and b′ = pβ11 · · · pβrr
with αi, βi ≥ 1 for 1 ≤ i ≤ r. Since bm = b′m

′
we get mαi = m′βi for

1 ≤ i ≤ r. Let d denote the greatest common divisor of m and m′. Then
the integer m̃ := m/d divides βi and the integer m̃′ := m′/d divides αi, and

γi := αi/m̃
′ = βi/m̃ is a positive integer. Let c = pγ11 · · · pγrr , then b = cm̃

′

and b′ = cm̃. Therefore a simple propagation rule of the first kind can only

exist if b and b′ are powers of a common “base” c, say b = cL and b′ = cL
′

with L and L′ relative prime. Further, since then cLm = bm = b′m
′
= cL

′m′

that is Lm = L′m′, with gcd(L,L′) = 1 we must have m = µL′ andm′ = µL

for some positive integer µ.

Consequently, propagation rules of the first kind have to be of the following

principal form. Any (t, µL′, s)-net in base cL is a (t′, µL, s)-net in base cL
′
.

We do not give base-propagation rules of the second type here. But also

the base-propagation rules of the first kind are of a more complex nature

than the propagation rules on m,s, and t.

The simplest base propagation rule is based on the following fact concern-

ing elementary intervals.

Lemma 4.22 Let the integers b, k ≥ 2 be given. Any bk-adic s-dimensional

elementary interval of order n is a b-adic s-dimensional elementary interval

of order nk.

Proof Let J =
∏s
i=1[

Ai

(bk)di
, Ai+1
(bk)di

) with di ≥ 0 and 0 ≤ Ai < (bk)di for

1 ≤ i ≤ s and d1 + · · · + ds = n be an arbitrary bk-adic s-dimensional

elementary interval of order n. Define d′i := kdi, then J =
∏s
i=1[

Ai

bd
′
i
, Ai+1

bd
′
i
)

with d′i ≥ 0, 0 ≤ Ai < bd
′
i for 1 ≤ i ≤ s and d′1 + · · · + d′s = nk is an b-adic

s-dimensional elementary interval of order nk.

The converse, in general, does not hold. For instance the 2-adic 2-dimensional

elementary intervals of order 2 are the intervals

[0, 1) × [0, 14), [0, 1) × [14 ,
1
2), [0, 1) × [12 ,

3
4 ), [0, 1) × [34 , 1),

[0, 12)× [0, 12), [0, 12)× [12 , 1), [12 , 1)× [0, 12 ), [12 , 1)× [12 , 1),

[0, 14)× [0, 1), [14 ,
1
2)× [0, 1), [12 ,

3
4)× [0, 1), [34 , 1)× [0, 1),
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whereas the 4-adic 2-dimensional elementary intervals of order 1 are just the

intervals in the first and in the third of the above lines.

Consequently we immediately obtain the following result.

Corollary 4.23 Any (t, µk, s)-net in base b is a (⌈t/k⌉, µ, s)-net in base

bk. The converse, in general, is not true.

Proof Any bk-adic s-dimensional elementary interval of order µ − ⌈t/k⌉ is
a b-adic s-dimensional elementary interval of order k(µ − ⌈t/k⌉) ≤ kµ − t.
Hence it is fair with respect to the (t, µk, s)-net in base b.

To provide a counterexample for the converse assertion, consider the

(0, 1, 2)-net in base 4 given in Figure 4.15, which is not a (0, 2, 2)-net in

base 2 (consider the corresponding elementary 2-adic and 4-adic intervals

listed above) and the result follows.

Figure 4.15 A (0, 1, 2)-net in base 4 which is not a (0, 2, 2)-net in base 2.

However, it is obvious that some relation must also hold in the converse

direction and therefore, in general, between the quality parameters of a

(t, µL′, s)-net in base cL and a (t′, µL, s)-net in base cL
′
.

The following base propagation rule was first given in [215], see also [216].

Theorem 4.24 For given integers c ≥ 2, L and L′ ≥ 1 with gcd(L,L′) =
1, for every dimension s, and all positive integers µ we have that every

(t, µL′, s)-net in base cL is a (t′, µL, s)-net in base cL
′
, where

t′ = min

(⌈
Lt+ µL(−L′ (mod L))

L′ + (−L′ (mod L))

⌉
,

⌈
Lt+ (s − 1)(L − 1)

L′

⌉)
.

Remark 4.25 Before we prove the theorem let us consider some special

cases. For the trivial case of equal bases, i.e., for L = L′ = 1, by the above

estimate for t′, we get the best possible result t = t′. For the case considered
in Corollary 4.23, i.e., L = 1 by the above estimate for t′ we get the best
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possible result t′ = ⌈t/L′⌉. For L′ = 1 we rewrite the above result and state

it as a corollary on its own.

Corollary 4.26 For a given base b ≥ 2 and any integer k ≥ 1, every

(t,m, s)-net in base bk is a (t′,mk, s)-net in base b with

t′ = min(t+m(k − 1), kt+ (s− 1)(k − 1)).

This result, for some cases, improves the corresponding result given by

Niederreiter & Xing [190, Lemma 9], verifying a quality parameter t′ =

min(km, kt + (s − 1)(k − 1)). Of course, t + m(k − 1) ≤ km always. The

result of the corollary is better than the result of Niederreiter & Xing if and

only if t+m(k − 1) < kt+ (s− 1)(k − 1) and if t+m(k − 1) < km, i.e., if

m < s− 1 + t and if t < m.

Proof of Theorem 4.24 We write m = µL′ and m′ = µL. Take an elemen-

tary interval J̃ in base cL
′
of order, say m′ − t′′ (with some nonnegative

integer t′′), i.e., of volume c−L
′(m′−t′′), say

J̃ =

s∏

i=1

[
Ai

cL
′d′i
,
Ai + 1

cL
′d′i

)

with d′1 + · · ·+ d′s = m′− t′′. For every 1 ≤ i ≤ s we set L′d′i = Ldi− ri with
0 ≤ ri < L, then

J̃ =

s∏

i=1

[
Aic

ri

cLdi
,
Aic

ri + cri

cLdi

)

=

s∏

i=1

cri−1⋃

ki=0

[
Aic

ri + ki
cLdi

,
Aic

ri + ki + 1

cLdi

)

=

cr1−1⋃

k1=0

. . .

crs−1⋃

ks=0

s∏

i=1

[
Aic

ri + ki
(cL)di

,
Aic

ri + ki + 1

(cL)di

)
.

Therefore J̃ is the union of elementary intervals in base cL of order d1 +

· · ·+ ds each. Therefore, J̃ is fair with respect to a (t,m, s)-net P in base cL

if

d1 + · · ·+ ds ≤ m− t.

Substituting L−1(L′d′i − ri) for di, this is equivalent to

L′
s∑

i=1

d′i +
s∑

i=1

ri ≤ L(m− t)
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and therefore to

L′m′ − L′t′′ +
s∑

i=1

ri ≤ Lm− Lt.

But, since L′m′ = L′Lµ = Lm, the last inequality is equivalent to

L′t′′ −
s∑

i=1

ri ≥ Lt.

Hence, if t′′ is such that for all d′1, . . . , d
′
s ∈ N0 with d′1+ · · ·+d′s = m′− t′′

we have

L′t′′ −
s∑

i=1

ri ≥ Lt,

then P is a (t′′,m′, s)-net in base cL
′
. That is, we can set

t′ = min{t′′ : L′t′′ −M(t′′) ≥ Lt}, (4.2)

where

M(t′′)

= max

{
s∑

i=1

(−L′d′i (mod L)) : d′1, . . . , d
′
s ∈ N0 and

s∑

i=1

d′i = m′ − t′′
}
.

In the following, in order to obtain the desired estimate for t′, we estimate

M(t′′) in two different ways.

1. First we have

M(t′′) = max

{
s∑

i=1

(−L′d′i (mod L)) : d′1, . . . , d
′
s ∈ N0

and
s∑

i=1

d′i = m′ − t′′
}

≤ max

{
s∑

i=1

(−L′ (mod L))d′i : d′1, . . . , d
′
s ∈ N0

and
s∑

i=1

d′i = m′ − t′′
}

= (−L′ (mod L))(m′ − t′′). (4.3)

Now from (4.2) it follows that

t′ ≤ min{t′′ : L′t′′ − (−L′ (mod L))(m′ − t′′) ≥ Lt},
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which is satisfied for all t′′ with

t′′ ≥
⌈
Lt+ µL(−L′ (mod L))

L′ + (−L′ (mod L))

⌉
.

2. Further, if we define

N(t′′) := max

{
s∑

i=1

(L′ki (mod L)) :

ki ∈ {0, . . . , L− 1} and
s∑

i=1

ki ≡ t′′ (mod L)

}
,

then M(t′′) ≤ N(t′′) always.
For N(t′′), by its definition, we conclude the properties

N(t′′) ≤
s∑

i=1

(L− 1) = s(L− 1) (4.4)

and

N(t′′) = L′t′′ + kL (4.5)

for some integer k.

Take now k1, . . . , ks−1 such that L′ki ≡ L − 1 (mod L) for 1 ≤ i < s

and ks such that
∑s

i=1 ki ≡ t′′ (mod L), that is, L′ks ≡ L′t′′ + s − 1

(mod L). Then

s∑

i=1

(L′ki (mod L)) = (s− 1)(L− 1) + (L′t′′ + s− 1 (mod L)).

If N(t′′) were larger than the right hand side of the above equation, then,

by (4.5), we had

N(t′′) ≥ (s− 1)(L− 1) + L > s(L− 1),

which contradicts (4.4). Therefore we get as second estimate for M(t′′)
that

M(t′′) ≤ (s− 1)(L − 1) + (L′t′′ + s− 1 (mod L)).

Again from (4.2) it follows that

t′ ≤ min{t′′ : L′t′′ − (s − 1)(L− 1)− (L′t′′ + s− 1 (mod L)) ≥ Lt}.
We show now that the smallest t′′ satisfying the second condition is

t′′ =
⌈
Lt+ (s − 1)(L − 1)

L′

⌉
,
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which implies the statement of the theorem.

Let L′t′′ = Lt+ (s− 1)(L− 1) + F for some integer F . Then

L′t′′− (s−1)(L−1)− (L′t′′+ s−1 (mod L)) = Lt+F − (F (mod L))

and this is ≥ Lt if and only if F ≥ 0. Hence the minimal t′′ is given by
⌈
Lt+ (s− 1)(L− 1)

L′

⌉
,

and the result follows.

4.3 (T, s)- and (t, s)-sequences and their basic properties

A disadvantage of nets in base b is that the number of points is restricted

to a power of b. At first glance one could argue that we can always choose b

arbitrarily large andm = 1, which would mean that there is no restriction at

all. However, it is intuitively obvious (and is supported by the discrepancy

estimates in Chapter 5) that the structure of a (t,m, s)-net in base b becomes

strong only if m is large compared with b. Hence, for a given number N of

points, it is sometimes better to realize the point set with a small base b,

i.e., a larger value for m, and with a suboptimal quality parameter t, than

to choose a large base b (e.g. b = N) (and therefore a small m, for instance

m = 1), in order to obtain an optimal quality parameter t (e.g. t = 0).

(As we have already seen in Section 4.2 the (0, 1, s)-net in base b given by

the points xn = (n/b, . . . , n/b) with n = 0, . . . , b − 1 has no favourable

distribution property at all.)

To overcome this problem, i.e., in order to obtain net-like point sets of

high distribution quality for any given number N of points, the following

principal idea was born.

Try to patch up a whole infinite sequence (xn)n≥0 in [0, 1)s from (0,m, s)-

nets in a given base b, in the sense that for any m ≥ 1, any subsequence of

the form xn, . . . ,xn+bm−1 of length bm is a (0,m, s)-net in base b.

Such a sequence intuitively would show outstanding distribution proper-

ties. However, this demand certainly cannot be satisfied in general because

of two reasons. The first reason is obvious, (0,m, s)-nets in a base b do

not exist for all s and m. We may however replace in the property above

“(0,m, s)-net” by “(t,m, s)-net with t as small as possible”. The second rea-

son is, in general, it is not possible to obtain the (nontrivial) net-property

for all blocks of length bm, because there is too much interference between

overlapping blocks. This can be illustrated by the following example.
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Example 4.27 Try to construct four points x0,x1,x2,x3 in [0, 1)2 such

that they form a (0, 2, 2)-net in base 2 and such that every subset of the form

{xi,xi+1}; i ∈ {0, 1, 2} is a (0, 1, 2)-net in base 2. For our purpose it suffices

to place the xi anywhere in the sub-cubes of the form [A/4, (A + 1)/4) ×
[B/4, (B+1)/4), the exact place in the sub-cube is irrelevant. Without loss of

generality let us start with x0 in the left lower sub-square [0, 1/4)× [0, 1/4),

and note that the four points x0,x1,x2,x3 then finally must show one of

the patterns shown in Figure 4.16.

Figure 4.16 Four possible configurations for x0,x1,x2,x3.

Two successive points must always show one of the patterns shown in

Figure 4.17. Hence in the patterns of Figure 4.16 the point x1 is also pre-

Figure 4.17 Configurations of two successive points.

scribed. However, then there is no possible choice for x2 to satisfy one of

the patterns in Figure 4.17 with x1,x2.

Therefore we have to weaken the condition also in this aspect. We could
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try this by replacing “...any sub-block of length bm...” by “...all successive

nonoverlapping sub-blocks of length bm...”.

This now leads to the definition of a (t, s)-sequence in base b.

Definition 4.28 For a given dimension s ≥ 1, an integer base b ≥ 2 and

a nonnegative integer t, a sequence (x0,x1, . . .) of points in [0, 1)s is called

a (t, s)-sequence in base b if for all integers m > t and k ≥ 0 the point set

consisting of the points xkbm , . . . ,xkbm+bm−1 forms a (t,m, s)-net in base b.

Definition 4.29 A (t, s)-sequence in base b with t ≥ 1 is called a strict

(t, s)-sequence in base b if it is not a (t− 1, s)-sequence in base b. Again we

call a (0, s)-sequence strict by definition.

Again, we call t the quality parameter of the (t, s)-sequence. The notion of

a (t, s)-sequence in the above form was introduced by Niederreiter in [170] for

the first time. Special cases, so-called binary LPτ -sequences, however were

already investigated by Sobol′ in [251]. Another special case was introduced

by Faure [66].

In [138] a generalised concept was introduced by Larcher & Niederreiter,

the concept of (T, s)-sequences in a base b.

Definition 4.30 For a given dimension s ≥ 1, an integer base b ≥ 2, and a

functionT : N0 → N0 withT(m) ≤ m for allm ∈ N0, a sequence (x0,x1, . . .)

of points in [0, 1)s is called a (T, s)-sequence in base b if for all integers m ≥ 0

and k ≥ 0 the point set consisting of the points xkbm , . . . ,xkbm+bm−1 forms

a (T(m),m, s)-net in base b.

Definition 4.31 A (T, s)-sequence in base b is called a strict (T, s)-

sequence in base b if for all functions U : N0 → N0 with U(m) ≤ m for

all m ∈ N0 and with U(m) < T(m) for at least one m ∈ N0 it is not a

(U, s)-sequence in base b.

The concept of (t, s)-sequences in base b is contained in the concept of

(T, s)-sequences in a base b. We just have to take for T the constant function

T(m) = t for all m (resp. T(m) = m for m ≤ t).
By the condition T(m) ≤ m for all m, we necessarily have T(0) = 0, and

therefore T is sometimes only defined for m ≥ 1. A suitable function T is

called a quality function.

If T is the quality function of a strict (T, s)-sequence (x0,x1, . . .) in base

b, then for all m we have

T(m+ 1) ≤ T(m) + 1,

hence the function S(m) := m − T(m) is monotonically increasing. This
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property follows by considering a sub-block of bm+1 successive points of

the form xkbm+1 , . . . ,xkbm+1+bm+1−1, and an elementary interval of order

m−T(m) = (m+ 1) − (T(m) + 1). Since (x0,x1, . . .) is a (T, s)-sequence,

the interval contains exactly bT(m) points of

xkbm+1+lbm , . . . ,xkbm+1+lbm+bm−1

for all 0 ≤ l ≤ b− 1, and so it contains exactly bT(m)+1 of the elements of

xkbm+1 , . . . ,xkbm+1+bm+1−1.

Therefore any sub-block of length bm+1 is fair with respect to intervals of

order (m+ 1)− (T(m) + 1) and consequently T(m+ 1) ≤ T(m) + 1.

What does the (t, s)-sequence property in base b mean for the first N

elements of a (t, s)-sequence (x0,x1, . . .)?

1. Trivially, by definition, if N is a power of b, say N = bm for some positive

integer m, then {x0, . . . ,xN−1} is a (t,m, s)-net in base b. That means,

in any elementary b-adic interval of volume bt

N there are exactly bt points

of the point set.

2. If N is a multiple of a power of b, say N = kbm for some positive integers

m ≥ t and k, then {x0, . . . ,xN−1} is a combination of k (t,m, s)-nets in

base b. That means, in any elementary b-adic interval of volume bt

N , there

are exactly kbt points of the point set.

3. In general, represent N in base b, say

N = amb
m + am−1b

m−1 + · · · + a1b+ a0

with ai ∈ {0, 1, . . . , b − 1} for 0 ≤ i ≤ m. Then {x0, . . . ,xN−1} is a

combination of

am (t,m, s)-nets in base b and

am−1 (t,m− 1, s)-nets in base b and
...

...

at+1 (t, t+ 1, s)-nets in base b

and further a0+a1b+ · · ·+atbt points without a special prescribed struc-

ture. That is, if the quality parameter t is small, then {x0, . . . ,xN−1}
is a superposition of large point sets with strong distribution properties,

smaller point sets with less restrictive distribution properties and small

point sets without any prescribed distribution properties. This frame-

work of (t, s)-sequences is the basis for the derivation of the discrepancy

estimates for (t, s)-sequences, which are presented in Chapter 5.
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The more general concept of (T, s)-sequences in base b was introduced for

two reasons.

1. Firstly, a quality function T is a more sensitive measure then a quality

parameter t. For instance, a (t, s)-sequence in base b may be a strict

(t, s)-sequence, (i.e., t cannot be replaced by t − 1), but if we consider

it as a (T, s)-sequence in base b, with T(m) = t for all m ≥ t, it does

not have to be strict (i.e. T(m) = t for some m ≥ t can be replaced

by T(m) = t− 1 and by even smaller values). Indeed, in many concrete

examples of (t, s)-sequences in base b we have a quality parameter t which

is obtained by theoretical considerations. If we consider these sequences as

(T, s)-sequences, then it turns out that the real (strict) quality function

T(m) for smaller values of m is often essentially smaller than t, and only

for large m, T(m) is approaching t.

However, in most cases it is very difficult to obtain good estimates for

the strict quality function T by theoretical means. Therefore the deter-

mination of the strict quality function T of a (T, s)-sequence relies in

most cases on computational work.

2. The second reason for introducing quality functions is of a more theoret-

ical nature. For certain classes of sequences (especially digital sequences,

see Chapter 4.4, or Kronecker type sequences, see [133]) it turned out

that their average behaviour cannot be described with a constant and

therefore a bounded quality parameter t, but it can be described with a

quality function T, which may be unbounded. For corresponding results

see Section 4.4.

Since any (t,m, s)-net in base b with t ≤ m− 1 is also a (t+ 1,m, s)-net

in base b, any (t, s)-sequence in base b is also a (t+1, s)-sequence in base b.

Generally, any (T, s)-sequence in base b is also a (U, s)-sequence in base

b for all quality functions U with U(m) ≥ T(m) for all m.

Every point set of bm points in [0, 1)s is a (m,m, s)-net in base b. Hence,

with M(m) := m for all m, every sequence in [0, 1)s is a (M, s)-sequence in

base b.

Distribution properties of (T, s)-sequences

Consider now (T, s)-sequences and (t, s)-sequences. We may ask now under

which conditions are they uniformly distributed modulo one (see Defini-

tion 3.1). The answer to this question is given in the following theorem.
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Theorem 4.32 A strict (T, s)-sequence in any base b is uniformly dis-

tributed modulo one if

lim
m→∞

m−T(m) =∞.

In particular, every (t, s)-sequence is uniformly distributed modulo one.

Remark 4.33 Recall that m−T(m) is monotonically increasing.

Proof of Theorem 4.32 Let S be a strict (T, s)-sequence in base b such that

limm→∞m−T(m) =∞. Further let

J :=

s∏

i=1

[αi, βi)

with 0 ≤ αi < βi ≤ 1, be an arbitrary subinterval of [0, 1)s, and let ε > 0 be

given. We show that
∣∣∣∣
A(J,N,S)

N
− λs(J)

∣∣∣∣ < ε

for all N large enough. Then the result follows (see Definition 3.1). Let

l := rs with r, s ∈ N be fixed such that 2s
br < ε/2 and let m be fixed such

that m−T(m) ≥ l. Let
Ai
br ≤ αi < Ai+1

br and Bi
br ≤ βi < Bi+1

br

for 1 ≤ i ≤ s. Then for

J1 :=

s∏

i=1

[
Ai + 1

br
,
Bi
br

)
and J2 :=

s∏

i=1

[
Ai
br
,
Bi + 1

br

)

we have

J1 ⊆ J ⊆ J2 ⊆ [0, 1)s,

both are unions of at most bl elementary intervals of order l, and by Lemma 3.18,

λs(J2 \ J1) ≤ 2s/br. Hence the intervals J1, J2 are fair with respect to sub-

sequences of length bm. Therefore, for all positive integers N , we have

A(J,N,S) −Nλs(J) ≤ A(J2, N,S)−Nλs(J2) +N
2s

br

≤ A(J2, ⌊N/bm⌋bm,S)−
⌊
N

bm

⌋
bmλs(J2) + bm +N

2s

br

= bm +N
2s

br
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and

A(J,N,S) −Nλs(J) ≥ A(J1, N,S)−Nλs(J1)−N
2s

br

≥ A(J1, ⌈N/bm⌉bm,S)−
⌈
N

bm

⌉
bmλs(J1)− bm −N

2s

br

= −bm −N 2s

br
,

such that ∣∣∣∣
A(J,N,S)

N
− λs(J)

∣∣∣∣ ≤
bm

N
+

2s

br
< ε

for N large enough. Hence the result follows.

Note that the condition is not an “if and only if”-condition, since there

are uniformly distributed sequences, having no nontrivial net-property at

all. For so-called digital sequences (see Section 4.4), the above sufficient

condition is also necessary and hence the above result cannot be improved.

We even have well-distribution for all (T, s)-sequences considered in The-

orem 4.32. This is an important fact for many forms of applications where

the sequence in use is not used from the first point on. Sometimes, for a

variety of reasons, a first sub-block of the sequence is deleted (see [223]).

We prove the following result, which is, for the special case T(m) = t for all

m ≥ t, also proved in [98, Theorem 1], but in a less elementary way.

Theorem 4.34 A strict (T, s)-sequence in any base b is well-distributed

modulo one if

lim
m→∞

m−T(m) = +∞.

In particular, every (t, s)-sequence is well-distributed modulo one.

Proof For an interval B ⊆ [0, 1]s let now

A(B, k,N,S) := #{n ∈ N0 : k ≤ n < k +N and xn ∈ B}.

We use the notation of the proof of Theorem 4.32. We have to show that for

all ε > 0 there is an N(ε), such that
∣∣∣A(J,k,N,S)N − λs(J)

∣∣∣ < ε for all k and

all N ≥ N(ε). Choose again l := rs with r, s ∈ N such that 2s/br < ε/2 and

m fixed such that m−T(m) ≥ l. Consider again J1 and J2. Note that

A(J, k,N,S) −Nλs(J)
≤ A(J2, k,N,S) −Nλs(J2) +N

2s

br
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≤ A(J2, ⌊(N + k)/bm⌋bm,S)−
⌊
N + k

bm

⌋
bmλs(J2)

− (A(J2, (⌊k/bm⌋+ 1)bm,S)− (⌊k/bm⌋+ 1)bmλs(J2)) + 2bm +N
2s

br

= 2bm +N
2s

br

and

A(J, k,N,S) −Nλs(J)
≥ A(J1, k,N,S) −Nλs(J1)−N

2s

br

≥ A(J1, ⌈(N + k)/bm⌉bm,S)−
⌈
N + k

bm

⌉
bmλs(J1)

− (A(J1, (⌈k/bm⌉ − 1)bm,S)− (⌈k/bm⌉ − 1)bmλs(J1))− 2bm −N 2s

br

= −2bm −N 2s

br
.

Hence we obtain that
∣∣∣∣
A(J, k,N,S)

N
− λs(J)

∣∣∣∣ ≤
2bm

N
+

2s

br
< ε

for all k and all N ≥ 4bmε−1. Therefore the result follows.

A first example

As a first nontrivial example let us try to artificially generate a (T, s)-

sequence in base b from regular lattices. We restrict ourselves to base b = 2.

The points x0,x1, . . . have the following form:

x0 = (0, . . . , 0), x1 = (1/2, . . . , 1/2),

x2 = (1/2, 0, . . . , 0), x3 = (0, 1/2, . . . , 1/2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x2s−2 = (1/2, . . . , 1/2, 0), x2s−1 = (0, . . . , 0, 1/2).

The points are ordered such that x2j + x2j+1 = (1/2, . . . , 1/2) for all 0 ≤
j ≤ 2s−1 − 1. Let now y

(k)
j := xj/2

k−1 for all 0 ≤ j ≤ 2s − 1, i.e.,

y
(k)
0 = (0, . . . , 0), y

(k)
1 = (1/2k, . . . , 1/2k),

y
(k)
2 = (1/2k, 0, . . . , 0), y

(k)
3 = (0, 1/2k , . . . , 1/2k),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y
(k)
2s−2 = (1/2k , . . . , 1/2k , 0), y

(k)
2s−1 = (0, . . . , 0, 1/2k).
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If we have already constructed the points x0, . . . ,x2sk−1, we get the following

2s(k+1) − 2sk points by:

x2sk := x0 + y
(k+1)
1 , . . . , x2·2sk−1 := x2sk−1 + y

(k+1)
1 ,

x2·2sk := x0 + y
(k+1)
2 , . . . , x3·2sk−1 := x2sk−1 + y

(k+1)
2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x(2s−1)·2sk := x0 + y
(k+1)
2s−1 , . . . , x2s(k+1)−1 := x2sk−1 + y

(k+1)
2s−1 ,

for all k ∈ N.

We illustrate the generation procedure in dimension 2. We start with the

four points x0,x1,x2,x3 as indicated in Figure 4.18.

x0 x2

x3 x1

Figure 4.18 The four start points x0,x1,x2,x3.

This four-scheme always occurs in the subsequent procedure. Then we

repeat this four-scheme consecutively in the four sub-squares according to

their numbering by x0,x1,x2,x3, see Figure 4.19.

x0 x2

x4 x6

x3 x1

x7 x5

x0 x8 x10x2

x4 x6

x3 x11 x1 x9

x7 x5

x0 x8 x2 x10

x12 x4 x14 x6

x3 x11 x1 x9

x15 x7 x13 x5

Figure 4.19 Construction of x0, . . . ,x15.

Then we repeat this four-scheme consecutively in the 42 sub-squares ac-

cording to their numbering by x0, . . . ,x15, and we get Figure 4.20.

For s = 1 we obtain the van der Corput sequence in base 2 (see Defini-

tion 3.10) in this way. We have the following result.
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x0 x8 x2 x10

x16 x18

x12 x4 x14 x6

x3 x11 x1 x9

x19 x17

x15 x7 x13 x5

Figure 4.20 Construction of x0, . . . ,x19.

Proposition 4.35 The above generated sequence (x0,x1, . . .) in [0, 1)s is

a strict (T, s)-sequence in base 2 with T(m) = m−
⌈
m
s

⌉
. In particular, the

van der Corput sequence in base 2 is a (0, 1)-sequence in base 2.

Proof For k ∈ N let Sk denote the first 2sk points of the sequence, hence

Sk =
{(a1

2k
, . . . ,

as
2k

)
: 0 ≤ ai < 2k

}
.

The first 2sk points of the sequence are fair with respect to any elementary

interval of order k, because of the net property of the regular lattice shown

in Corollary 4.11. Now we show the fairness of a point set P of the form

P = {xp2sk+j , . . . ,xp2sk+j+2sk+j−1}, (4.6)

for arbitrarily chosen p ∈ N and j ∈ N0, with respect to all 2-adic elementary

intervals of order k + 1.

The case j = 0 follows from the above considerations concerning Sk. Now
let j ∈ N. By the construction method for the sequence (x0,x1, . . .) it follows

that there are z0, . . . ,z2j−1, such that

P = {x+ zq : x ∈ Sk and 0 ≤ q < 2j}

and for zq = (zq,1, . . . , zq,s) we can assume without loss of generality that

0 ≤ zq,i <
1

2k

for 1 ≤ i ≤ s, 0 ≤ q < 2j and

|z2r+1,i − z2r,i| =
1

2k+1
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for 1 ≤ i ≤ s, 0 ≤ r ≤ 2j−1 − 1. Let

J =

s∏

i=1

[
Ai
2di

,
Ai + 1

2di

)
,

where d1, . . . , ds ∈ N0,
∑s

i=1 di = k + 1, and 0 ≤ Ai < 2di for all 1 ≤ i ≤ s.
Firstly we consider the case where d1, . . . , ds ≤ k. For x =

(
x1/2

k, . . . , xs/2
k
)
∈

J , where x1, . . . , xs are integers, we have that also x + zq ∈ J . This holds

since

Ai2
k−di ≤ xi < (Ai + 1)2k−di

and 0 ≤ zq,i2k < 1 imply that

Ai2
k−di ≤ xi + zq,i2

k < (Ai + 1)2k−di .

Hence there are exactly 2sk−k−1+j points of P in J . (Recall that any interval

of the form
∏s
i=1[B/2

k, (B + 1)/2k) contains exactly one point of Sk.)
For the second case we can assume without loss of generality that d1 =

k + 1 and d2 = · · · = ds = 0. For x =
(
x1/2

k, . . . , xs/2
k
)
, where x1, . . . , xs

are integers, with x1 = ⌊A1/2⌋ and 0 ≤ xi < 2k for 2 ≤ i ≤ s, we have that

x+ zq ∈ J if and only if zq is of the following form

zq,1 <
1

2k+1

if A1 is even, or

zq,1 ≥
1

2k+1

if A1 is odd.

In either case there are 2j−1 elements zq with x + zq ∈ J , so altogether

we have 2sk−k+j−1 points of P in J .

These two cases show that the point set P from (4.6) is a (sk + j − k −
1, sk + j, s)-net in base 2 for all p and j. If we write m as m = sk + j, then

we find that a point set of the form {xp2m, . . . ,xp2m+2m−1} is, for all p and

m, a (m−
⌈
m
s

⌉
,m, s)-net in base 2.

To prove strictness, it suffices to show that the point set {x0, . . . ,x2m−1}
is a strict (m −

⌈
m
s

⌉
,m, s)-net in base 2 for all m. Choose any m = sk + j

and consider the elementary interval J of order k + 2,

J =

[
0,

1

2k+2

)
×

s∏

i=1

[0, 1).

If {x0, . . . ,x2m−1} would be a (m−
⌈
m
s

⌉
− 1,m, s)-net in base 2, then there

should be 2sk−k+j−2 points of the point set in J . But for the first components
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xn,1 of xn ∈ J , 0 ≤ n ≤ 2sk − 1, we have 0 ≤ xn,1 < 1/4. Hence there

are 2(s−1)k points from {x0, . . . ,x2sk−1} in J and from the construction

method for the xn it follows that there are even 2sk−k+j−1 points from

{x0, . . . ,x2sk+j−1} in J . As 2sk−k+j−1 > 2sk−k+j−2 we obtain a contradiction

and hence the result follows.

Further examples of (T, s)-sequences and (t, s)-sequences are given in the

subsequent section and in Chapter 8.

Existence of (0, s)-sequences in base b

As for (0,m, s)-nets in base b it is clear that a (0, s)-sequence in base b

cannot exist for all dimensions s. We have the following result.

Corollary 4.36 A (0, s)-sequence in base b cannot exist if s ≥ b+ 1.

This corollary is a consequence of Corollary 4.19 in Section 4.2 and of the

following corollary (see [175, Lemma 4.22]).

Corollary 4.37 If there exists a (t, s)-sequence in base b, then, for every

m ≥ t, there exists a (t,m, s + 1)-net in base b.

And this again is a consequence of the following lemma.

Lemma 4.38 Let (x0,x1, . . .) be a (T, s)-sequence in base b. Then, for

every m, the point set {y0,y1, . . . ,ybm−1} with yk := (k/bm,xk), 0 ≤ k <

bm, is an (r(m),m, s+1)-net in base b with r(m) := max{T(0), . . . ,T(m)}.

Proof Let J =
∏s+1
i=1

[
Ai

bdi
, Ai+1
bdi

)
be an elementary interval of order m −

r(m). Then yk ∈ J if and only if

k

bm
∈
[
A1

bd1
,
A1 + 1

bd1

)
and xk ∈

s+1∏

i=2

[
Ai
bdi
,
Ai + 1

bdi

)
.

The first condition leads to

A1b
m−d1 ≤ k < A1b

m−d1 + bm−d1 .

Since (x0,x1, . . .) is a (T, s)-sequence in base b, the points xA1bm−d1+l, 0 ≤
l ≤ bm−d1−1, form an (r(m),m−d1, s)-net in base b, because r(m) ≥ T(m−
d1). The interval

∏s+1
i=2

[
Ai/b

di , (Ai + 1)/bdi
)
has volume b−d2−···−ds+1 =

b−m+d1+r(m) and therefore contains exactly br(m) of the points xA1bm−d1+l,

0 ≤ l ≤ bm−d1 − 1. Consequently J contains exactly br(m) of the points yk,

0 ≤ k ≤ bm − 1, and the result follows.
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Example 4.39 Let (x0, x1, . . .) be the van der Corput sequence in base

b, which is an example of a (0, 1)-sequence in base b. Then the point set

{y0, . . . ,ybm−1}, where yk := (k/bm, xk) for 0 ≤ k ≤ bm − 1, is the Ham-

mersley point set in base b with bm points and hence a (0,m, 2)-net in base

b (see Figure 4.21).

x15

x7

x11

x3

x13

x5

x9

x1

x14

x6

x10

x2

x12

x4

x8

x0

y4

y0

y2

y8

y12

y10

y6

y1

y14

y9

y5

y3

y7

y11

y13

y15

Figure 4.21 Hammersley point set in base 2 with 16 points. The projection
to the second coordinate gives the first 16 elements of the van der Corput
sequence in base 2.

The advantage of (t, s)-sequences is that also subsequences show favourable

distribution properties (and even net properties).

Faure- and Niederreiter-sequences provide, for every prime power base b

and any s ≤ b, a (0, s)-sequence in base b, see Chapter 8. Consequently we

obtain the following result.

Corollary 4.40 A (0, s)-sequence in a prime power base b exists if and

only if s ≤ b.

Again it is more difficult to give sharp existence results for (0, s)-sequences

in composite bases b. As a singular result from Lemma 4.21 in Section 4.2

and Corollary 4.37 it follows that:

Corollary 4.41 There does not exist a (0, 3)-sequence in base 6.
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Propagation rules for sequences

Base propagation rules for (t, s)- and (T, s)-sequences can be transferred

from the corresponding rules for (t,m, s)-nets. Thus, as a consequence from

Corollary 4.23 in Section 4.2, we obtain the following result.

Corollary 4.42 Any (T, s)-sequence (x0,x1, . . .) in base b is a (U, s)-

sequence in base bk, where

U(m) :=

⌈
T(km)

k

⌉
.

Proof Take any subsequence of the form

(xl(bk)m ,xl(bk)m+1, . . . ,xl(bk)m+(bk)m−1),

where l ≥ 0, of the sequence (x0,x1, . . .) which is a (T, s)-sequence in base

b. Then the elements of this subsequence form a (T(km), km, s)-net in base

b and therefore, by Corollary 4.23 in Section 4.2, a (⌈T(km)/k⌉ ,m, s)-net
in base bk. The result follows by the definition of a (U, s)-sequence in base

bk.

We also have the following result, see [190, Proposition 5].

Corollary 4.43 Any (t, s)-sequence in base b is a (⌈t/k⌉ , s)-sequence in

base bk.

Again a similar converse assertion does not hold in general. As a counter-

example serves, for instance, the van der Corput sequence in base 4. It is a

(0, 1)-sequence in base 4, but certainly not a (0, 1)-sequence in base 2. This

assertion can be shown by observing that for any integer k ≥ 1 the two

points x4k = 1
4k+1 and x4k+1 =

1
4 + 1

4k+1 are both contained in [0, 12 ). Hence

they do not form a (0, 1, 1)-net in base 2 and therefore (x0, x1, . . .) is not a

(0, 1)-sequence in base 2.

However, we can use Theorem 4.24 from Section 4.2 to obtain a base

change result for (T, s)- and (t, s)-sequences.

Theorem 4.44 For given integers c ≥ 2, L and L′ ≥ 1 with gcd(L,L′) =
1 we have that every (T, s)-sequence (x0,x1, . . .) in base cL is a (U, s)-

sequence in base cL
′
, where

U(m) = m (mod L) + min(V (m),W (m)),

with

V (m) :=

⌈
LT(L′⌊m/L⌋) + ⌊m/L⌋L((−L′) (mod L))

L′ + ((−L′) (mod L))

⌉
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and

W (m) :=

⌈
LT(L′⌊m/L⌋) + (s− 1)(L− 1)

L′

⌉
.

Before we prove the theorem let us again consider the special cases L = 1,

L′ = 1 and T ≡ t. For L = 1 we obtain U(m) =
⌈
T(L′m)
L′

⌉
and therefore

again Corollary 4.42. For L′ = 1 we obtain the following corollary, which is

a generalisation of [190, Proposition 4].

Corollary 4.45 For a given base b ≥ 2 and any integer L ≥ 1, every

(T, s)-sequence in base bL is a (U, s)-sequence in base b with

U(m) = m (mod L) + min(V (m),W (m))

with

V (m) := T(⌊m/L⌋) + ⌊m/L⌋(L− 1)

and

W (m) := LT(⌊m/L⌋) + (s− 1)(L− 1).

For T ≡ t we obtain the following result, see [190, Proposition 4].

Corollary 4.46 For given integers c ≥ 2, L and L′ ≥ 1 with gcd(L,L′) = 1

we have that every (t, s)-sequence in base cL is a (n, s)-sequence in base cL
′
,

where

n = L− 1 +

⌈
Lt+ (s− 1)(L− 1)

L′

⌉
.

Proof of Theorem 4.44 Consider a subsequence of (cL
′
)m elements of the

sequence (x0,x1, . . .) of the form

(xk(cL′)m , . . . ,xk(cL′)m+(cL′)m−1).

Represent m in the form m = pL + r with 0 ≤ r < L, then the above

subsequence is

(xkcrL′(cL)pL′ , . . . ,xkcrL′(cL)pL′+crL′(cL)pL′−1)

and so a multiset-union of (cL
′
)r subsequences of length (cL)pL

′
. Any such

subsequence, by the (T, s)-sequence property in base cL of (x0,x1, . . .),

forms a (T(pL′), pL′, s)-net in base cL and therefore by Theorem 4.24 in

Section 4.2 (note that p = ⌊m/L⌋) is a (q, pL, s)-net in base cL
′
with

q = min(v,w), where

v =

⌈
LT(L′⌊m/L⌋) + ⌊m/L⌋L((−L′) (mod L))

L′ + ((−L′) (mod L))

⌉
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and

w =

⌈
LT(L′⌊m/L⌋) + (s− 1)(L− 1)

L′

⌉
.

By Lemma 4.14, concerning the combination of (t,m, s)-nets, now the

original sub-block as a combination of (cL
′
)r (q, pL, s)-nets in base cL

′
forms

a (q+ r, pL+ r, s) = (q+ r,m, s)-net in base cL
′
. Note that r ≡ m (mod L).

Hence the result follows by the definition of a (U, s)-sequence in base cL
′
.

4.4 Digital (t,m, s)-nets and digital (T, s)- and (t, s)-sequences

The concept of digital (t,m, s)-nets, and digital (T, s)- and (t, s)-sequences

is a general framework for the construction of (t,m, s)-nets and (T, s)- and

(t, s)-sequences. In fact, until now, essentially all concrete (t,m, s)-nets, and

(T, s)- and (t, s)-sequences which are of relevance for applications are dig-

ital (t,m, s)-nets, and digital (T, s)- and (t, s)-sequences. For short, in the

following we speak of digital point sets. In particular, all relevant examples

provided so far can be introduced in terms of digital point sets.

Using the framework of digital point sets, allows us

1. to provide the (t,m, s)-net, the (T, s)- or (t, s)-sequence in an easy way

(in the form of s matrices);

2. to determine the quality parameter t or T in a rather fast way;

3. to describe the properties of point sets in question in terms of properties

of the matrices mentioned above, i.e., the search for point sets of high

quality can be restricted to the search for matrices with certain properties.

Although one can introduce digital nets in arbitrary integer bases b ≥ 2,

we restrict ourselves to prime power bases b only in the following. The main

motivation for this restriction is that there exists a finite field of order b if

and only if b is a prime power. This leads a simpler and clearer construction

of digital point sets. Some points of the analysis of digital nets in arbitrarily

chosen bases are much more involved compared with the prime power base

case, where the construction principle is much simpler. Furthermore, the

prime power base case (and even the prime base case) is also for practical

applications the most important one.

Most of the results and ideas which we give below can be generalised to

digital nets in arbitrary integer bases b ≥ 2. For a detailed treatment of the

general case we refer to [139, Section 1] and [175, Section 4].
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Digital (t,m, s)-nets

To construct a digital (t,m, s)-net in a prime power base b, we use the

finite field Fb with b elements and a bijection ϕ : {0, . . . , b − 1} → Fb with

ϕ(0) = 0, the neutral element of addition in Fb. We speak then of a “digital

(t,m, s)-net over the field Fb” instead of “digital (t,m, s)-net in base b”. (For

arbitrary b one has to choose a finite commutative Ring R with identity of

order b, see [135, 139, 175] for more information.)

The elements of Fb are denoted by 0̄, 1̄, . . . , b− 1 respectively and we use

the bijection ϕ(j) := j for j ∈ {0, . . . , b − 1}. If b is a prime, then we

identify Fb with Zb, the set of residue classes modulo b with addition and

multiplication modulo b, which in turn we identify with the elements of

{0, . . . , b− 1}. Therefore we omit the bijection ϕ and the bar in this case.

Let us explain the concept of digital (t,m, s)-nets over Fb. That is, we

want to construct a (t,m, s)-net {x0,x1, . . . ,xbm−1} in base b by the digital

method. To generate such a point set we first have to choose m×m matrices

C1, . . . , Cs (one for each component) over Fb, that is, with entries from Fb.

For example, to generate a (t, 4, 2)-net over Z2 take the matrices

C1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 and C2 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 . (4.7)

To generate now one of the points xn = (xn,1, . . . , xn,s), with 0 ≤ n < bm,

of the net, we first write n in its b-adic (i.e. base b) expansion n =
∑m−1

j=0 ajb
j,

with digits aj ∈ {0, . . . , b−1}. Note that 0 ≤ n < bm and therefore it suffices

to consider only j with 0 ≤ j ≤ m−1. Then take the m-dimensional column

vector

n :=




ϕ(a0)

ϕ(a1)
...

ϕ(am−1)


 ∈ (Fmb )

⊤.

For example, to generate the point x11 = (x11,1, x11,2) of the (t, 4, 2)-net

over Z2 from above, write

11 = 1 · 20 + 1 · 21 + 0 · 22 + 1 · 23,
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which corresponds to the vector

n =




1

1

0

1




or to generate the point x7 = (x7,1, x7,2), write

7 = 1 · 20 + 1 · 21 + 1 · 22 + 0 · 23,

which corresponds to the vector

n =




1

1

1

0


 .

To generate the point xn = (xn,1, . . . , xn,s) we explain how to generate

the ith coordinate:

The ith coordinate xn,i is obtained by multiplying the ith matrix Ci by

n over Fb, which gives as result an m-dimensional vector of elements of Fb,

say

Cin =




yn,i,1
...

yn,i,m


 ∈ (Fmb )

⊤.

The elements ϕ−1(yn,i,j) ∈ {0, . . . , b − 1} are now the b-adic digits of xn,i,

i.e.,

xn,i =
ϕ−1(yn,i,1)

b
+
ϕ−1(yn,i,2)

b2
+ · · ·+ ϕ−1(yn,i,m)

bm
.

Definition 4.47 We call the point set {x0, . . . ,xbm−1} constructed as

introduced above a digital net over Fb with generating matrices C1, . . . , Cs
or short a digital net.

Since any point set consisting of bm points in [0, 1)s is a (t,m, s)-net in base

b with a certain quality parameter t we also speak of a digital (t,m, s)-net

over Fb.

Therefore, to provide the bm points in dimension s, it suffices to provide s

matrices of size m×m over Fb. This of course simplifies storage of the point

sets.

As already mentioned, in most cases the finite field Zb with b prime is

chosen for practical applications, and indeed Z2 is the most frequent choice.
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We remark again that in this case we can omit the bijection ϕ as we identify

Zb with the elements {0, . . . , b− 1}.

Example 4.48 Consider again the (t, 4, 2)-net over Z2 with generating

matrices (4.7). To construct for instance x11 we have n = 11 and therefore

C1n =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







1

1

0

1


 =




1

1

0

1




C2n =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0







1

1

0

1


 =




1

0

1

1


 .

Hence x11,1 = 1
2 + 1

4 + 1
16 = 13

16 and x11,2 = 1
2 + 1

8 + 1
16 = 11

16 , and thus

x11 =
(
13
16 ,

11
16

)
.

For n = 7 we have

C1n =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







1

1

1

0


 =




1

1

1

0




C2n =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0







1

1

1

0


 =




0

1

1

1


 .

Hence x7,1 =
1
2+

1
4+

1
8 = 7

8 and x7,2 =
1
4+

1
8+

1
16 = 7

16 , and thus x7 =
(
7
8 ,

7
16

)
.

Determining all 16 points shows that this example just gives the 16 point

Hammersley point set in base 2.

Example 4.49 To illustrate the generation procedure we provide one

example of a digital (t, 3, 2)-net over F4, the finite field of order 4. Let

F4 = {0̄, 1̄, 2̄, 3̄}. We identify the elements 0̄, 1̄, 2̄, 3̄ of F4 with the 4-adic

digits 0, 1, 2, 3 respectively, i.e., ϕ(i) = i for i ∈ {0, 1, 2, 3}. Addition and
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multiplication in F4 are defined by the following tables:

+ 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 1̄ 2̄ 3̄

1̄ 1̄ 0̄ 3̄ 2̄

2̄ 2̄ 3̄ 0̄ 1̄

3̄ 3̄ 2̄ 1̄ 0̄

· 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 0̄ 0̄ 0̄

1̄ 0̄ 1̄ 2̄ 3̄

2̄ 0̄ 2̄ 3̄ 1̄

3̄ 0̄ 3̄ 1̄ 2̄

Choose the 3× 3 matrices C1 and C2 over F4 by

C1 =




1̄ 0̄ 0̄

0̄ 1̄ 0̄

0̄ 2̄ 2̄


 and C2 =




2̄ 3̄ 1̄

0̄ 0̄ 1̄

0̄ 1̄ 0̄


 .

To demonstrate how to generate the 43 = 64 points xn = (xn,1, xn,2) ∈ [0, 1)2

let us generate x35. We have

35 = 3 · 40 + 0 · 41 + 2 · 42

which corresponds to the vector

n =




3̄

0̄

2̄


 ∈ (F3

4)
⊤.

Now

C1




3̄

0̄

2̄


 =




1̄ 0̄ 0̄

0̄ 1̄ 0̄

0̄ 2̄ 2̄






3̄

0̄

2̄


 =




3̄

0̄

3̄


 ∈ (F3

4)
⊤

and hence x35,1 =
3
4 +

0
16 + 3

64 = 51
64 . Further

C2




3̄

0̄

2̄


 =




2̄ 3̄ 1̄

0̄ 0̄ 1̄

0̄ 1̄ 0̄






3̄

0̄

2̄


 =




3̄

2̄

0̄


 ∈ (F3

4)
⊤

and hence x35,2 =
3
4 +

2
16 + 0

64 = 7
8 . Therefore we have x35 =

(
51
64 ,

7
8

)
.

The quality parameter of digital nets

Trivially, since the number of points N is bm, the resulting point set is a

(t,m, s)-net in base b (every set of bm points in [0, 1)s is an (m,m, s)-net at

least). But what is the real, strict quality parameter t of the point set, gen-

erated in the above way? The answer is given with the help of the following
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quantity ρ which, in some sense, “measures” the “linear independence of the

s matrices C1, . . . , Cs”.

Definition 4.50 Let b be a prime power and let C1, . . . , Cs be m × m

matrices with entries from the finite field Fb. Let ρ = ρ(C1, . . . , Cs) be the

largest integer such that for any choice of d1, . . . , ds ∈ N0, with d1+· · ·+ds =
ρ, the following holds:

the first d1 row vectors of C1 together with

the first d2 row vectors of C2 together with
...

the first ds row vectors of Cs,

(these are together ρ vectors in Fmb ) are linearly independent over the fi-

nite field Fb. We call ρ the linear independence parameter of the matrices

C1, . . . , Cs.

Example 4.51 Consider C1, C2 over Z2 from the example above,

C1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 and C2 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 .

Clearly ρ is at most 4, since there never exist more than 4 linearly indepen-

dent 4-dimensional vectors over Z2. However, ρ is indeed 4 in this example,

since for every choice of d1, d2 ≥ 0 with d1 + d2 = 4, the first d1 rows of C1

together with the first d2 rows of C2 provide the system of the 4 canonical

row-vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), which are linearly

independent over Z2.

Now we can determine the strict quality parameter t of a digital net

generated by matrices C1, . . . , Cs over Zb. This is a special case of [175,

Theorem 4.28].

Theorem 4.52 Let b be a prime power. The point set constructed by the

digital method with the m ×m matrices C1, . . . , Cs over a finite field Fb is

a strict (m − ρ,m, s)-net in base b, where ρ = ρ(C1, . . . , Cs) is the linear

independence parameter defined in Definition 4.50.

Proof First we have to show that every elementary interval of order ρ, i.e.,

of volume b−ρ contains exactly bm−ρ of the generated points. Let

J =

s∏

i=1

[
Ai
bdi
,
Ai + 1

bdi

)
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with d1, . . . , ds ∈ N0 such that d1+· · ·+ds = ρ and 0 ≤ Ai < bdi for 1 ≤ i ≤ s
be such an interval. We ask for which n is xn = (xn,1, . . . , xn,s) contained in

J , i.e., for which n is xn,i ∈
[
Ai/b

di , (Ai + 1)/bdi
)
for all 1 ≤ i ≤ s satisfied.

We find that xn,i ∈
[
Ai/b

di , (Ai + 1)/bdi
)
means that the first di digits in

the b-adic representation of xn,i are determined. In detail, let

Ai
bdi

=
e
(i)
1

b
+ · · ·+

e
(i)
di

bdi
,

then

e
(i)
1

b
+ · · ·+

e
(i)
di

bdi
≤ xn,i <

e
(i)
1

b
+ · · ·+

e
(i)
di

bdi
+

1

bdi
,

that is

xn,i =
e
(i)
1

b
+ · · · +

e
(i)
di

bdi
+ · · · .

Recall that by the definition of digital point sets, the jth digit of xn,i is

given by ϕ−1 applied to the product c
(i)
j n of the jth row c

(i)
j of Ci with the n-

column vector n ∈ (Fmb )
⊤, where ϕ is the bijection used in the construction.

Hence xn ∈ J if and only if the following system of equations over Fb is

satisfied:

c
(1)
1 n = ϕ(e

(1)
1 )

...
...

...

c
(1)
d1

n = ϕ(e
(1)
d1

)

c
(2)
1 n = ϕ(e

(1)
2 )

...
...

...

c
(2)
d2

n = ϕ(e
(1)
d2

)
...

...
...

...
...

...

c
(s)
1 n = ϕ(e

(s)
1 )

...
...

...

c
(s)
ds

n = ϕ(e
(s)
ds

)





(4.8)

We ask, how manym-variable vectors n satisfy this system of d1+· · ·+ds =
ρ equations?

Since the system of row vectors c
(i)
j by definition of ρ is linearly indepen-

dent, the linear system (4.8) has exactly bm−ρ solutions and the result is

shown.
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Let us now prove the strictness of the quality parameter. If ρ = m then

there is nothing to prove, since any (0,m, s)-net is strict by definition. If

ρ ≤ m − 1 then by the definition of ρ there are d1, . . . , ds ∈ N0 with d1 +

· · ·+ ds = ρ+ 1 and such that

c
(1)
1 , . . . , c

(1)
d1
, c

(2)
1 , . . . , c

(2)
d2
, . . . , c

(s)
1 , . . . , c

(s)
ds
,

are linearly dependent over Fb. But then the linear system (4.8) with e
(i)
j = 0

for all 1 ≤ j ≤ di and 1 ≤ i ≤ s, has also bm−ρ solutions n ∈ (Fmb )
⊤

(although it consists of ρ+1 equations in m variables over Fb). This means

that the elementary interval
∏s
i=1

[
0, 1

bdi

)
of volume b−ρ−1 (i.e., of order

ρ + 1) contains bm−ρ points of the net and is therefore not fair. Hence the

net has strict quality parameter m− ρ.

Remark 4.53 According to Theorem 4.52 the strict quality parameter t

of a digital net is m− ρ. The quantity ρ = m− t is often referred to as the

strength of a digital net.

As a consequence of Theorem 4.52 we obtain the following result.

Corollary 4.54 Let b be a prime power. A digital net over a finite field

Fb generated by the m×m matrices C1, . . . , Cs is a (0,m, s)-net in base b if

and only if for all d1, . . . , ds ∈ N0 with d1 + · · ·+ ds = m, the m×m matrix

formed by

the first d1 rows of C1 and

the first d2 rows of C2 and
...

the first ds rows of Cs

has determinant different from zero.

Therefore, the task of determining the quality parameter t is turned into

determining the independence parameter ρ of the s-tuple of matrices. The

advantage is now that various tools from linear algebra can be used for

carrying out this task.

Example 4.55 The (t, 4, 2)-net over Z2 considered in Example 4.48 is a

(0, 4, 2)-net over Z2 by Theorem 4.52.

Example 4.56 For any prime b and any m ∈ N the two m×m matrices
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over Zb given by

C1 =




1 0 . . . 0 0

0 1
. . . 0

...
. . .

. . .
. . .

...

0
. . . 1 0

0 0 . . . 0 1




, C2 =




0 0 . . . 0 1

0 . .
.

1 0
... . .

.
. .
.

. .
. ...

0 1 . .
.

0

1 0 . . . 0 0




generate a digital (0,m, 2)-net over Zb. For every choice of 0 ≤ d ≤ m the

system of vectors

c
(1)
1 , . . . , c

(1)
d , c

(2)
1 , . . . , c

(2)
m−d,

where c
(i)
j denotes the jth row vector of the matrix Ci, is linearly inde-

pendent over Zb. Hence the quality parameter t = 0. Indeed, the resulting

digital (0,m, 2)-net over Zb is just the two-dimensional Hammersley point

set in base b.

Example 4.57 We now show that the following three m×m matrices C1,

C2, and C3 over Z2 provide, for all m ≥ 1, a digital (0,m, 3)-net over Z2.

Let

C1 =




1 0 . . . 0 0

0 1
. . . 0

...
. . .

. . .
. . .

...

0
. . . 1 0

0 0 . . . 0 1




, C2 =




0 0 . . . 0 1

0 . .
.

1 0
... . .

.
. .
.

. .
. ...

0 1 . .
.

0

1 0 . . . 0 0




and

C3 =




(0
0

) (1
0

)
. . . . . .

(m−1
0

)

0
(1
1

)
. . . . . .

(m−1
1

)
...

. . .
. . .

...

0 . . . 0
(
m−2
m−2

) (
m−1
m−2

)

0 . . . . . . 0
(m−1
m−1

)



,

where the binomial coefficients are taken modulo 2. This example was first

provided by Sobol′ in [251]. See also [170, Proof of Theorem 6.2]. We have
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to show that for any choice of d1, d2 ∈ N0 with d1 + d2 ≤ m the vectors

(1, 0, . . . . . . . . . . . . . . . , 0)

(0, 1, 0, . . . . . . . . . . . . , 0)
...

. . .
. . .

. . .
...

(0, . . . , 0, 1, 0, . . . . . . , 0)

↑
d1

(0, . . . . . . . . . . . . . . . 0, 1)

(0, . . . . . . . . . . . . 0, 1, 0)
... . .

.
. .
.

. .
. ...

(0, . . . . . . 0, 1, 0, . . . , 0)

↑
m− d2 + 1((

0
0

)
,
(
1
0

)
, . . . . . . . . . . . . ,

(
m−1
0

))
(
0,

(
1
1

)
,
(
2
1

)
, . . . . . . . . .

(
m−1
1

))
...

. . .
. . .

. . .
...(

0, . . . , 0,
(
d3−1
d3−1

)
,
(
d3
d3−1

)
, . . . ,

(
m−1
d3−1

))

are linearly independent over Z2 (here d3 := m − d1 − d2). To do this, we

show that the m×m matrix

C =




1 0 . . . . . . . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . . . . . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0 . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . 0 1

0 . . . . . . . . . . . . . . . 0 1 0
... . .

.
. .
.

. .
. ...

0 . . . . . . . . . 0 1 0 . . . 0(
0
0

) (
1
0

)
. . . . . . . . . . . . . . .

(
m−2
0

) (
m−1
0

)
...

...
...

...( 0
d3−1

) ( 1
d3−1

)
. . . . . . . . . . . . . . .

(m−2
d3−1

) (m−1
d3−1

)




,

where we define
(a
b

)
:= 0 if b > a, over Z2 has determinant 1. Developing the

determinant of C along the first d1 + d2 rows yields that |detC| = |detC ′|
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with

C ′ =




(d1
0

)
. . .

(m−d2−1
0

)
...

...( d1
d3−1

)
. . .

(m−d2−1
d3−1

)


 ∈ Zd3×d32 .

For any nonnegative integers a and k let us now consider the determinant

of the matrix

Da,k =




(a
0

)
. . .

(a+k
0

)
...

...(a
k

)
. . .

(a+k
k

)


 ∈ Z

(k+1)×k+1)
2 .

For j = k, k− 1, . . . , 1 we successively subtract the jth column of Da,k from

the j +1st column and by using the fact that
(a+j
i

)
−
(a+j−1

i

)
=
(a+j−1
i−1

)
we

arrive at the matrix

D′
a,k =




1 0 0 . . . 0(a
1

) (a
0

) (a+1
0

)
. . .

(a+k−1
0

)
...

...
...

...(a
k

) ( a
k−1

) (a+1
k−1

)
. . .

(a+k−1
k−1

)


 ,

so that, by developing the determinant of the above matrix along the first

row, we obtain det(Da,k) = det(D′
a,k) = det(Da,k−1) and by proceeding in

this way we obtain det(Da,k) = det(Da,0) =
(a
0

)
= 1. The result then follows

from Corollary 4.54.

For later use we introduce a further quantity.

Definition 4.58 Let C1, . . . , Cs be m ×m matrices over Fb. Define δ =

δ(C1, . . . , Cs) to be the least integer t, with 0 ≤ t ≤ m, such that for any

d1, . . . , ds ∈ N0 with d1 + · · ·+ ds = m− t and any e
(i)
j ∈ Fb, for 1 ≤ j ≤ di
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and 1 ≤ i ≤ s, the system

c
(1)
1 n = e

(1)
1

...

c
(1)
d1

n = e
(1)
d1

c
(2)
1 n = e

(2)
1

...

c
(2)
d2

n = e
(2)
d2

...

c
(s)
1 n = e

(s)
1

...

c
(s)
ds

n = e
(s)
ds





(4.9)

where c
(i)
j denotes the jth row vector of Ci, has exactly bt solutions n ∈

(Fmb )
⊤.

Obviously in the above definition it suffices to consider the homogeneous

system only, i.e., e
(i)
j = 0 for all i and j. This system has exactly bt solutions,

if and only if each system in (4.9) has exactly bt solutions. This follows from

elementary properties of systems of linear equations.

The proof of the following result is left as an exercise (see Exercise 4.6).

Lemma 4.59 Let b be a prime power. Any m × m matrices C1, . . . , Cs
over Fb generate a strict digital (δ,m, s)-net over Fb.

Propagation rules for digital nets

We have seen several propagation rules for (t,m, s)-nets in Section 4.2. We

show now that certain propagation rules also hold for digital nets. For in-

stance:

1. Any digital (t,m, s)-net over Fb is a digital (t′,m, s)-net over Fb for all

t′ ≥ t.
2. If the matrices C1, . . . , Cs generate a digital (t,m, s)-net over Fb and if

we take any s′ ≤ s of these matrices, then these matrices form a digital

(t,m, s′)-net over Fb.

Again it is more subtle to provide suitable propagation rules for digital

(t,m, s)-nets concerning the parameter m. The following propagation rule

was first given (for arbitrary bases b) in [234, Lemma 3].
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Theorem 4.60 Let b be a prime power. If there exists a digital (t,m, s)-net

over Fb, then for each n with t ≤ n ≤ m, there exists a digital (t, n, s)-net

over Fb.

For the proof of this result we need the following lemmas.

Lemma 4.61 Let b be a prime power and let a (strict) digital (t,m, s)-net

over Fb be generated by the m×m matrices C1, . . . , Cs. Let Z be a nonsin-

gular m×m matrix over Fb. Then the matrices C ′
1, . . . , C

′
s with C ′

i := CiZ

also generate a (strict) digital (t,m, s)-net over Fb. Indeed, they generate the

same digital net, only with order of points changed.

The proof of this result is left as an exercise (see Exercise 4.7).

Lemma 4.62 Let b be a prime power. If there exists a digital (t,m, s)-net

over Fb, then for any given nonsingular m×m matrix Ys over Fb, there are

nonsingular m×m matrices D1, . . . ,Ds over Fb with Ds = Ys, generating a

digital (t,m, s)-net over Fb.

Proof Let C1, . . . , Cs be an s-tuple of m×m matrices generating a digital

(t,m, s)-net over Fb. Theorem 4.52 implies that the linear independence

parameter ρ of C1, . . . , Cs satisfies ρ = m− t, and hence for each Ci the first

m−t rows are linearly independent. We now generate newm×mmatrices C̃i
by removing the last t rows of Ci and by completing the remainingm−t rows
by t arbitrary rows, such that all m rows of the new matrix C̃i are linearly

independent. This is possible since Fb is a field. The matrices C̃1, . . . , C̃s
again generate a (t,m, s)-net over Fb. Since C̃s is invertible, there exists a

nonsingular m ×m matrix Z over Fb such that C̃sZ = Ys. Let the m ×m
matrices D1, . . . ,Ds be defined by Di = C̃iZ, i.e., in particular Ds = Ys. By

Lemma 4.61 the matrices D1, . . . ,Ds again generate a digital (t,m, s)-net

over Fb.

Proof of Theorem 4.60 By Lemma 4.62 we may assume that the given dig-

ital (t,m, s)-net over Fb is generated by the nonsingular m × m matrices

C1, . . . , Cs over Fb, where

Cs = E′
m :=




0 0 . . . 0 1

0 . .
.

1 0
... . .

.
. .
.

. .
. ...

0 1 . .
.

0

1 0 . . . 0 0



∈ Fm×m

b .

Define now n × n matrices D1, . . . ,Ds over Fb by setting Di := C
(n)
i (i.e.,
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the left upper n× n sub-matrix of Ci) for 1 ≤ i ≤ s− 1 and Ds := E′
n. We

show that D1, . . . ,Ds generate a digital (t, n, s)-net over Fb.

Let d1, . . . , ds ∈ N0 with d1 + · · · + ds = n − t be arbitrarily given. Take

the system of the first d1 rows of D1, the first d2 rows of D2, . . . , the first

ds rows of Ds. For simplicity we set d1 + · · · + ds−1 =: d and denote the

first d vectors above by a
(n)
j ∈ Fnb for 1 ≤ j ≤ d. They are the projection

of the corresponding m-dimensional vectors aj from the matrices Ci from

above. We write aj = (aj,1, . . . , aj,n, |aj,n+1, . . . , aj,m) = (a
(n)
j |ã

(m−n)
j ). Since

C1, . . . , Cs−1 and Cs = E′
m generate a (t,m, s)-net over Fb, the system of

m− t vectors from Fmb given by

(a1,1, . . . , . . . , . . . , . . . , a1,n, a1,n+1, . . . , . . . , a1,m),
...

...
...

...

(ad,1, . . . , . . . , . . . , . . . , ad,n, ad,n+1, . . . , . . . , ad,m),

(0, . . . , . . . , . . . , . . . , 0, 0, . . . , 0, 1),

(0, . . . , . . . , . . . , . . . ,
...,

... . .
.

1, 0),
...

... 0, . .
.

. .
. ...

(0, . . . , . . . , . . . , . . . , 0, 1, 0, . . . , 0),

(0, . . . , . . . , . . . 0, 1, 0, . . . , . . . , 0),
... . .

.
. .
.

. .
. ...

...

(0, . . . , 0, 1, 0, . . . , 0, . . . , . . . , 0),

where the “1” in the last vector is the t + d + 1st component, is linearly

independent over Fb (note that d ≤ n− t and therefore t+d ≤ n). But then,
as it is obvious by the above scheme, a

(n)
1 , . . . ,a

(n)
d and the first n − t − d

rows of E′
n must be linearly independent over Fb and the result follows.

More detailed propagation rules for digital nets are presented in Chapter 9.

Structural results for digital nets

We give in the following some general structural results for digital nets.

We have seen in the example shown in Figure 4.11 in Section 4.2 that the

addition modulo 1 of a fixed s-dimensional point x to all the points of

a (t,m, s)-net in base b, although it does not disturb the net property, it

does change in general the (strict) quality parameter t. The principal digital

net property, however, by shifting the net in general is destroyed. This,

for example, can be seen by the fact that any coordinate of any point of

a digital (t,m, s)-net in base b is of the form a/bm, where a is an integer.
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Hence, for example, addition of a vector whose coordinates are not all of this

form destroys the digital net property. Another reason is that any digital

net contains the origin. Hence shifting the net in a way which removes the

origin from the point set destroys the digital net property. Any elementary

interval in base b is half-open at the right-upper boundary. The right-upper

boundary of an elementary interval in base b of order less than or equal to m

(i.e., of volume larger or equal b−m) in all coordinates is of the form a/bm.

Therefore any element of a digital (t,m, s)-net in base b has distance from

the right-upper boundary, of any elementary interval of order less than or

equal to m, of at least b−m. From this fact the following stability result for

digital (t,m, s)-nets in a base b follows.

Lemma 4.63 Let b be a prime power and let {x0, . . . ,xbm−1} with xn :=

(xn,1, . . . , xn,s) be a strict digital (t,m, s)-net over Fb. Let εn,i for 1 ≤ i ≤ s
and 0 ≤ n ≤ bm − 1 be nonnegative reals with εn,i < b−m for all n and

i. Then {y0, . . . ,ybm−1} with yn := (xn,1 + εn,1, . . . , xn,s + εn,s) is a strict

(t,m, s)-net in base b.

Remark 4.64 Indeed this property holds for all (t,m, s)-nets in base b

whose points have coordinates of the form a/bm with integers 0 ≤ a < bm.

Another form of shifting a digital net is of higher relevance. Recall the

scheme for generating a digital (t,m, s)-net over Fb. Let the integer n be

such that 0 ≤ n ≤ bm − 1. Then

n→ n ∈ (Fmb )
⊤ → Cin =




yn,i,1
...

yn,i,m


 ∈ (Fmb )

⊤ → xn,i ∈ [0, 1).

Instead of shifting xn,i like above, let us now shift the column vector




yn,i,1
...

yn,i,m


 ∈ (Fmb )

⊤

by a fixed column vector over Fb, say




σi,1
...

σi,m


 ∈ (Fmb )

⊤.
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That is, instead of xn,i consider zn,i, which is obtained by



zn,i,1
...

zn,i,m


 =




yn,i,1 + σi,1
...

yn,i,m + σi,m




and

zn,i =
ϕ−1(zn,i,1)

b
+ · · ·+ ϕ−1(zn,i,m)

bm
.

We introduce a slightly more general concept here.

Definition 4.65 Let b be a prime power and ϕ : {0, . . . , b− 1} → Fb be a

bijection with ϕ(0) = 0. For x =
∑∞

i=1
ξi
bi
∈ [0, 1) and σ =

∑∞
i=1

ςi
bi
∈ [0, 1),

where ξi, ςi ∈ {0, . . . , b− 1}, we define the (b-adic) digital shifted point y by

y = x⊕b,ϕ σ :=
∑∞

i=1
ηi
bi

where ηi = ϕ−1(ϕ(ξi) + ϕ(ςi)), and where the “+”

is addition in Fb.

For higher dimensions s > 1 let σ = (σ1, . . . , σs) ∈ [0, 1)s. For x =

(x1, . . . , xs) ∈ [0, 1)s we define the (b-adic) digital shifted point y by y =

x⊕b,ϕ σ = (x1 ⊕b,ϕ σ1, . . . , xs ⊕b,ϕ σs).

In the following b and the bijection ϕ are considered to be fixed and

therefore we simply write ⊕ instead of ⊕b,ϕ.

Definition 4.66 Let b be a prime power and ϕ : {0, . . . , b − 1} → Fb be

a bijection with ϕ(0) = 0. For a point set P = {x0, . . . ,xN−1} in [0, 1)s

and a σ ∈ [0, 1)s the point set Pσ = {x0 ⊕ σ, . . . ,xN−1 ⊕ σ} is called the

(b-adic) digitally shifted point set P, or the (b-adic) digitally shifted version

of P. The vector σ ∈ [0, 1)s is called a (b-adic) digital shift.

If we use a digital shift in conjunction with a (t,m, s)-net, then they are

always assumed to be in the same base b. Therefore, if it is clear with respect

to which base b a point is shifted, we may omit the phrase “b-adic”.

We show now that a digital shift preserves the (t,m, s)-net structure.

Lemma 4.67 Let b be a prime power, ϕ : {0, . . . , b − 1} → Fb a bijection

with ϕ(0) = 0 and let {x0, . . . ,xbm−1} be a (strict) (t,m, s)-net in base b,

xn = (xn,1, . . . , xn,s) for 0 ≤ n < bm, and let σ = (σ1, . . . , σs) ∈ [0, 1)s. Then

the digitally shifted point set formed by the points yn = xn⊕σ, 0 ≤ n < bm,

is again a (strict) (t,m, s)-net in base b with probability one with respect

to the Lebesgue measure of σ’s. (If the σi’s have only finitely many b-adic

digits different from zero, then the assertion is always true.)

Proof First we note that for any x ∈ [0, 1) the set of all σ ∈ [0, 1), for which
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the b-adic expansion of x ⊕ σ has only finitely many digits different from

b− 1, is countable. In fact, if ξj denotes the digits in the b-adic expansion of

x and ςj denotes the digits in the b-adic expansion of σ, then x⊕σ has only

finitely many digits different from b− 1 iff there is an index j0 such that for

all j ≥ j0 we have ϕ(ξj)+ϕ(ςj) = ϕ(b− 1) ∈ Fb and this holds if and only if

ςj = ϕ−1(ϕ(b − 1) − ϕ(ξj)) ∈ Fb for all j ≥ j0. Thus the Lebesgue measure

of this set is zero and the probability that this case occurs is zero as well.

For 1 ≤ i ≤ s let σi =
ςi,1
b +

σi,2
b2

+ · · · . Further, for 0 ≤ n < bm and

1 ≤ i ≤ s let xn,i =
ξn,i,1

b +
ξn,i,2

b2
+ · · · and yn,i = ηn,i,1

b +
ηn,i,2

b2
+ · · · , where

for k ≥ 1,

ηn,i,k = ϕ−1(ϕ(ξn,i,k) + ϕ(ςi,k)).

In the following we assume that infinitely many of the ηn,i,1, ηn,i,2, . . . are

different from b− 1. As shown above this occurs with probability one. Let

J =

s∏

i=1

[
Ai
bdi
,
Ai + 1

bdi

)

be an elementary interval of volume bt−m, i.e., d1, . . . , ds ∈ N0 with d1 +

· · · + ds = m − t and integers A1, . . . , As with 0 ≤ Ai < bdi for 1 ≤ i ≤ s,

and let
Ai
bdi

=
Ai,1
b

+ · · ·+ Ai,di
bdi

.

Then the point yn is contained in J if and only if

ηn,i,k = Ai,k for all 1 ≤ k ≤ di and 1 ≤ i ≤ s,

and this is true if and only if

ξn,i,k = ϕ−1(ϕ(Ai,k)− ϕ(ςi,k)) for all 1 ≤ k ≤ di and 1 ≤ i ≤ s.(4.10)

Let now Bi,k ∈ Fb such that

Bi,k = ϕ(Ai,k)− ϕ(ςi,k),

and let
Bi
bdi

=
Bi,1
b

+ · · ·+ Bi,di
bdi

,

where Bi,k = ϕ−1(Bi,k) for 1 ≤ k ≤ di and 1 ≤ i ≤ s. Then (4.10) is

equivalent to

xn ∈M :=

s∏

i=1

[
Bi
bdi
,
Bi + 1

bdi

)
.
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NowM is again an elementary interval of volume bt−m. Since {x0, . . . ,xbm−1}
forms a (t,m, s)-net in base b, it follows that M contains exactly bt points of

{x0, . . . ,xbm−1}. Therefore J contains exactly bt points of {y0, . . . ,ybm−1}
and hence this point set is a (t,m, s)-net in base b.

If t = 0, then the yn, 0 ≤ n < bm, form a strict net. If t ≥ 1, then let now

M :=
s∏

i=1

[
Bi
bdi
,
Bi + 1

bdi

)

be an elementary interval of order m− t+ 1, such that M does not contain

exactly bt−1 of the elements of the strict (t,m, s)-net {x0, . . . ,xbm−1}. Let
Bi =

Bi,1

b +· · ·+Bi,di

bdi
. Defining now in the opposite way Ai =

Ai,1

b +· · ·+Ai,di

bdi
such that ϕ(Ai,k) = ϕ(Bi,k) + ϕ(ςi,k) ∈ Fb for 1 ≤ k ≤ di and 1 ≤ i ≤ s,

then as above

xn ∈M if and only if xn ∈ J :=
∏s
i=1

[
Ai

bdi
, Ai+1
bdi

)
.

Therefore the strictness of the net {y0, . . . ,ybm−1} follows.
Remark 4.68 Note that for a given net the digital shift σ ∈ [0, 1)s can

be chosen such that the origin is not contained in the shifted version of the

net any more. Hence, in general, the digitally shifted version of a digital net

is not a digital net.

There are several variants of digital shifts. We introduce the so-called

digital shift of depth m and a simplified digital shift for digital nets. Such

shifts are used later in Chapter 16 when we show the existence of digital

nets which achieve the best possible order of the L2-discrepancy.

Definition 4.69 Let b be a prime power and let ϕ : {0, . . . , b−1} → Fb be a

bijection with ϕ(0) = 0. Let Pbm = {x0, . . . , xbm−1} be a digital (t,m, 1)-net

over Fb and let

xn =
xn,1
b

+
xn,2
b2

+ · · ·+ xn,m
bm

be the b-adic digit expansion of xn. Choose σ = ς1
b + · · · + ςm

bm with ςi ∈ Fb
and define

zn,i := ϕ−1(ϕ(xn,i) + ϕ(ςi)) for 1 ≤ i ≤ m.
Further, for 0 ≤ n < bm, choose δn ∈ [0, b−m). Then the digitally shifted

point set P̃bm = {z0, . . . , zbm−1} is defined by

zn =
zn,1
b

+ · · ·+ zn,m
bm

+ δn.

Such a digital shift is called a digital shift of depth m.
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For higher dimensions s > 1 each coordinate is shifted independently by

a digital shift of depth m.

This means that one applies the same digital shift to the first m digits,

whereas the following digits are shifted independently for each xn. In other

words, a digital shift of depth m is a combination of a digital shift σ =

(σ1, . . . , σs) where the σi’s are of the form σi = ςi,1/b + · · · + ςi,m/b
m with

ςi,j ∈ Fb for 1 ≤ j ≤ m and 1 ≤ i ≤ s, and a geometric shift as used in

Lemma 4.63.

We also introduce a simplified version of a digital shift (of depth m).

Definition 4.70 With the notation from Definition 4.69 above, we define

a digitally shifted point set P̂bm = {z0, . . . , zbm−1} by

zn =
zn,1
b

+ · · ·+ zn,m
bm

+
1

2bm
.

This means we apply the same digital shift to the first m digits and then we

add to each point the quantity 1/(2bm). Such a shift is called a simplified

digital shift (of depth m). For higher dimensions s > 1 each coordinate is

shifted independently by a simplified digital shift.

Geometrically, the simplified digital shift of depth m means that the

shifted points are no longer on the left boundary of elementary intervals

of the form
∏s
i=1[Ai/b

m, (Ai+1)/bm), but they are moved to the midpoints

of such intervals. Note that for the simplified digital shift we only have bm

possibilities, which means only sm digits need to be selected in performing

a simplified digital shift. In comparison, the digital shift of depth m requires

infinitely many digits.

It can be shown that a (strict) digital (t,m, s)-net over Fb, which is shifted

by a digital shift of depthm or a simplified digital shift independently in each

coordinate is again a (strict) (t,m, s)-net in base b with the same quality

parameter t (with probability one in the case of a digital shift of depth m).

See Exercise 4.9 and Exercise 4.10.

Example 4.71 Consider the eight elements of the digital (0, 3, 2)-net over

Z2 shown on the left-hand side of Figure 4.22, which are generated by

C1 =




0 0 1

0 1 0

1 0 0


 and C2 =




1 1 1

0 1 0

0 0 1


 .

Applying a 2-adic digital shift σ = (σ1, σ2) with σ1 = 1/2 and σ2 = 7/8
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Figure 4.22 A digital (0, 3, 2)-net over Z2 and its digitally shifted version.

then gives, for example, y3 = (y3,1, y3,2), where

y3,1 ←




0 0 1

0 1 0

1 0 0






1

1

0


+




1

0

0


 =




0

1

1


+




1

0

0


 =




1

1

1




and

y3,2 ←




1 1 1

0 1 0

0 0 1






1

1

0


+




1

1

1


 =




0

1

0


+




1

1

1


 =




1

0

1




and hence y3 = (7/8, 5/8).

We obtain the point set shown on the right-hand side of Figure 4.22, which

obviously cannot be obtained by the original digital net by an ordinary

translation, and which is not a digital net any more (as it does not contain

the origin).

Now let us disturb this point set in the “positive direction” by individual

quantities δn,i less than 1/8 in each coordinate i for 0 ≤ n < 8 (that is, we

have a digital shift of depth 3). Then we arrive, for example, at the point

set shown in Figure 4.23, which is still a strict (0, 3, 2)-net in base 2.

A further very important structural property of digital nets is their group

structure which was first used by Larcher, Niederreiter & Schmid [139].

Let b be a prime power and let ϕ : {0, . . . , b− 1} → Fb be a bijection with

ϕ(0) = 0. The s-dimensional unit cube is an abelian group with respect to

the digit-wise b-adic addition ⊕ as used in Definition 4.65. For x, y ∈ [0, 1)

let x = ξ1
b + ξ2

b2 + · · · and y = η1
b + η2

b2 + · · · be their b-adic expansions (with

ξi 6= b− 1 for infinitely many i and ηj 6= b − 1 for infinitely many j). Then

x⊕b,ϕ y := ζ1
b + ζ2

b2
+ · · · with
ζj = ϕ−1(ϕ(ξj) + ϕ(ηj)) for j ∈ N.
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Figure 4.23 A digital shift of depth 3 applied to a digital (0, 3, 2)-net in
base 2.

For vectors x,y ∈ [0, 1)s the b-adic addition x⊕b,ϕy is defined component

wise.

As before, the base b and the bijection ϕ are considered to be fixed and

therefore we simply write ⊕ instead of ⊕b,ϕ. If we use the b-adic addition

⊕ = ⊕b,ϕ in conjunction with a digital net, then we always assume that b

is the base of the digital net and ϕ is the bijection from the construction of

the digital net.

Now we consider the natural continuation of ⊕ to [0, 1)s which we denote

again by ⊕. Obviously ([0, 1)s,⊕) is an abelian group. We then have the

following lemma.

Lemma 4.72 Let b be a prime power and let ϕ : {0, . . . , b − 1} → Fb be

a bijection with ϕ(0) = 0. Any digital (t,m, s)-net over Fb is a subgroup of

([0, 1)s,⊕). If the points of the digital net are pairwise different, then this

subgroup is isomorphic to Fmb .

Proof Any column vector

n =




n0
...

nm−1


 ∈ (Fmb )

⊤

uniquely represents an integer n := n0+n1b+· · ·+nm−1b
m−1 from {0, . . . , bm−

1} via ni = ϕ−1(ni) for 0 ≤ i < m, and to any such integer belongs a net

element xn.

We show that the mapping

Ψ : (Fmb )
⊤ → {x0, . . . ,xbm−1}, n 7→ xn

is a group-isomorphism from the additive group of Fmb to ({x0, . . . ,xbm−1},⊕).
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Let

n :=




n0
...

nm−1


 and l :=




l0
...

lm−1




be two elements from (Fmb )
⊤. Then the property Ψ(n + l) = Ψ(n) ⊕ Ψ(l)

easily follows from the fact that for any m ×m matrix C over Fb we have

C(n + l) = Cn + Cl. If the points of the digital net are pairwise different,

then the mapping Ψ is surjective and therefore also injective, because |Fmb | =
|{x0, . . . ,xbm−1}|. The result follows.

Remark 4.73 With the notation of the b-adic addition we may interpret

the digitally b-adic digital shifting of a digital net as a translation of the dig-

ital net with respect to ⊕ along a certain translation vector of [0, 1)s. From

the group structure of the digital net it follows that a digital net remains

unchanged by translation with respect to ⊕ if and only if the translation

vector is an element of the digital net.

Example 4.74 In the shifting example above the translation vector was

given by (1/2, 7/8) in [0, 1)2. This point does not belong to the original

digital net, so that the digitally shifted net is different from the original one.

For the following let b be a prime number and identify the finite field

Fb with Zb. In this case we show how b-adic Walsh functions are linked to

digital nets over Zb. This connection is very important for the analysis of the

discrepancy of digital nets and of the worst-case error of QMC rules using

digital nets in certain function spaces.

Let {x0, . . . ,xbm−1} be a digital (t,m, s)-net over Zb. By Corollary A.7,

for all k ∈ Ns0, we have

bwalk(xh ⊕b xi) = bwalk(xh) bwalk(xi)

and hence bwalk is a character on the group {x0, . . . ,xbm−1}. Now we can

prove the following very important character property of Walsh functions.

Lemma 4.75 Let b be a prime and let {x0, . . . ,xbm−1} be a digital (t,m, s)-

net over Zb generated by the m×m matrices C1, . . . , Cs over Zb. Then for

a k = (k1, . . . , ks) ∈ {0, . . . , bm − 1}s we have

bm−1∑

h=0

bwalk(xh) =

{
bm if C⊤

1 k1 + · · ·+ C⊤
s ks = 0,

0 otherwise,

where for k ∈ {0, . . . , bm − 1} we denote by k the m-dimensional column
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vector of b-adic digits of k, i.e., k ∈ (Zmb )
⊤, and 0 denotes the zero-vector

in (Zmb )
⊤.

Proof Since bwalk is a character, we obtain, by using Lemma 4.72, that

bm−1∑

h=0

bwalk(xh) =

{
bm if bwalk(xh) = 1 for all 0 ≤ h < bm,

0 otherwise.

We have bwalk(xh) = 1 for all 0 ≤ h < bm if and only if

s∑

i=1

ki · xh,i = 0 for all 0 ≤ h < bm,

where ki is the m-dimensional column vector of b-adic digits of ki and xh,i
denotes the m-dimensional column vector of b-adic digits of the ith compo-

nent of xh. From the construction of the digital net we find that xh,i = Cih

and hence bwalk(xh) = 1 for all 0 ≤ h < bm if and only if

s∑

i=1

ki · Cih = 0 for all 0 ≤ h < bm,

where h denotes the row vector of b-adic digits of h. This is satisfied if and

only if

C⊤
1 k1 + · · ·+ C⊤

s ks = 0.

A generalisation of Lemma 4.75 to the case of digital nets over Fb with

prime power b can be found in [219, Lemma 2.5]. In this case one requires

the more general concept of Walsh functions over the finite field Fb.

Following from Lemma 4.75, we introduce the notion of a so-called dual

net, which is, in this form, due to Niederreiter and Pirsic [187].

Definition 4.76 Let b be a prime. For a digital net with generating ma-

trices C1, . . . , Cs over Zb we call the matrix C = (C⊤
1 | . . . |C⊤

s ) ∈ Zm×sm
b the

overall generating matrix of the digital net. The corresponding dual net is

defined by

D = D(C1, . . . , Cs) := {k ∈ {0, . . . , bm − 1}s : C⊤
1 k1 + · · ·+ C⊤

s ks = 0},
where k = (k1, . . . , ks) and for 1 ≤ i ≤ s we denote by ki the m-dimensional

column vector of b-adic digits of ki ∈ {0, . . . , bm − 1}. Furthermore, let

D′ = D′(C1, . . . , Cs) := D \ {0}.
Remark 4.77 Sometimes we also use the definition

D∞ = D∞(C1, . . . , Cs) := {k ∈ Ns0 : trm(k) ∈ D(C1, . . . , Cs)}
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= {k ∈ Ns0 : C⊤
1 trm(k1) + · · · + C⊤

s trm(ks) = 0},

where for k ∈ N0 with b-adic expansion k =
∑

j≥0 κjb
j we write trm(k) =

κ0 + κ1b+ · · ·+ κm−1b
m−1 and trm(k) := (κ0, . . . , κm−1)

⊤ ∈ (Zmb )
⊤ and for

k = (k1, . . . , ks) we write trm(k) = (trm(k1), . . . , trm(ks)) ∈ {0, . . . , bm−1}s.
Again we speak of the dual net.

Duality for digital nets was first introduced and studied by Niederreiter

& Pirsic [187] and, in a more specialised setting, by Skriganov [241], see also

[22]. Our definition of a dual net here corresponds to the definitions given in

[187]. We are concerned with duality theory for digital nets in more detail

in Chapter 7.

Digital (t, s)- and (T, s)-sequences

To construct a digital (T, s)-sequence in prime power base b, we again use

a finite field Fb and a bijection ϕ : {0, . . . , b − 1} → Fb with ϕ(0) = 0, and

we speak then of a “digital (T, s)-sequence over Fb”. (Again, for arbitrary b

one has to choose a finite commutative Ring R with identity of order b, see

[135, 139, 175] for more information.) If b is a prime, we identify Fb with Zb
and we omit the bijection ϕ and the bar.

Let now b be a prime power. To generate a digital (T, s)-sequence over Fb
we first have to choose N×N matrices C1, . . . , Cs (one for each component)

over Fb. That is, matrices of the form

C =




c11 c12 c13 . . .

c21 c22 c23 . . .

c31 c32 c33 . . .
...

...
...

. . .


 ∈ FN×N

b .

Example 4.78 For example, to generate a (T, 2)-sequence over Z2 take

the matrices

C1 =




1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .



∈ ZN×N

2
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and

C2 =




(
0
0

) (
1
0

) (
2
0

) (
3
0

)
. . .

0
(
1
1

) (
2
1

) (
3
1

)
. . .

0 0
(
2
2

) (
3
2

)
. . .

0 0 0
(
3
3

)
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .




=




1 1 1 1 1 . . .

0 1 0 1 0 . . .

0 0 1 1 0 . . .

0 0 0 1 0 . . .

0 0 0 0 1 . . .
...

...
. . .

. . .
. . .



∈ ZN×N

2 ,

where the binomial coefficients are taken modulo 2.

To generate now one of the points xn = (xn,1, . . . , xn,s), with n ∈ N0,

of the (T, s)-sequence, we first write n in its b-adic (i.e., base b) expansion

n =
∑∞

i=0 aib
i with ai ∈ {0, . . . , b − 1} and ai = 0 for all i large enough.

Then take the column vector

n =




ϕ(a0)

ϕ(a1)

ϕ(a2)
...


 ∈ (FN

b )
⊤.

For example, to generate the point x13 = (x13,1, x13,2) of a (T, s)-sequence

over Z2, write

n = 13 = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23 + 0 · 24 + · · · .

This corresponds to the vector

n =




1

0

1

1

0

0
...




.

To generate the point xn = (xn,1, . . . , xn,s) we explain how to generate

the ith coordinate xn,i. The value of xn,i is obtained by multiplying the ith

matrix Ci by n in Fmb , which gives as result a column vector over Fb, say

Cin =




yn,i,1
yn,i,2
...


 ∈ (FN

b )
⊤.
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(Note that for the multiplication only finitely many of the entries of n are dif-

ferent from zero, as we assumed that ϕ(0) = 0.) The elements ϕ−1(yn,i,j) ∈
{0, . . . , b− 1}, for j ∈ N, are now the b-adic digits of xn,i, i.e.,

xn,i =
ϕ−1(yn,i,1)

b
+
ϕ−1(yn,i,2)

b2
+ · · · .

Definition 4.79 We call the sequence (x0,x1, . . .) constructed in this way

a digital sequence over Fb with generating matrices C1, . . . , Cs, or short, a

digital sequence.

Since any sequence in [0, 1)s is a (T, s)-sequence in base b with a certain

quality function T (at least for T(m) = m) we also speak of a digital (T, s)-

sequence over Fb.

Example 4.80 In Example 4.78, for n = 13, we have

C1n =




1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

0 0 1 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 0 0 1 0 . . .

0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .







1

0

1

1

0

0
...




=




1

0

1

1

0

0
...




C2n =




1 1 1 1 1 1 . . .

0 1 0 1 0 1 . . .

0 0 1 1 0 0 . . .

0 0 0 1 0 0 . . .

0 0 0 0 1 1 . . .

0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .







1

0

1

1

0

0
...




=




1

1

0

1

0

0
...




,

which yields x13,1 = 1
2 + 1

8 + 1
16 = 11

16 , x13,2 = 1
2 + 1

4 + 1
16 = 13

16 , and hence

x13 =
(
11
16 ,

13
16

)
.

Remark 4.81 Depending on the matrices C1, . . . , Cs it may happen that

the vector Cin =: yn contains infinitely many entries different from zero.

For practical purposes this requires an adaptation of the point generation.

Usually the vector yn is truncated at a suitable place.

Further, another theoretical problem may arise. It should be avoided that

the vector yn contains only finitely many elements different from ϕ(b − 1).

Because of the nonuniqueness of representation of the b-adic real numbers
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represented by such “digit vectors”, the net structure of the sequence in

consideration would be destroyed. This does not happen for matrices like in

the example above. But it may happen for other choices of matrices. This is

the reason for the following additional condition on the matrices C1, . . . , Cs.

Let

Ci = (c
(i)
j,r)j,r∈N ∈ FN×N

b

for 1 ≤ i ≤ s. We demand that for all i and r we have c
(i)
j,r = 0 for all j large

enough.

The quality function of digital sequences

As already mentioned, every sequence in [0, 1)s is a (T, s)-sequence in base b,

with T(m) = m. Therefore we may ask: What is the strict quality function

of the above (T, s)-sequence in base b? The answer is given with the help

of the following quantity ρm, which in some sense “measures” the “linear

independence” of the s infinite matrices C1, . . . , Cs.

Definition 4.82 Let C1, . . . , Cs be N×N matrices over the finite field Fb.

For any integers 1 ≤ i ≤ s and m ≥ 1 by C
(m)
i we denote the left upper

m×m sub-matrix of Ci. Then

ρm = ρm(C1, . . . , Cs) := ρ(C
(m)
1 , . . . , C(m)

s ),

where ρ is the linear independence parameter defined for s-tuples of m×m
matrices over Fb in Definition 4.50.

Example 4.83 In Example 4.78 above, for every m ≥ 1 the matrices

C
(m)
1 and C

(m)
2 are just the first and the third matrix of Example 4.57. For

these matrices the value of ρ always equals m. Hence ρm(C1, C2) = m for

all m ∈ N.

Now we can determine the strict quality function T of a digital sequence

over Fb. The proof of the following theorem gives some additional insight

into the structure of a digital (T, s)-sequence.

Theorem 4.84 Let b be a prime power and let ϕ : {0, . . . , b − 1} → Fb
be a bijection with ϕ(0) = 0. The sequence (x0,x1, . . .) constructed by the

digital method with the N×N matrices C1, . . . , Cs over Fb is a strict (T, s)-

sequence in base b with T(m) = m − ρm for all m ∈ N, where ρm is the

quantity defined in Definition 4.82.
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Proof By the definition of a (T, s)-sequence we have to show that for any

m ∈ N and any k ∈ N0 the point set

{xkbm , . . . ,xkbm+bm−1}

is a strict (T(m),m, s)-net in base b. (In fact, it suffices to show the strictness

for at least one of these blocks.) Indeed, for given k andm, and any l between

0 and bm − 1 let k = κr+1b
r + · · ·+ κ1 and l = λm−1b

m−1 + · · · + λ0 be the

base b representations of k and l. For n = kbm + l we have

n = (ϕ(λ0), . . . , ϕ(λm−1), ϕ(κ1), . . . , ϕ(κr+1), . . .)
⊤ ∈ (FN

b )
⊤

and with the following representation of the matrices Ci,

Ci =




C
(m)
i D

(m)
i

F
(m)
i



∈ FN×N

b

we have

Cin =




C
(m)
i




ϕ(λ0)
...

ϕ(λm−1)




0

0
...




+




D
(m)
i




ϕ(κ1)
...

ϕ(κr+1)

0
...




0

0
...




+




0
...

0

F
(m)
i n


 .

Now we invoke Lemma 4.63 and Lemma 4.67 from Section 4.4. For the point
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set under consideration the vector



D
(m)
i




ϕ(κ1)
...

ϕ(κr+1)

0
...




0

0
...




is constant. The term



0
...

0

F
(m)
i n




increases the value of each coordinate of the point xn by a value less than b
−m

(here we use the additional condition in the definition of digital sequences).

Therefore the point set

{xkbm , . . . ,xkbm+bm−1}

is the digital net over Fb generated by the matrices C
(m)
1 , . . . , C

(m)
s , which is

shifted by a digital shift of depth m. Hence, by Lemmas 4.52, 4.63, and 4.67,

this point set is a strict (t,m, s)-net in base b with quality parameter t equal

to the quality parameter of the digital net over Fb generated by the matrices

C
(m)
1 , . . . , C

(m)
s . This parameter, by Lemma 4.52 and Definition 4.82, is m−

ρm and the result follows.

Example 4.85 According to Example 4.83 and Theorem 4.84, the digital

sequence from Example 4.78 provides a digital (0, 2)-sequence over Z2.

Distribution properties of digital sequences

Concerning the uniform distribution of a strict digital (T, s)-sequence over

Fb, by Theorem 4.32 in Section 4.3, we have again that it is uniformly dis-

tributed if limm→∞m−T(m) =∞. In contrast to the general case however,

for digital (T, s)-sequences, this condition can be shown to be a necessary

and sufficient one.
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Theorem 4.86 Let b be a prime power. A strict digital (T, s)-sequence

over Fb is uniformly distributed modulo one, if and only if

lim
m→∞

m−T(m) =∞.

For the proof of this result we need the following lemma.

Lemma 4.87 Let b be a prime power. For integers m ≥ 1 and t with

0 ≤ t < m, let c1, . . . , cm−t ∈ Fmb be given. Let L be the number of solutions

of the system of linear equations cjz = 0 for 1 ≤ j ≤ m − t in unknowns

z ∈ (Fmb )
⊤. Then bt divides L.

Proof Let us consider the additive group of (Fm−t
b )⊤ and denote it byG. Let

Ĝ denote the dual group of characters χ of G. Let cj := (cj,1, . . . , cj,m) ∈ Fmb
and

ai :=




c1,i
...

cm−t,i


 ∈ (Fm−t

b )⊤

for 1 ≤ i ≤ m. Let H be the subgroup

H = {z1a1 + · · ·+ zmam : z1, . . . , zm ∈ Fb}

in G.

A character χ ∈ Ĝ is trivial on H if and only if it is trivial on all of the

groups Hi := {zai : z ∈ Fb}.
We have

L =
∑

z∈(Fm
b

)⊤

cjz=0

∀ j∈{1,...,m−t}

1

=
∑

z∈(Fm
b )⊤

1

bm−t
∑

χ∈Ĝ
χ




c1z
...

cm−tz




=
1

bm−t
∑

χ∈Ĝ

∑

z∈(Fm
b )⊤

χ




c1z
...

cm−tz




=
1

bm−t
∑

χ∈Ĝ

m∏

i=1

∑

zi∈Fb

χ(ziai).
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Now
∑

zi∈Fb

χ(ziai) =

{
b if χ is trivial on Hi,

0 otherwise,

thus
m∏

i=1

∑

zi∈Fb

χ(ziai) =

{
bm if χ is trivial on H,

0 otherwise.

Consequently

L =
1

bm−t
∑

χ∈Ĝ
χ trivial on H

bm = bt |{χ ∈ Ĝ : χ trivial on H}|

and hence bt divides L.

Proof of Theorem 4.86 By Theorem 4.32 it suffices to show that the digital

sequence S = (x0,x1, . . .) is not uniformly distributed if m−T(m) does not

tend to infinity. Since m − T(m) is monotonically increasing, this means

m − T(m) = κ for some integer κ ≥ 0 and all m ≥ m0, for some integer

m0 ≥ 0. Hence, for all m ≥ m0, the point set {x0, . . . ,xbm−1} is a strict

(m− κ,m, s)-net in base b, in particular, it is never a (m− κ− 1,m, s)-net

in base b. Assume that S is generated by the N × N matrices C1, . . . , Cs.

Let c
(i)
j be the jth row vector of the ith matrix and for m ∈ N let πm(c

(i)
j )

be the vector from Fmb consisting of the first m components of c
(i)
j . Hence,

there are integers d1, . . . , ds ≥ 0, which may depend on m, i.e., di = di(m),

with d1 + · · ·+ ds = κ+ 1 and elements e
(i)
j ∈ Fb, 1 ≤ j ≤ di and 1 ≤ i ≤ s

such that the system

πm(c
(i)
j )n = e

(i)
j for 1 ≤ j ≤ di and 1 ≤ i ≤ s

has L 6= bm−κ−1 solutions n ∈ (Fmb )
⊤ (see Lemma 4.59 and the proof of

Theorem 4.84). Hence, the corresponding homogeneous system of equations

πm(c
(i)
j )n = 0 for 1 ≤ j ≤ di and 1 ≤ i ≤ s

has more than bm−κ−1 solutions, indeed, by Lemma 4.87, at least 2bm−κ−1

solutions. Therefore the box

J = J(m) =

s∏

i=1

[
0,

1

bdi

)

of volume b−κ−1 contains at least 2bm−κ−1 points (see again the proof of

Theorem 4.84). As there is only a finite number of boxes J(m), there is one
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box, say J∗, such that for infinitely many m ≥ m0 we have J(m) = J∗.
Therefore we obtain ∣∣∣∣

A(J∗, bm,S)
bm

− λs(J∗)

∣∣∣∣ ≥
1

bκ+1

for infinitely many m ≥ m0. Thus S = (x0,x1, . . .) is not uniformly dis-

tributed modulo one.

Corollary 4.88 Let b be a prime power. The N × N matrices C1, . . . , Cs
over Fb generate a uniformly distributed sequence in [0, 1)s if and only if

lim
m→∞

ρm =∞,

where ρm = ρ(C
(m)
1 , . . . , C

(m)
s ) is the independence quantity defined in Defi-

nition 4.82.

Proof This follows from Theorem 4.84 and from Theorem 4.86.

Remark 4.89 From the above result and from Theorem 4.34 it also follows

that a strict digital (T, s)-sequence over Fb is even well-distributed if and

only if limm→∞m−T(m) =∞.

Propagation rules for digital sequences

For digital (T, s)-sequences we have the following simple propagation rules:

1. Any digital (T, s)-sequence over Fb is a digital (U, s)-sequence over Fb
for all U with U(m) ≥ T(m) for all m.

2. If the matrices C1, . . . , Cs generate a digital (T, s)-sequence over Fb and

if we take any s′ (where s′ ≤ s) of these matrices, then these matrices

form a digital (T, s′)-sequence over Fb.

Structural results for digital sequences

Note that there is no analogue to Lemma 4.63 for digital (T, s)-sequences

over Fb. In general, common addition of a fixed (even very “small”) constant

vector can disturb the (T, s)-sequence property (i.e., can destroy its quality).

However, digitally shifting using ⊕b,ϕ from Definition 4.65 is possible.

Definition 4.90 Let b be a prime power and let ϕ : {0, . . . , b − 1} → Fb
be a bijection with ϕ(0) = 0. For a sequence S = (x0,x1, . . .) in [0, 1)s and

a σ ∈ [0, 1)s the sequence Sσ = (x0 ⊕ σ,x1 ⊕ σ, . . .} is called the (b-adic)

digitally shifted sequence S, or the (b-adic) digitally shifted version of S. The
vector σ ∈ [0, 1)s is called a (b-adic) digital shift.
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If we use a digital shift in conjunction with a (T, s)-sequence, then they

are always considered to be in the same base b and with the same bijection

ϕ. Therefore, if it is clear with respect to which base b a point is shifted we

may omit the phrase “b-adic”.

We show that a digital shift preserves the (T, s)-sequence structure.

Lemma 4.91 Let b be a prime power and let ϕ : {0, . . . , b − 1} → Fb be

a bijection with ϕ(0) = 0. Let S = (x0,x1, . . .) be a (strict) digital (T, s)-

sequence over Fb and let σ ∈ [0, 1)s. Then the digitally shifted sequence

Sσ = (y0,y1, . . .) is a (strict) (T, s)-sequence in base b.

Remark 4.92 For σ = (σ1, . . . , σs) ∈ [0, 1)s it should be avoided that

the σi, 1 ≤ i ≤ s, contain only finitely many b-adic digits different from

ϕ−1(b− 1) (see also the Remark 4.81).

Proof of Lemma 4.91 We use the notation of the proof of Theorem 4.84.

For 1 ≤ i ≤ s and σi =
ςi,1
b +

ςi,2
b2

+ · · · with ςi,k ∈ {0, . . . , b − 1} for k ≥ 1,

let σi := (ϕ(ςi,1), ϕ(ςi,2), . . .)
⊤ ∈ (F∞

b )⊤.
The subsequence

{ykbm , . . . ,ykbm+bm−1}

is obtained by calculating, for

n = (ϕ(λ0), . . . , ϕ(λm−1), ϕ(κ1), . . . , ϕ(κr+1), 0, . . .)
⊤ ∈ (FN

b )
⊤,

the shifted vector

Cin+ σi =




C
(m)
i




ϕ(λ0)
...

ϕ(λm−1)




0

0
...




+




ϕ(ςi,1)
...

ϕ(ςi,m)

0
...




+




D
(m)
i




ϕ(κ1)
...

ϕ(κr+1)

0
...




0

0
...




+




0
...

0

F
(m)
i n+




ϕ(ςi,m+1)

ϕ(ςi,m+2)
...







.



Exercises 197

Using Lemma 4.63 and Lemma 4.67, this yields a (strict) (T(m),m, s)-net

in base b and the result follows.

Like digital (t,m, s)-nets over Fb, also digital (T, s)-sequences over Fb have

a group structure. Recall that ([0, 1)s,⊕) is an abelian group.

Theorem 4.93 Let b be a prime power and let ϕ : {0, . . . , b−1} → Fb be a

bijection with ϕ(0) = 0. Any digital (T, s)-sequence over Fb is a subgroup of

([0, 1)s,⊕). If the points of the digital sequence are pairwise different, then

this subgroup is isomorphic to the additive group F̃N
b := {(g1, g2, . . .) ∈ FN

b :

gi = 0 for almost all i ∈ N}.

Proof Any nonnegative integer n is uniquely represented by a vector

n =




n0
n1
...


 ∈ (F̃N

b )
⊤,

where n := n0+n1b+ · · · via ni = ϕ−1(ni), and to any such integer belongs

an element xn of the digital sequence. This holds also the other way round,

namely, to any point xn from the digital sequence belongs a unique vector

n ∈ (F̃N
b )

⊤ and therefore a uniquely determined nonnegative integer n. Hence

the mapping

Ψ : (F̃N
b )

⊤ → {x0,x1, . . .}, n 7→ xn

is bijective. It can be shown, like in the proof of Lemma 4.72, that Ψ is a

group homomorphism. Hence the result follows.

Exercises

4.1 Construct “by hand” a (0, 2, 2)-net in base 3.

4.2 Let b ≥ 2 be an integer. Show that for any s ≥ 2 and any m ≥ 2 there

is a (m− 1,m, s)-net in base 2.

4.3 Show that the van der Corput sequence in base b is a (0, 1)-sequence

in base b.

4.4 Show that the 4× 4 matrices

C1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , C2 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 ,
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C3 =




1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1


 , C4 =




0 1 1 0

1 1 0 1

0 0 0 1

0 0 1 0


 ,

over Z2 generate a digital (1, 4, 4)-net over Z2.

4.5 Determine the strict quality parameter t of the digital (t, 3, 2)-net over

F4 from Example 4.49.

4.6 Prove Lemma 4.59.

4.7 Prove Lemma 4.61.

4.8 Let b be a prime power, let s ∈ N and let C1, . . . , Cs be N×N matrices

over Fb. For m ∈ N let C
(m)
i be the left upper m × m submatrix of

Ci, 1 ≤ i ≤ s. Show that C1, . . . , Cs generate a strict digital (T, s)-

sequence over Fb with T(m) = δ(C
(m)
1 , . . . , C

(m)
s ), where δ is defined as

in Definition 4.58.

4.9 Show that a (strict) digital (t,m, s)-net in base b, which is shifted by a

digital shift of depth m (Definition 4.69) independently in each coordi-

nate, is, with probability one, a (strict) (t,m, s)-net in base b with the

same quality parameter t. (Assume that the shifts are uniformly and

i.i.d..)

4.10 Show that a (strict) digital (t,m, s)-net in base b, which is shifted

by a simplified digital shift (Definition 4.70), independently in each

coordinate, is again a (strict) (t,m, s)-net in base b with the same

quality parameter t.

4.11 Let b be a prime power and let the N×N matrices C1, . . . , Cs generate

a digital (T, s)-sequence over the finite field Fb. For any m ≥ 1 consider

the left upper m×m sub-matrices C
(m)
1 , . . . , C

(m)
s . Take

C
(m)
s+1 := E′

m =




0 0 . . . 0 1

0 . .
.

1 0
... . .

.
. .
.

. .
. ...

0 1 . .
.

0

1 0 . . . 0 0



∈ Fm×m

b .

Show that the m×m matrices C
(m)
1 , . . . , C

(m)
s , C

(m)
s+1 generate a digital

(r(m),m, s + 1)-net over Fb with r(m) := max{T(0), . . . ,T(m)}. Re-
mark: Note that this is a “digital version” of Lemma 4.38. Note also

the increase of the dimension from s to s+ 1.

4.12 For k ∈ N with b-adic expansion k = κ0 + κ1b+ · · ·+ κa−1b
a−1, where

κa−1 6= 0, we define ρ(k) = a. Furthermore we define ρ(0) = 0. For
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k = (k1, . . . , ks) ∈ Ns0 let ρ(k) =
∑s

i=1 ρ(ki). (This weight function

is intimately related to the so-called NRT-weight which is introduced

and used in Chapter 7 (Definition 7.1). See also Chapter 16, Defini-

tion 16.24.)

Show that if a point set P = {x0, . . . ,xbm−1} consisting of bm points

in [0, 1)s is a (t,m, s)-net in base b, b ≥ 2 an arbitrary integer, then we

have

bm−1∑

n=0

bwalk(xn) = 0 for all k ∈ Ns0 \ {0} with 0 < ρ(k) ≤ m− t.

Remark: This is [96, Lemma 1]. Compare with Lemma 4.75, but note

that here P does not need to be a digital net. Hint: Show that the Walsh

function bwalk for k = (k1, . . . , ks) ∈ Ns0 satisfying 0 ≤ ki < bgi for 1 ≤
i ≤ s can be written as a step function of the form bwalk =

∑
a caχJa

with coefficients ca ∈ R, where Ja =
∏s
i=1[aib

−gi , (ai + 1)b−gi) and

where the summation is overall possible a = (a1, . . . , as) ∈ Ns0 with

0 ≤ ai < bgi for 1 ≤ i ≤ s. Show that
∑

a ca = 0 whenever k 6= 0 and

use the (t,m, s)-net property of P.
4.13 Show the converse of Exercise 4.12. If P = {x0, . . . ,xbm−1} is a point

set consisting of bm points in [0, 1)s such that

bm−1∑

n=0

bwalk(xn) = 0 for all k ∈ Ns0 \ {0} with 0 < ρ(k) ≤ m− t,

then P is a (t,m, s)-net in base b. Remark: This is [96, Lemma 2]. Note

that P is in general not a digital net. Hint: Consider the Walsh series

expansion of the characteristic function of an arbitrary elementary b-

adic elementary interval of order m− t and use Lemma 3.9.

4.14 Show that for the b-adic spectral test (see Exercise 3.8) of a (t,m, s)-

net P in base b we have σb,bm(P) ≤ bt−m−1. Remark: This is [96, The-

orem 4].

4.15 Show that for the b-adic spectral test of a strict digital (t,m, s)-net P
in base b we have σb,bm(P) = bt−m−1. Remark: This is [96, Corollary 8].
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Discrepancy estimates and average type results

The motivation for introducing and studying the concept of (t,m, s)-nets

and (T, s)-sequences was to generate point sets (also sometimes in high

dimensions) with discrepancy as small as possible. In this chapter we give

an overview on theoretical results for the discrepancy of (digital) nets and

sequences.

While singular results were already given by Sobol′ [251] and by Faure [66],

a first systematic study of the discrepancy of nets was given by Niederre-

iter [170]. These results can also be found in [175, Chapter 4]. Further results

on the star discrepancy of digital nets and sequences, mainly for low dimen-

sions, can be found in [40, 69, 70, 72, 123, 124, 142, 143, 211].

After the work of Niederreiter in [170] and [175], metrical and average

results on the discrepancy of nets and net-sequences were given, see, for

instance, [132, 133, 134, 136, 138]. Further, also the study of weighted dis-

crepancy of net-type point sets received considerable attention in recent

years (see, for example, [49, 144]).

Even though we have many results for the extreme and star discrep-

ancy, very little is known about concrete theoretical estimates for the Lp-

discrepancy, especially for net-type point sets. Singular results in this direc-

tion can be found in [20, 22, 73, 140, 141, 210, 242] (results concerning the

L2-discrepancy are presented in Chapter 16).

The aims of this chapter are the following:

1. We illustrate the ideas underlying all discrepancy estimates for (t,m, s)-

nets with help of detailed elaborated and illustrated proofs of a few dis-

crepancy results.

2. We give a collection of concrete discrepancy estimates for net-type point

sets with references for their proofs.
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3. We give a discussion on these results concerning their value for applica-

tions.

4. We give a collection of metrical and average type estimates for the quality

parameter and the discrepancy of net-type point sets.

5.1 Discrepancy estimates for (t,m, s)-nets and (T, s)-sequences

In this section we give a collection of concrete star discrepancy estimates for

net-type point sets and sequences and we illustrate the ideas underlying all

such estimates.

Star discrepancy estimates for (t,m, s)-nets

The most important and general applicable concrete discrepancy estimates

for (t,m, s)-nets are the following two results given by Niederreiter in [175,

Theorem 4.5 and Theorem 4.6].

Theorem 5.1 The star discrepancy of a (t,m, s)-net P in base b ≥ 3

satisfies

bmD∗
bm(P) ≤ bt

s−1∑

i=0

(
s− 1

i

)(
m− t
i

)⌊
b

2

⌋i
.

Theorem 5.2 The star discrepancy of a (t,m, s)-net P in an even base b

satisfies

bmD∗
bm(P) ≤ bt

s−1∑

i=0

(
m− t
i

)(
b

2

)i
+

(
b

2
− 1

)
bt
s−2∑

i=0

(
m− t+ i+ 1

i

)(
b

2

)i
.

For applications the case b = 2 is of importance. For this case we obtain

the following corollary from the last result.

Corollary 5.3 The star discrepancy of a (t,m, s)-net P in base b = 2

satisfies

2mD∗
2m(P) ≤ 2t

s−1∑

i=0

(
m− t
i

)
.

Below we present a detailed and self-contained proof for this bound.

Both of the above theorems give results for even bases b ≥ 4. For the

special cases s = 2, 3, and 4 alternative estimates are given which in some

cases give improvements of the results that can be derived from Theorem 5.1

for these cases.
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The corresponding result for s = 2 was proved by Dick & Kritzer [41,

Theorem 1] (see also [142, Theorem 5] for the special case of digital (0,m, 2)-

nets over Z2).

Theorem 5.4 For s = 2, the star discrepancy of a (t,m, s)-net P in base

b satisfies

bmD∗
bm(P) ≤ bmD∗

bm−t(Hb,m−t) + bt,

where Hb,m−t denotes the two-dimensional Hammersley point set in base b

consisting of bm−t points (see Definition 3.44). If m− t ≥ 2 we obtain

bmD∗
bm(P) ≤ bt

(
b2

4(b+ 1)
(m− t) + 9

4
+

1

b

)
,

for even bases b ≥ 2 and

bmD∗
bm(P) ≤ bt

(
b− 1

4
(m− t) + 9

4
+

1

b

)
,

for odd bases b ≥ 3.

Remark 5.5 This result improves [175, Theorem 4.7], which states that

for s = 2 the star discrepancy of a (t,m, s)-net P in base b satisfies

bmD∗
bm(P) ≤ bt

⌊
b− 1

2
(m− t) + 3

2

⌋
.

Remark 5.6 It follows from Theorem 5.4 that among all (0,m, 2)-nets

in base b, the two-dimensional Hammersley point set in base b consisting

of bm points (which is of course itself a (digital) (0,m, 2)-net in base b by

Lemma 4.13) has, up to the term b0, the worst star discrepancy.

The following result for nets in dimension s = 3 is [175, Theorem 4.8].

Theorem 5.7 For s = 3, the star discrepancy of a (t,m, s)-net P in base

b satisfies

bmD∗
bm(P) ≤ bt

⌊(
b− 1

2

)2

(m− t)2 + b− 1

2
(m− t) + 9

4

⌋
.

Remark 5.8 For digital (0,m, 3)-nets P over Z2 we have the improvement

2mD∗
2m(P) ≤ m2/6 +O(m), by [211, Theorem 1].

The following result for nets in dimension s = 4 is [175, Theorem 4.9].

Theorem 5.9 For s = 4, the star discrepancy of a (t,m, s)-net P in base

b satisfies

bmD∗
bm(P)
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≤ bt
⌊(

b− 1

2

)3

(m− t)3 + 3(b− 1)2

8
(m− t)2 + 3(b− 1)

8
(m− t) + 15

4

⌋
.

These estimates are used by Niederreiter [175, Theorem 4.10] to obtain

the following asymptotic result for the discrepancy of (t,m, s)-nets in base

b.

Theorem 5.10 The star discrepancy of a (t,m, s)-net P in base b with

m > 0 satisfies

bmD∗
bm(P) ≤ B(s, b)btms−1 +O(btms−2), (5.1)

where the implied O-constant depends only on b and s. Here B(s, b) =(
b−1
2

)s−1
if either s = 2 or b = 2, s = 3, 4; otherwise B(s, b) = ⌊b/2⌋s−1

(s−1)! .

Remark 5.11 Using the same method as Niederreiter, Kritzer [123] im-

proved the values of B(s, b) by a factor of roughly 1/2.

Proof of Theorem 5.10 For the expression in Theorem 5.1, for large enough

m we have

bt
s−1∑

i=0

(
s− 1

i

)(
m− t
i

)⌊
b

2

⌋i

≤ bt
⌊
b

2

⌋s−1(m− t
s− 1

)
+ bt

⌊
b

2

⌋s−2

(m− t)s−22s−1

≤ bt
⌊
b

2

⌋s−1 ms−1

(s− 1)!
+O(btms−2)

with an implied O-constant depending only on s and b. For the expression

in Theorem 5.2, analogously, we have

bt
s−1∑

i=0

(
m− t
i

)(
b

2

)i
+

(
b

2
− 1

)
bt
s−2∑

i=0

(
m− t+ i+ 1

i

)(
b

2

)i

≤ bt
(
m− t
s− 1

)(
b

2

)s−1

+ bt
(
b

2

)s−2

(m− t)s−2s

+

(
b

2

)s−1

bt s (m− t+ s− 1)s−2

≤ bt
(
b

2

)s−1 ms−1

(s− 1)!
+O(btms−2)

with an implied O-constant depending only on s and b. Hence the result
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follows for all cases, apart from either s = 2 or b = 2, s = 3, 4. For the

expression in Remark 5.5 (i.e., s = 2) we have

bt
⌊
b− 1

2
(m− t) + 3

2

⌋
≤ bt b− 1

2
m+ bt

3

2
= bt

b− 1

2
m+O(bt).

For the expression in Theorem 5.7 (i.e., s = 3) we have

bt

⌊(
b− 1

2

)2

(m− t)2 + b− 1

2
(m− t) + 9

4

⌋

≤ bt
(
b− 1

2

)2

m2 + bt
(
b− 1

2
+

9

2

)
m

= bt
(
b− 1

2

)2

m2 +O(btm),

and finally for the expression in Theorem 5.9 (i.e., s = 4) we have

bt

⌊(
b− 1

2

)3

(m− t)3 + 3(b− 1)2

8
(m− t)2 + 3(b− 1)

8
(m− t) + 15

4

⌋

≤ bt
(
b− 1

2

)s−1

ms−1 +O(btms−2).

Thus the result follows.

For the proofs of Theorems 5.1, 5.2, 5.7, 5.9, and Remark 5.5 we refer to

[175, Chapter 4]. The proof of Theorem 5.4 can be found in [41]. To illus-

trate the fundamental idea of the proofs we give a detailed and illustrative

verification for Corollary 5.3. The intention of this proof is not to be as ele-

gant as possible but to give an insight into how (t,m, s)-nets of good quality

achieve a low star discrepancy. We prove the general result by carrying out

various (sometimes redundant) steps.

Proof of Corollary 5.3 We start with considering the case s = 1. For a

(t,m, 1)-net P in base 2 we have to show that 2mD∗
2m(P) ≤ 2t. By defini-

tion, a (t,m, 1)-net in base 2 has the property that every 2-adic elementary

interval of the form [
a

2m−t ,
a+ 1

2m−t

)

with 0 ≤ a < 2m−t contains exactly 2t points of the net.

Let J = [0, α) be any sub-interval of [0, 1) containing the origin and let

the integer a be such that a
2m−t < α ≤ a+1

2m−t . Then we have

A(J, 2m,P) − 2mλ(J)
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≤ A
([

0,
a+ 1

2m−t

)
, 2m,P

)
− (a+ 1)2t + (a+ 1)2t − 2mλ(J)

≤ 2t

and

A(J, 2m,P)− 2mλ(J) ≥ A
([

0,
a

2m−t

)
, 2m,P

)
− a2t + a2t − 2mλ(J) ≥ −2t,

which implies that
∣∣∣∣
A(J, 2m,P)

2m
− λ(J)

∣∣∣∣ ≤
1

2m−t

and this yields the result for s = 1.

Let us consider now the case s = 2. A (t,m, 2)-net P in base 2 has the

property that every elementary interval of the form
[
a1
2d
,
a1 + 1

2d

)
×
[

a2
2m−t−d ,

a2 + 1

2m−t−d

)

with 0 ≤ d ≤ m − t contains exactly 2t points of the net P. Consequently
every interval of the form

[
a1
2d1

,
a1 + u1
2d1

)
×
[
a2
2d2

,
a2 + u2
2d2

)
, (5.2)

with d1, d2 ∈ N0 and with d1 + d2 ≤ m− t and integers a1, a2, u1, u2 with

0 ≤ a1 < a1 + u1 ≤ 2d1 and 0 ≤ a2 < a2 + u2 ≤ 2d2 , contains exactly

u1u22
m−d1−d2 elements of the net P.

Let J = [0, α)× [0, β) be any sub-interval of [0, 1)2 containing the origin.

We try to approximate J from the interior and from the exterior as good as

possible by unions of elementary intervals of order m− t, i.e., by unions of

intervals of the form (5.2). To do this let

α =
1

2k1
+

1

2k2
+ · · ·+ 1

2kg
+

1

2kg+1
+ · · ·

and

β =
1

2l1
+

1

2l2
+ · · ·+ 1

2lh
+

1

2lh+1
+ · · · ,

with 1 ≤ k1 < k2 < · · · and 1 ≤ l1 < l2 < · · · be the base 2 representations

of α and β, respectively. Note that if k1 > m − t, then J is entirely con-

tained in an elementary interval of order m− t. Hence, in this case, we have

|A(J, 2m,P) − 2mλ2(J)| ≤ 2t. Analogously the same applies if l1 > m − t,
and the result follows also for this case. Hence we may now assume that

k1, l1 ≤ m− t.
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Hence let now g, h ≥ 1 be the largest integers such that kg, lh ≤ m − t.
Note that g ≤ kg ≤ m−t. Then let us start by proceeding step by step along

the first coordinate. Consider the first part of [0, α), i.e., [0, 1/2k1). Let, for

a nonnegative integer k ≤ m− t, the nonnegative integer j(k) be such that

k + lj(k) ≤ m − t and k + lj(k)+1 > m − t, if this number exists. Otherwise

set j(k) := 0 and for this case we define 1
2l1

+ · · · + 1

2
lj(k)

:= 0. Then

C1 :=

[
0,

1

2k1

)
×
[
0,

1

2l1
+ · · · + 1

2lj(k1)

)

is the largest interval of type (5.2), which has first coordinate
[
0, 1

2k1

)
and

which is contained in J .

Now we consider the second part
[

1
2k1
, 1
2k1

+ 1
2k2

)
of [0, α). Then

C2 :=

[
1

2k1
,
1

2k1
+

1

2k2

)
×
[
0,

1

2l1
+ · · ·+ 1

2lj(k2)

)

is the largest interval of type (5.2), which has first coordinate
[

1
2k1
, 1
2k1

+ 1
2k2

)

and which is contained in J . We proceed until we arrive at the “last part”

of the first coordinate in [0, α), namely
[

1

2k1
+ · · ·+ 1

2kg−1
,
1

2k1
+ · · ·+ 1

2kg−1
+

1

2kg

)
.

Obviously

Cg :=

[
1

2k1
+ · · ·+ 1

2kg−1
,
1

2k1
+ · · ·+ 1

2kg−1
+

1

2kg

)

×
[
0,

1

2l1
+ · · ·+ 1

2lj(kg)

)
(5.3)

is the largest interval of type (5.2), which has first coordinate
[

1

2k1
+ · · · + 1

2kg−1
,
1

2k1
+ · · ·+ 1

2kg−1
+

1

2kg

)

and which is contained in J . Obviously some of these intervals may be

empty (whenever the corresponding j(k) is zero). All the above intervals

are pairwise disjoint and so the union of these intervals of type (5.2),

C = C1 ∪ . . . ∪Cg,

is fair with respect to the net P and it is contained in J .

To illustrate the procedure consider the following example. Let m = 5,
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t = 1, α = 1
2 + 1

4 + 1
8 + 1

64 = 57
64 , and β = 1

2 + 1
4 + 1

32 = 25
32 . Then we have

(see Figure 5.1),

C = C1 ∪ C2 ∪ C3

=

[
0,

1

2

)
×
[
0,

1

2
+

1

4

)
∪
[
1

2
,
1

2
+

1

4

)
×
[
0,

1

2
+

1

4

)

∪
[
1

2
+

1

4
,
1

2
+

1

4
+

1

8

)
×
[
0,

1

2

)

=

[
0,

1

2

)
×
[
0,

3

4

)
∪
[
1

2
,
3

4

)
×
[
0,

3

4

)
∪
[
3

4
,
7

8

)
×
[
0,

1

2

)
.

3
4

1
2

0

0 1
2

3
4

J

C1 C2 C3

Figure 5.1 The union C = C1 ∪ C2 ∪ C3 for J = [0, 57/64)× [0, 25/32).

To construct a union of elementary intervals of order m − t which is as

small as possible and which contains J , we just add at the right border of

the second coordinate of Ci the value 1
2m−t−ki

and obtain

C ′
i :=

[
1

2k1
+ · · ·+ 1

2ki−1
,
1

2k1
+ · · ·+ 1

2ki−1
+

1

2ki

)

×
[
0,

1

2l1
+ · · · + 1

2lj(ki)
+

1

2m−t−ki

)
.

Now the C ′
1, . . . , C

′
g together overlap J apart from the last part along the

first coordinate. This last strip is overlapped by

C̃ ′ :=
[

1

2k1
+ · · · + 1

2kg
,
1

2k1
+ · · · + 1

2kg
+

1

2m−t

)
× [0, 1).

Now

C ′ = C ′
1 ∪ . . . ∪ C ′

g ∪ C̃ ′
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is a union of intervals of type (5.2), is fair with respect to the net P, and it

contains J . For our example we have (see Figure 5.2),

C ′ = C ′
1 ∪ . . . ∪ C ′

g ∪ C̃ ′

=

[
0,

1

2

)
×
[
0,

1

2
+

1

4
+

1

8

)
∪
[
1

2
,
1

2
+

1

4

)
× [0, 1)

∪
[
1

2
+

1

4
,
1

2
+

1

4
+

1

8

)
× [0, 1)

∪
[
1

2
+

1

4
+

1

8
,
1

2
+

1

4
+

1

8
+

1

16

)
× [0, 1)

=

[
0,

1

2

)
×
[
0,

7

8

)
∪
[
1

2
,
3

4

)
× [0, 1) ∪

[
3

4
,
7

8

)
× [0, 1) ∪

[
7

8
,
15

16

)
× [0, 1).

J

0

0 1
2

3
4

7
8

C′
1 C′

2

C̃′

7
8

C′
3

Figure 5.2 The union C′ = C′

1∪C′

2∪C′

3∪C̃′ for J = [0, 57/64)× [0, 25/32).

Now we can estimate

A(J, 2m,P) − 2mλ2(J) ≤ A(C ′, 2m,P) − 2mλ2(C
′) + 2mλ2(C

′ \ C)

= 2mλ2(C
′ \ C)

and

A(J, 2m,P) − 2mλ2(J) ≥ A(C, 2m,P) − 2mλ2(C)− 2mλ2(C
′ \ C)

= −2mλ2(C ′ \ C).

Thus

|A(J, 2m,P) − 2mλ2(J)| ≤ 2mλ2(C
′ \ C)

= 2m(λ2(C
′
1 \ C1) + · · ·+ λ2(C

′
g \ Cg) + λ2(C̃ ′))

= 2m
(

g

2m−t +
1

2m−t

)
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≤ 2t(m− t+ 1)

= 2t
1∑

i=0

(
m− t
i

)
,

and this yields the result for s = 2.

Now the proof proceeds by induction on the dimension s. The general

induction step s → s + 1 follows along the same lines as the step 2 → 3,

which is carried out in the following. The general step can then be obtained

in the same manner.

Let

J = [0, α) × [0, β) × [0, γ)

be any sub-interval of [0, 1)3 containing the origin. Let α, β have base 2

representation like above, and let γ = 1
2p1 + 1

2p2 + · · · + 1
2pn + · · · with

0 < p1 < p2 < · · · .
Let us first approximate the two-dimensional interval J ′ := [0, α) × [0, β)

from the interior by a union of intervals of type (5.2), and also from the

exterior, exactly in the same way as it is done in the case s = 2 by C and

C ′.
From the procedure in dimension s = 2 we have obtained that

2m(λ2(C
′)− λ2(C)) = 2mλ2(C

′ \ C) ≤ 2t
((

m− t
0

)
+

(
m− t
1

))
.

The set C typically is a disjoint union of intervals of the form
[

1

2k1
+ · · · + 1

2ke−1
,
1

2k1
+ · · ·+ 1

2ke−1
+

1

2ke

)

×
[
1

2l1
+ · · · + 1

2lf−1
,
1

2l1
+ · · ·+ 1

2lf−1
+

1

2lf

)

with ke + lf ≤ m− t.
First we approximate J from the interior by extending the elements of

C to three-dimensional fair intervals contained in J . Let for nonnegative

integers k and l with k + l ≤ m − t the nonnegative integer j(k, l) be such

that k+l+pj(k,l) ≤ m−t and k+l+pj(k,l)+1 > m−t, if this number exists. If

this number does not exist, then set j(k, l) := 0 and 1
2p1 + · · ·+ 1

2
pj (ke,lf ) := 0.

Then consider the intervals
[

1

2k1
+ · · ·+ 1

2ke−1
,
1

2k1
+ · · ·+ 1

2ke−1
+

1

2ke

)

×
[
1

2l1
+ · · ·+ 1

2lf−1
,
1

2l1
+ · · · + 1

2lf−1
+

1

2lf

)
(5.4)
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×
[
0,

1

2p1
+ · · ·+ 1

2
pj(ke,lf )

)
.

The union of all these intervals with ke + lf ≤ m − t, we call it E, is fair

with respect to the net P and it approximates J from the interior.

To approximate J from the exterior by fair intervals, we first use C ′ \C×
[0, 1) and instead of the intervals in (5.4) we take, like for s = 2, the intervals

[
1

2k1
+ · · ·+ 1

2ke−1
,
1

2k1
+ · · ·+ 1

2ke−1
+

1

2ke

)

×
[
1

2l1
+ · · ·+ 1

2lf−1
,
1

2l1
+ · · ·+ 1

2lf−1
+

1

2lf

)

×
[
0,

1

2p1
+ · · ·+ 1

2
pj(ke,lf )

+
1

2m−t−ke−lf

)
.

The union of C ′ \ C × [0, 1) with all these intervals (with ke + lf ≤ m− t),
we call it E′, is fair with respect to the net P and contains J . Hence, like in

the case s = 2, we obtain

|A(J, 2m,P) − 2mλ3(J)| ≤ 2m(λ3(E
′)− λ3(E))

= 2mλ2(C
′ \ C) + 2m

∑

ke,lf
ke+lf≤m−t

1

2m−t

≤ 2t
((

m− t
0

)
+

(
m− t
1

))
+ 2t

∑

1≤k,l≤m−t
k+l≤m−t

1

= 2t
((

m− t
0

)
+

(
m− t
1

)
+

(
m− t
2

))
,

and this yields the result for s = 3.

The formal details of the general step from dimension s to dimension s+1

can be obtained along the same lines as the step from dimension 2 to 3.

By carrying out the procedure of the above proof in the general case, for

arbitrary base b, one would obtain the following easy form of an estimate

whose proof is left as an exercise (see Exercise 5.1).

Theorem 5.12 The star discrepancy of a (t,m, s)-net P in base b satisfies

bmD∗
bm(P) ≤ bt

s−1∑

i=0

(
m− t
i

)
(b− 1)i.

The results of Theorems 5.1 and 5.2, for b ≥ 3, provide in many cases

improvements compared with the estimate of Theorem 5.12. The basic idea
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to obtain these improvements, roughly speaking, is that the approxima-

tion of the interval J is carried out more carefully. That is, one takes the

concrete digit expansion of the boundaries of the interval J into account.

Note that also the asymptotic results in m, which we obtained from The-

orems 5.1 and 5.2 are better than the results that could be obtained from

Theorem 5.12.

Star discrepancy estimates for (T, s)-sequences

A similar strategy to the one used for nets is also used by Niederreiter

in giving estimates for (T, s)-sequences (as is done for instance for (t, s)-

sequences in [175, Theorem 4.12–4.16]). Such estimates could be obtained

immediately from the above discrepancy estimates for nets, together with

Proposition 3.16, which allows us to estimate the discrepancy of a sequence

by the discrepancies of its parts, and by the fact that a (T, s)-sequence is,

in a certain way, made up of (t,m, s)-nets.

Hence assume that ∆b(t,m, s) is a number for which

bmD∗
bm(P) ≤ ∆b(t,m, s)

holds for the star discrepancy of any (t,m, s)-net P in base b. We consider the

star discrepancy of the set {x0, . . . ,xN−1} consisting of the first N points of

a (T, s)-sequence S in base b. Let N have b-adic representation N = arb
r +

· · ·+a1b+a0. Then we consider the parts Pm,a = {xarbr+···+am+1bm+1+abm+k :

0 ≤ k < bm}, for 0 ≤ m ≤ r and 0 ≤ a ≤ am − 1, of the whole point set.

Every set Pm,a is a (T(m),m, s)-net in base b and bm-times its star discrep-

ancy is at most ∆b(T(m),m, s). Now we obtain, from the triangle inequality

for the star discrepancy (see Proposition 3.16), the following bound on the

star discrepancy of the first N elements of S. This result was first shown by

Larcher & Niederreiter [138, Lemma 1].

Lemma 5.13 Let S be a (T, s)-sequence in base b. Let N = arb
r + · · · +

a1b+a0 be the b-adic representation of the positive integer N . Let ∆b(t,m, s)

be such that for the star discrepancy of any (t,m, s)-net P in base b the

inequality bmD∗
bm(P) ≤ ∆b(t,m, s) holds. Then

ND∗
N (S) ≤

r∑

m=0

am∆b(T(m),m, s).

Niederreiter [175, Lemma 4.11] gives the following variant (which we state

here in a slightly more general form).
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Lemma 5.14 With the notation of Lemma 5.13 we have

ND∗
N (S) ≤ min

( r∑

m=n

am∆b(T(m),m, s),

r∑

m=n

(b− 1− am)∆b(T(m),m, s)

+ ∆b(T(n), n, s) + ∆b(T(r + 1), r + 1, s)
)
,

where n is the largest integer such that bn|N .

Proof With N = arb
r + · · ·+ a1b+ a0 we have, by Lemma 5.13, that

ND∗
N (S) ≤

r∑

m=0

am∆b(T(m),m, s).

We consider now the next br+1 −N points of the (T, s)-sequence, i.e., P ′ =
{xn : N ≤ n < br+1}. Let br+1 − N have b-adic expansion br+1 − N =

crb
r + · · · + c1b + c0. Again we can split up this point set into a union of

nets, namely into the nets

P ′
m,c = {xbr+1−crbr−···−cm+1bm+1−cbm+k : 0 ≤ k < bm},

for all 0 ≤ m ≤ r and 0 ≤ c ≤ cm − 1. Every P ′
m,c is a (T(m),m, s)-net in

base b and so bm-times its star discrepancy is at most ∆b(T(m),m, s). From

Proposition 3.16 for the star discrepancy of P ′ we obtain

(br+1 −N)D∗
br+1−N (P ′) ≤

r∑

m=0

cm∆b(T(m),m, s).

The first br+1 points of the (T, s)-sequence build a (T(r+1), r+1, s)-net P̃
in base b whose star discrepancy hence satisfies br+1D∗

br+1(P̃) ≤ ∆b(T(r +

1), r + 1, s). The initial point set {x0, . . . ,xN−1}, i.e., the first N elements

of S, is the difference between the two point sets P̃ and P ′ and hence, using

again Proposition 3.16 we obtain

ND∗
N (S) ≤ (br+1 −N)D∗

br+1−N (P ′) + br+1D∗
br+1(P̃)

≤
r∑

m=0

cm∆b(T(m),m, s) + ∆b(T(r + 1), r + 1, s).

Consider now cm. We have

br+1 = br+1 −N +N =

r∑

m=0

(cm + am)b
m.

Hence c0, . . . , ci are zero as long as a0, . . . , ai are zero, that is, as long as
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i ≤ n − 1. Further an + cn = b and am + cm = b − 1 for n + 1 ≤ m ≤ r.

Hence, on the one hand

ND∗
N (S) ≤

r∑

m=n

am∆b(T(m),m, s),

and on the other hand

ND∗
N (S) ≤

r∑

m=n

(b− 1− am)∆b(T(m),m, s)

+ ∆b(T(n), n, s) + ∆b(T(r + 1), r + 1, s).

Therefore the result follows.

As a simple corollary we obtain the following result.

Corollary 5.15 Let S be a (T, s)-sequence in base b. Let ∆b(t,m, s) be

such that for the star discrepancy of any (t,m, s)-net P in base b we have

bmD∗
bm(P) ≤ ∆b(t,m, s). Then

ND∗
N (S) ≤

b− 1

2

r∑

m=n

∆b(T(m),m, s)

+
1

2
(∆b(T(n), n, s) + ∆b(T(r + 1), r + 1, s)),

where r ∈ N0 is such that br ≤ N < br+1 and n is the largest integer such

that bn|N .

Using this corollary and the results of Theorems 5.1 and 5.2, Remark 5.5,

and Theorems 5.7 and 5.9, Niederreiter obtains the discrepancy estimates

for (t, s)-sequences given in [175, Theorems 4.12–4.16]. For the sake of com-

pleteness we shall state these results in the following. First we shall give one

general estimate for (T, s)-sequences, directly originating from Theorem 5.12

and Corollary 5.15.

Theorem 5.16 Let S be a (T, s)-sequence in base b. Let r ∈ N0 be such

that br ≤ N < br+1 and let n be that largest integer such that bn|N . Then

ND∗
N (S) ≤

1

2

(
s−1∑

i=0

(b− 1)i+1
r∑

m=n

bT(m)

(
m−T(m)

i

)

+ bT(n)
s−1∑

i=0

(
n−T(n)

i

)
(b− 1)i
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+ bT(r+1)
s−1∑

i=0

(
r + 1−T(r + 1)

i

)
(b− 1)i

)
.

The following estimates for the star discrepancy D∗
N of a (t, s)-sequence

were given by Niederreiter in [175, Theorems 4.12–4.16].

Theorem 5.17 The star discrepancy of the first N terms of a (t, s)-

sequence S in base b ≥ 3 satisfies

ND∗
N (S) ≤

b− 1

2
bt

s∑

i=1

(
s− 1

i− 1

)(
k + 1− t

i

)⌊
b

2

⌋i−1

+
1

2
bt
s−1∑

i=0

(
s− 1

i

)((
k + 1− t

i

)
+

(
k − t
i

))⌊
b

2

⌋i

for N ≥ bt, where k is the largest integer with bk ≤ N .

Theorem 5.18 The star discrepancy of the first N terms of a (t, s)-

sequence in an even base b satisfies

ND∗
N (S) ≤ (b− 1)bt−1

s∑

i=1

(
k + 1− t

i

)(
b

2

)i

+

(
b− 1

2

)
bt−1

s−1∑

i=1

(
k + i+ 1− t

i

)(
b

2

)i

+
1

2
bt
s−1∑

i=0

((
k + 1− t

i

)
+

(
k − t
i

))(
b

2

)i

+
b− 2

4
bt
s−2∑

i=0

((
k + i+ 2− t

i

)
+

(
k + i+ 1− t

i

))(
b

2

)i

for N ≥ bt, where k is the largest integer with bk ≤ N .

Theorem 5.19 For s = 2, the star discrepancy of the first N terms of a

(t, s)-sequence S in base b satisfies

ND∗
N (S) ≤

(b− 1)2

8
bt(k − t)2 + (b− 1)(b+ 9)

8
bt(k − t) + 3(b+ 1)

4
bt

for N ≥ bt, where k is the largest integer with bk ≤ N .

Theorem 5.20 For s = 3, the star discrepancy of the first N terms of a

(t, s)-sequence S in base b satisfies

ND∗
N (S) ≤

(b− 1)3

24
bt(k − t)3 + (b− 1)2(b+ 5)

16
bt(k − t)2
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+
(b− 1)(b2 + 16b + 61)

48
bt(k − t) + b2 + 4b+ 13

8
bt

for N ≥ bt, where k is the largest integer with bk ≤ N .

Theorem 5.21 For s = 4, the star discrepancy of the first N terms of a

(t, s)-sequence S in base b satisfies

ND∗
N (S) ≤

(b− 1)4

64
bt(k − t)4 + (b− 1)3(b+ 5)

32
bt(k − t)3

+
(b− 1)2(b2 + 16b+ 13)

64
bt(k − t)2

+
(b− 1)(7b2 + b+ 64)

32
bt(k − t) + b3 + 8b+ 51

16
bt

for N ≥ bt, where k is the largest integer with bk ≤ N .

Again, from these estimates we obtain asymptotic results for the star

discrepancy of (t, s)-sequences. Niederreiter’s [175, Theorem 4.17] states the

following result.

Corollary 5.22 The star discrepancy of the first N terms of a (t, s)-

sequence S in base b satisfies

ND∗
N (S) ≤ C(s, b)bt(logN)s +O(bt(logN)s−1),

where the implied constant depends only on b and s. Here

C(s, b) =
1

s

(
b− 1

2 log b

)s

if either s = 2 or b = 2, s = 3, 4; otherwise

C(s, b) =
1

s!

b− 1

2⌊b/2⌋

(⌊b/2⌋
log b

)s
.

Remark 5.23 Using the same method as Niederreiter, Kritzer [123] im-

proved the values of C(s, b) by a factor of roughly 1/2.

Hence (t, s)-sequences provide sequences S with star discrepancy of order

D∗
N (S) = O

(
(logN)s

N

)
,

which by a long standing conjecture in the theory of uniform distribution

modulo one (see Section 3.2) probably is the best possible order of the star

discrepancy for infinite sequences in [0, 1)s. Hence a (t, s)-sequence is a so-

called low discrepancy sequence. But also other (T, s)-sequences provide low

discrepancy sequences. In [138, Theorem 1] the following result was shown.
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Theorem 5.24 Let S be a (T, s)-sequence in base b with a quality function

T satisfying the property that the sequence
(
1
r

∑r
m=1 b

T(m)
)
r∈N is bounded.

Then for the star discrepancy of the first N ≥ 2 elements of S we have

D∗
N (S) = O

(
(logN)s

N

)
.

Proof By Lemma 5.13 and by Theorem 5.10 for N = arb
r + · · ·+ a1b+ a0

we obtain

ND∗
N (S) ≤

r∑

m=0

b∆b(T(m),m, s) ≤ B(s, b)

r∑

m=0

bT(m)ms−1 (5.5)

with a constant B(s, b) depending only on s and b. Let now 1
r

∑r
m=1 b

T(m) ≤
C for all r. Then

r∑

m=0

bT(m)ms−1 ≤ rs−1
r∑

m=0

bT(m) ≤ Crs ≤ C

(log b)s
(logN)s

and the result follows.

Remark 5.25 Indeed, the discrepancy bound from (5.5) is

r∑

m=0

bT(m)ms−1 = O((logN)s)

if and only if
(
1
r

∑r
m=0 b

T(m)
)
r∈N is bounded (see Exercise 5.2).

Weighted star discrepancy estimates for (t,m, s)-nets

The star discrepancy estimates presented can also be also be adapted to

obtain estimates for the weighted star discrepancy, which we present in the

following.

Theorem 5.26 Let ∆b(t,m, s) be such that for the star discrepancy of

any (t,m, s)-net P in base b the inequality bmD∗
bm(P) ≤ ∆b(t,m, s) holds.

Then for the weighted star discrepancy D∗
bm,γ, with respect to the weights

γ = {γu,s : u ⊆ Is}, of a (t,m, s)-net P in base b we have

bmD∗
bm,γ(P) ≤ max

∅6=u⊆Is
γu,s∆b(t,m, |u|).

Proof This immediately follows from Definition 3.59 of the weighted star

discrepancy and the fact that any d-dimensional projection of a (t,m, s)-

net in base b (where d ≤ s) is a (t,m, d)-net in base b (see Lemma 4.16 in

Section 4.2).
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Example 5.27 In particular, if we consider product weights of the form

γu,s =
∏
j∈u γj,s with γ1,s ≥ γ2,s ≥ · · · ≥ γs,s, then for any (t,m, s)-net P in

base b we have

bmD∗
bm,γ(P) ≤ max

1≤d≤s
∆b(t,m, d)

d∏

j=1

γj,s.

Let us consider a (0,m, s)-net P in base b ≥ 3, where b ≥ s − 1 is a prime

power (explicit constructions of such nets are presented in Chapter 8). We

use the discrepancy estimate of Theorem 5.1, which shows that

∆b(0,m, d) ≤
d−1∑

i=0

(
d− 1

i

)(
m

i

)⌊
b

2

⌋i
.

Hence

bmD∗
bm,γ(P) ≤ max

1≤d≤s




d∏

j=1

γj,s




d−1∑

i=0

(
d− 1

i

)(
m

i

)⌊
b

2

⌋i
.

A more detailed investigation of the quality of a (t,m, s)-net, especially

the quality of its projections, can give improved estimates for the weighted

discrepancy (see Exercise 5.3).

5.2 Some discussion about the discrepancy estimates

As was pointed out by several authors (see the discussion in [175, Chap-

ter 4]), the asymptotic results in N (the number of points) for the discrep-

ancy of (t,m, s)-nets and (t, s)-sequences are, by far, better than what was

known about the asymptotic behaviour of the discrepancy of “classical” se-

quences and point sets (see Section 3.4). Hence the order of magnitude of

the discrepancies in N are presumptively best possible and the coefficients

B(s, b) and C(s, b) of the leading terms (logN)s−1 and (logN)s respectively

are decreasing with growing dimension s extremely fast. For practical pur-

poses, however, of course concrete finite point sets and their discrepancies are

of interest. Let us consider the discrepancy estimates therefore with respect

to their practical meaning. By doing this, we arrive at a principal problem,

namely, that we do not have strong and adequate discrepancy estimates for

“relatively small” point sets in an s-dimensional unit cube.

As in Section 3.5, let us consider a point set consisting of 2s points in

[0, 1)s. (For dimension say s = 20 this already becomes a large point set for

practical applications in simulation and for s ≥ 30 such a point set is already
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hardly manageable anymore.) Hence at least for, say, s ≥ 20, we need good

discrepancy estimates for point sets with 2s or less points.

As already pointed out in Section 3.5, it is not know how such estimates

could be obtained from the known estimates for regular lattices, Hammersley

point sets, or good lattice point sets, although it is known that such point

sets must exist. Recall from Section 3.5 that there exists an absolute constant

c > 0 such that for the Nth minimal star discrepancy we have disc∗(N, s) ≤
c
√
s/N for all s,N ∈ N and therefore disc∗(2s, s) ≤ c

√
s/2s. Hence, for any

dimension s, there exists a point set P, consisting of N = 2s points in [0, 1)s,

such that D∗
N (P) ≤ c

√
s/2s.

Let us check now the discrepancy estimate for a (t,m, s)-net P in base 2

derived in Theorem 5.2, or in Theorem 5.12 above, for 2s points. For N = 2s

we obtain

ND∗
N (P) ≤ 2t

s−1∑

i=0

(
s− t
i

)
= 2t2s−t = N,

hence we only obtain D∗
N (P) ≤ 1, which is the trivial estimate for the

star discrepancy of any point set. Thus, in this context, the above bound is

useless.

Let us try another approach. It is known that for every prime power

b there exist (0,m, s)-nets in base b for all s ≤ b + 1 (for example, nets

from Faure- and Niederreiter-sequences; see Chapter 8). If we consider such

nets with s = b + 1 and m ≈ s log 2log b , so that N = bm ≈ 2s, and if we

insert these parameters in the discrepancy estimates of Theorem 5.2 or of

Theorem 5.12, we again only obtain trivial estimates, larger or equal one for

the star discrepancy.

The best result that can be shown for the star discrepancy of (t,m, s)-nets

in this context is at the moment the following theorem.

Theorem 5.28 For every dimension s there is a (t,m, s)-net P in base 2

consisting of 211s points in [0, 1)s whose star discrepancy is less then s
21.09s

.

Proof Niederreiter & Xing [192, Theorem 4] have shown that for every

dimension s and anym there exists a (t,m, s)-net in base 2 with t ≤ 5s. Using

this point set withm = 11s and the discrepancy estimate from Theorem 5.12

for b = 2, we obtain for the star discrepancy of this net P,

ND∗
N (P) ≤ 25s

s−1∑

i=0

(
11s

i

)
≤ 25ss

(
11s

s

)
≤ 25ss11s

ss

s!
.
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Since s! ≥
(
s
e

)s
for all s, we obtain

ND∗
N (P) ≤ s(25e11)s < s29.91s

and the result follows.

Thus, although it is known from Section 3.5 that there must exist “rel-

atively small” point sets with “small” star discrepancy, and although it is

known that the star discrepancy of (t,m, s)-nets is (presumptively) asymp-

totically best possible, it is not known whether it can be shown that (t,m, s)-

nets are good candidates for “relatively small” point sets with “small” star

discrepancy. That is, currently it is not known whether it can be shown that

there exist, for every m and s ∈ N, (t,m, s)-nets P whose star discrepancy

satisfies a bound of the form D∗
N (P) ≤ Csα/Nβ with constants C,α, β > 0,

where N = bm.

5.3 Discrepancy estimates for digital (t,m, s)-nets and digital

(T, s)-sequences

All the discrepancy estimates presented in Section 5.1 are valid for arbitrary

nets and arbitrary (T, s)-sequences. One may ask if there are sharper dis-

crepancy estimates which only apply for digital (t,m, s)-nets and for digital

(T, s)-sequences.

Until now there are no such results which improve the known general esti-

mates in important cases, i.e., for net-type point sets with (nearly) optimal

quality. However, in [134, Proposition 1] a discrepancy bound for digital

nets and digital sequences was provided, which turned out to be essentially

stronger than the general bounds in the cases “near the average”, i.e., for

digital point sets whose quality parameter t or T is of about average value.

Further, this bound is better than previous estimates. We give the result and

a detailed proof below. In the following we also give an application when we

are dealing with metrical and average type results for the quality parameter

and for the discrepancy of net-type sequences. The subsequent results were

given by Larcher in [134, Proposition 1] and [136, Lemma 1 and Lemma 2].

These results provide discrepancy estimates for digital nets and for digital

sequences over Zb of prime order b in terms of their generating matrices.

Star discrepancy estimates for digital (t,m, s)-nets

We need some further notation before we can state the results. Within this

subsection let b be a prime. A digital (t,m, s)-net over Zb is generated by
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m × m matrices C1, . . . , Cs over Zb. We denote by c
(i)
j ∈ Zmb the jth row

vector of Ci. For 0 ≤ w ≤ s, a w-tuple d = (d1, . . . , dw) of nonnegative

integers is called admissible with respect to C1, . . . , Cs if the system {c(i)j :

1 ≤ j ≤ di and 1 ≤ i ≤ w} of row vectors is linearly independent over

Zb. For w = 0 we have the “zero-tuple” (), which we call admissible by

definition. For w ≤ s− 1 and admissible d = (d1, . . . , dw) ∈ Nw0 , we set

h(d) := max{h ≥ 0 : (d1, . . . , dw, h) is admissible}.

For d = (d1, . . . , dw) ∈ Nw0 we set |d|1 := d1 + · · · + dw. Note that if d is

admissible, then |d|1 ≤ m and 0 ≤ h(d) ≤ m− |d|1.
With these definitions we can state the desired result.

Theorem 5.29 Let s,m ∈ N and let b be a prime. The star discrepancy of

a digital net P over Zb, generated by the m×m matrices C1, . . . , Cs, satisfies

D∗
bm(P) ≤

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible

b−|d|1−h(d).

Proof Let d = (d1, . . . , dw) be admissible, i.e., the vectors

c
(1)
1 , . . . , c

(1)
d1
, . . . , c

(w)
1 , . . . , c

(w)
dw
∈ Zmb

are linearly independent over Zb. We use the following basic property. For

every choice of

f
(1)
1 , . . . , f

(1)
d1
, . . . , f

(w)
1 , . . . , f

(w)
dw
∈ Zb,

the linear system of |d|1 equations in n ∈ (Zmb )
⊤,

c
(i)
j n = f

(i)
j

with 1 ≤ j ≤ di and 1 ≤ i ≤ w, has exactly bm−|d|1 solutions, and so (as was

carried out in the proof of Theorem 4.52 in Section 4.4) any interval of the

form
w∏

i=1

[ ui
bdi
,
vi
bdi

)
× [0, 1)s−w

with 0 ≤ ui < vi < bdi for 1 ≤ i ≤ w, contains exactly bm−|d|1∏w
i=1(ui − vi)

elements of the digital net P. We call an interval of this form an admissible

interval. Hence an admissible interval is fair with respect to the digital net

P.
Let now J =

∏s
i=1[0, αi) ⊆ [0, 1)s be an arbitrary interval containing the
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origin. Assume that for 1 ≤ i ≤ s the αi have a b-adic representation of the

form

αi =
αi,1
b

+
αi,2
b2

+ · · · .

(If αi is a b-adic fraction, i.e., αi = Ab−r for some nonnegative integers

A and r, then we take the infinite representation of αi.) We again try to

approximate J from the interior and from the exterior as good as possible by

unions of admissible intervals. Notice that the following union of admissible

intervals

J :=
⋃

d=(d1,...,ds)∈Ns

d admissible

s∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




is a subset of J , and that the single s-dimensional intervals in the above

union are pairwise disjoint.

For example let s = 2, m = 4, b = 2 and consider the following matrices

C1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 and C2 =




0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 0




over Z2 with admissible pairs (d1, d2): (4, 0), (3, 1), (2, 2), (1, 3) and all tuples

which are less than or equal to these in both coordinates. Let α1 =
1
2 +

1
4 +

1
16 +

1
64 + · · · , α2 =

1
4 +

1
8 +

1
32 + · · · . (Note that J is right-half-open.) Then

the admissible pairs (2, 2), (1, 2), and (1, 3) give the intervals
[
1
2 ,

3
4

)
×
[
0, 14
)
,[

0, 12
)
×
[
0, 14
)
and

[
0, 12
)
×
[
1
4 ,

3
8

)
respectively. All other admissible pairs

provide only empty intervals (see Figure 5.3).

J

(1, 3)

(1, 2) (2, 2)

Figure 5.3 The set J .

Because of the technical complexity of the expressions, it may not be so
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obvious that

J ⊆ J ∪
s−1⋃

w=0

⋃

d=(d1,...,dw)∈Nw

d admissible

(
w∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




×



h(d)∑

j=1

αw+1,j

bj
,

h(d)∑

j=1

αw+1,j

bj
+

1

bh(d)


× [0, 1)s−w−1

)
(5.6)

=: J ∪ J.

Notice that all single s-dimensional intervals occurring in the above union

are pairwise disjoint and admissible. Thus the right hand side is fair with

respect to the net.

Before we show the above inclusion we illustrate it with the above example.

Here we have to consider the following additional intervals (see Figure 5.4):

w = 0 : h() = 4 : I1 =
[
1
2 +

1
4 + 1

16 ,
1
2 + 1

4 +
1
16 + 1

16

)
× [0, 1)

w = 1 : h(1) = 3 : I2 =
[
0, 12
)
×
[
1
4 + 1

8 ,
1
4 + 1

8 +
1
8

)

h(2) = 2 : I3 =
[
1
2 ,

1
2 + 1

4

)
×
[
1
4 ,

1
4 + 1

4

)

h(3) = 1 : I4 =
[
1
2 +

1
4 ,

1
2 +

1
4

)
×
[
0, 12
)
= ∅

h(4) = 0 : I5 = [12 + 1
4 ,

1
2 +

1
4 + 1

16)× [0, 1)

I2 I3

I1

J

I5

Figure 5.4 The set J ∪ J .

To show that (5.6) holds we carry out induction on the dimension s. For

s = 1 the right hand side above becomes

⋃

d1∈N

d1 admissible



d1−1∑

j=1

α1,j

bj
,

d1∑

j=1

α1,j

bj


 ∪



h()∑

j=1

α1,j

bj
,

h()∑

j=1

α1,j

bj
+

1

bh()
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=


0,

h()∑

j=1

α1,j

bj
+

1

bh()


 ,

which contains J = [0, α1). Assume now that the assertion is true up to

dimension s− 1 and consider

J =

s−1∏

i=1

[0, αi)× [0, αs).

The induction assumption states that

s−1∏

i=1

[0, αi) ⊆
⋃

d=(d1,...,ds−1)∈Ns−1

d admissible

s−1∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




∪
s−2⋃

w=0

⋃

d=(d1,...,dw)∈Nw

d admissible

(
w∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




×



h(d)∑

j=1

αw+1,j

bj
,

h(d)∑

j=1

αw+1,j

bj
+

1

bh(d)


× [0, 1)s−w−2

)
.

We extend each of the s− 1-dimensional intervals K on the right hand side

above to an s-dimensional interval K ′ such that J is contained in the union

of these extensions.

If K is part of the first “big” union above, that is, if it is of the form

s−1∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




for some admissible d = (d1, . . . , ds−1) ∈ Ns−1, then we take

K ′ :=
s−1∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




×



h(d)⋃

k=1



k−1∑

j=1

αs,j
bj

,
k∑

j=1

αs,j
bj


 ∪



h(d)∑

j=1

αs,j
bj

,

h(d)∑

j=1

αs,j
bj

+
1

bh(d)




 .

If K is part of the second “big” union, then we just extend by [0, 1).
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By inserting we obtain

J ⊆
⋃

d=(d1,...,ds−1)∈Ns−1

d admissible



s−1∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




×
h(d)⋃

k=1



k−1∑

j=1

αs,j
bj

,
k∑

j=1

αs,j
bj






∪
⋃

d=(d1,...,ds−1)∈Ns−1

d admissible



s−1∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




×



h(d)∑

j=1

αs,j
bj

,

h(d)∑

j=1

αs,j
bj

+
1

bh(d)






∪
s−2⋃

w=0

⋃

d=(d1,...,dw)∈Nw

d admissible




w∏

i=1



di−1∑

j=1

αi,j
bj
,

di∑

j=1

αi,j
bj




×



h(d)∑

j=1

αw+1,j

bj
,

h(d)∑

j=1

αw+1,j

bj
+

1

bh(d)


× [0, 1)s−w−1


 ,

and the induction is finished.

Hence, for the number A(J, bm,P) of net points in J we obtain

A(J, bm,P)
bm

− λs(J) ≤
A
(
J ∪ J, bm,P

)

bm
− λs

(
J ∪ J

)
+ λs

(
J ∪ J \ J

)

≤ λs
(
J
)

and

A(J, bm,P)
bm

− λs(J) ≥
A (J, bm,P)

bm
− λs (J)− λs (J \ J) ≥ −λs

(
J
)
.

Now the result follows from the fact that

λs
(
J
)
≤

s−1∑

w=0

∑

d∈Nw

d admissible

(b− 1)wb−|d|1−h(d).

Remark 5.30 The above discrepancy estimate also holds for digital nets

which are digitally shifted by a digital b-adic shift σ = (σ1, . . . , σs) ∈ [0, 1)s

(with probability one if a σi has infinitely many digits different from zero) or

by a digital shift of depth m. This can be checked by following and adopting

the proof of the above theorem (and that of Theorem 4.52, respectively).
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Example 5.31 Let us consider one concrete numerical example. We take

the same example as above (illustrating the proof of Theorem 5.29) with

s = 2, m = 4, b = 2,

C1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 and C2 =




0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 0


 .

By Theorem 5.29, the star discrepancy of the 16-point net P generated by

these matrices satisfies

D∗
16(P) ≤ 2−h() +

4∑

d=1

2−d−h(d)

= 2−4 + 2−1−3 + 2−2−2 + 2−3−1 + 2−4 =
5

16
.

If we apply the estimate of Remark 5.5 for s = 2, by noting that the quality

parameter t of the net is 1, we obtain

D∗
16(P) ≤

1

16

(
1

2
3 +

3

2

)
21 =

3

8
,

which is larger than 5
16 . Let us consider the picture of the net points (see

Figure 5.5) and note that for the closed set B we have

A(B, 16)

16
− λ(B) =

8

16
− 80

256
=

3

16

so that D∗
16(P) ≥ 3

16 .

B

Figure 5.5 The 16-point net P and the interval B.
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Star discrepancy estimates for digital sequences

We now give the corresponding result for digital sequences. The following

result is a slight improvement of [136, Lemma 2]. We use again the technique

of Niederreiter as already applied in the proof of Lemma 5.13.

Theorem 5.32 Let s ∈ N and let b be a prime. Let S be a digital sequence

generated by the N×N matrices C1, . . . , Cs over Zb and let C
(m)
i denote the

left upper m × m sub-matrix of Ci for 1 ≤ i ≤ s. Let N ∈ N with b-adic

representation N =
∑r

k=0 akb
k, where 0 ≤ ak < b and ar 6= 0. Then

ND∗
N (S) ≤ min

(
r∑

m=n

am

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to m

bm−|d|1−h(d),

r∑

m=n

(b− 1− am)
s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to m

bm−|d|1−h(d)

+

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to n

bn−|d|1−h(d)

+

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to r+1

br+1−|d|1−h(d)
)
.

Here, “admissible to m” means “admissible with respect to the matrices

C
(m)
1 , . . . , C

(m)
s ” and n is the largest integer such that bn|N .

Proof We split the set {x0, . . . ,xN−1}, consisting of the first N points of

the sequence S, into the subsets Pm,a for a ∈ {0, . . . , am−1} and 0 ≤ m ≤ r,
where

Pm,a =
{
xn :

r∑

k=m+1

akb
k + abm ≤ n <

r∑

k=m+1

akb
k + (a+ 1)bm

}
.

For 1 ≤ i ≤ s let us divide the matrix Ci into the following parts

Ci =




C
(m)
i D

(m)
i

E
(m)
i



.
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If n =
∑r

k=m+1 akb
k + abm +

∑m−1
k=0 dkb

k, then

n = (d0, d1, . . . , dm−1, a, am+1, . . . , ar, 0, 0, . . .)
⊤ ∈ (ZN

b )
⊤

and

Cin =




C
(m)
i




d0
...

dm−1




0

0
...




+




D
(m)
i




a

am+1
...

ar
0
...




0

0
...




+




0
...

0

E
(m)
i n


 .

Therefore Pm,a is a (modulo Zb) digitally shifted digital net generated by

the m×m matrices C
(m)
1 , . . . , C

(m)
s , which finally is translated by a vector

with positive coordinates less than b−m (i.e. a digital shift of depth m). By

Proposition 3.16 and Theorem 5.29 (see also Remark 5.30) we have

ND∗
N (S) ≤

r∑

m=0

am−1∑

a=0

bmD∗
bm(Pm,a)

≤
r∑

m=0

am

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to m

bm−|d|1−h(d).

Let now br+1 −N =
∑r

m=0 cmb
m, then like in the proof of Lemma 5.14, we

also obtain

ND∗
N (S) ≤

r∑

m=0

cm

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to m

bm−|d|1−h(d)

+
s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to r+1

br+1−|d|1−h(d).

Note that a0 = · · · = an−1 = c0 = · · · = cn−1 = 0, that an + cn = b, and

that am + cm = b− 1 for n+ 1 ≤ m ≤ r. Hence the result follows.

As a consequence we get the following result.

Corollary 5.33 Let s ∈ N and let b be a prime. Let S be the digital
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sequence generated by the N × N matrices C1, . . . , Cs over Zb. Let r ∈ N0

such that br ≤ N < br+1 and let n be the largest integer such that bn|N .

Then we have

ND∗
N (S) ≤

1

2

r∑

m=n

(b− 1)

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to m

bm−|d|1−h(d)

+
1

2

s−1∑

w=0

(b− 1)w




∑

d∈Nw

d admissible to n

bn−|d|1−h(d)

+
∑

d∈Nw

d admissible to r+1

br+1−|d|1−h(d)


 .

Weighted star discrepancy estimates for digital (t,m, s)-nets

In the following we use a different approach for the weighted star discrepancy.

This method is based on Theorem 3.28. We start with a bound on the

unweighted star discrepancy of digital nets. The quantity Rb, defined in the

following, is useful to obtain such a bound as it captures the essential part

of the star discrepancy. In detail, for m×m matrices C1, . . . , Cs over Zb, b

a prime, define

Rb(C1, . . . , Cs) :=
∑

k∈D′

ρb(k), (5.7)

where the set D′ is the dual net without the zero vector (see Definition 4.76),

that is,

D′ =
{
k ∈ {0, 1, . . . , bm − 1}s : C⊤

1 k1 + · · ·+ C⊤
s ks = 0

}
\ {0}, (5.8)

where k = (k1, . . . , ks) and for 1 ≤ i ≤ s we denote by ki the m-dimensional

column vector of b-adic digits of ki ∈ {0, . . . , bm − 1}. Furthermore ρb(k) :=∏s
i=1 ρb(ki) where for k ∈ N0 we put

ρb(k) :=

{
1 if k = 0,

1
br+1 sin(πκr/b)

if k = κ0 + κ1b+ · · ·+ κrb
r, κr 6= 0.

(5.9)

Theorem 5.34 Let s,m ∈ N and let b be a prime. For the star discrepancy

of the digital net P over Zb with generating matrices C1, . . . , Cs ∈ Zm×m
b we

have

D∗
bm(P) ≤ 1−

(
1− 1

bm

)s
+Rb(C1, . . . , Cs). (5.10)
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Proof The result follows from Theorem 3.28 by invoking Lemma 4.75. Note

that for a digital (t,m, s)-net over Zb each component of each point is a

rational with denominator bm.

Note that 1− (1− 1/bm)s ≤ sb−m by the Mean Value Theorem.

The quantity Rb(C1, . . . , Cs), defined above, can be represented in terms

of Walsh functions. This representation is an important tool when we analyse

the average star discrepancy of digital nets later on.

Lemma 5.35 Let s,m ∈ N and let b be a prime. Let {x0, . . . ,xbm−1} with
xn = (xn,1, . . . , xn,s) for 0 ≤ n < bm be a digital net over Zb generated by

the m×m matrices C1, . . . , Cs. Then we have

Rb(C1, . . . , Cs) = −1 +
1

bm

bm−1∑

n=0

s∏

i=1

(
bm−1∑

k=0

ρb(k) bwalk(xn,i)

)
.

Proof Using Lemma 4.75 we have

Rb(C1, . . . , Cs) =
∑

k∈D′

ρb(k)

= −1 +
∑

k∈{0,...,bm−1}s
ρb(k)

1

bm

bm−1∑

n=0

bwalk(xn)

= −1 + 1

bm

bm−1∑

n=0

∑

k∈{0,...,bm−1}s
ρb(k) bwalk(xn),

and the result follows.

Now we turn to the weighted star discrepancy with weights γ = {γu,s :

u ⊆ Is}. It follows from Definition 3.59 that for the weighted star discrepancy

of a point set P in [0, 1)s we have

D∗
N,γ(P) = sup

z∈(0,1]s
max

∅6=u⊆Is
γu,s|∆P(zu, 1)| ≤ max

∅6=u⊆Is
γu,s sup

zu∈(0,1]|u|
|∆P(zu, 1)|

= max
∅6=u⊆Is

γu,sD
∗
N (Pu),

where Pu in [0, 1)|u| consists of the points of P projected to the components

whose indices are in u.

If we consider a digital net over Zb, b a prime, generated by C1, . . . , Cs
over Zb, then for ∅ 6= u ⊆ Is we obtain from (5.10) that

D∗
bm(Pu) ≤ 1−

(
1− 1

bm

)|u|
+Rb((Ci)i∈u)
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and that for u = {u1, . . . , ud}, Rb((Ci)i∈u) is given by

Rb((Ci)i∈u) =
2m−1∑

k1,...,kd=0

(k1,...,kd) 6=(0,...,0)

C⊤
u1

k1+···+C⊤
ud

kd=0

d∏

i=1

ρb(ki).

This yields the following result.

Theorem 5.36 Let s,m ∈ N and let b be a prime. Then for the weighted

star discrepancy of a digital net P over Zb generated by the m×m matrices

C1, . . . , Cs we have

D∗
bm,γ(P) ≤ max

∅6=u⊆Is
γu,s

(
1−

(
1− 1

bm

)|u|)
+Rmax,b,γ(C1, . . . , Cs),

where Rmax,b,γ(C1, . . . , Cs) := max∅6=u⊆Is γu,sRb((Ci)i∈u).

5.4 Average type and metrical results

We now investigate the average quality parameter and the average star dis-

crepancy for randomly chosen digital nets or digital sequences.

Results on digital nets

We first give the results on digital (t,m, s)-nets. In the “finite case” it is

easy to explain what we mean by “at random”. For m, s ∈ N and for prime

b let C be the set of all s-tuples of m×m matrices C1, . . . , Cs over Zb. Note

that |C| = bsm
2
. Every digital (t,m, s)-net over Zb is defined by an s-tuple of

m×m matrices over Zb. Hence we want to estimate how large the average

value of the quality-parameter t is if we take the average over all digital

nets generated by an element out of the finite set C, were each s-tuple of

generating matrices is chosen equally likely. We could state the problem also

in a slightly modified form. Given t0 with 0 ≤ t0 ≤ m, how many s-tuples of

m×m matrices C1, . . . , Cs over Zb yield a (t,m, s)-net with t ≤ t0? Instead

for the quality-parameter t, we could ask the above questions also for the

star discrepancy.

The following result was first proved (in a more general setting) in [139,

Theorem 3].

Theorem 5.37 Let m, s ∈ N, let b be a prime, and let α with 0 ≤ α < 1

be given. Then more than α|C| elements of C generate a digital (t,m, s)-net
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over Zb with

t ≤
⌈
(s− 1) logbm+ logb

1

1− α

⌉
.

Remark 5.38 For fixed s by a random choice of matrices we can, roughly

speaking, expect a digital (t,m, s)-net over Zb with quality parameter t

about a constant times logbm.

Proof of Theorem 5.37 For given m and s we consider the class C of all s-

tuples (C1, . . . , Cs) of m×m matrices over Zb. By the proof of Theorem 4.52

(see also Lemma 4.59) the matrices from the s-tuple (C1, . . . , Cs) do not

generate a digital (t,m, s)-net over Zb if and only if there exist d1, . . . , ds ∈
N0 with d1 + · · ·+ ds = m− t such that the linear system

c
(i)
j n = 0 for 1 ≤ j ≤ di and 1 ≤ i ≤ s (5.11)

has more than bt solutions n ∈ (Zmb )
⊤, where c(i)j ∈ Zmb is the jth row vector

of the matrix Ci for 1 ≤ j ≤ di and 1 ≤ i ≤ s. By Lemma 4.87, the linear

system then has at least 2bt solutions. For 0 ≤ t < m let M(t) be the set

of (C1, . . . , Cs) ∈ C generating no digital (t,m, s)-net over Zb. Then for the

number |M(t)| of elements (C1, . . . , Cs) in M(t) we have

|M(t)| ≤
∑

(C1,...,Cs)∈C

∑

d∈Ns
0

|d|1=m−t

1

bt

(∣∣∣
{
n ∈ (Zmb )

⊤ : n solves (5.11)
}∣∣∣− bt

)

=
∑

d∈Ns0
|d|1=m−t


 1

bt

∑

n∈(Zm
b )⊤

∑

C∈C
n solves (5.11)

1−
∑

C∈C
1


 .

For fixed d ∈ Ns0 we have
∑

n∈(Zm
b )⊤

∑

C∈C
n solves (5.11)

1 = bm
2s−m(m−t) ∑

n∈(Zm
b )⊤

∑

c1,...,cm−t∈Zm
b

n solves (5.12)

1,

where (5.12) is the linear system

ckn = 0 for 1 ≤ k ≤ m− t. (5.12)

To obtain the last equality, note that the linear system (5.11) of equations,

c
(i)
j n = 0 for 1 ≤ j ≤ di and 1 ≤ i ≤ s, now considered as a system in the

(m − t)m coordinates of the c
(i)
j as unknowns, is independent of the rows

c
(i)
j for di < j ≤ m, 1 ≤ i ≤ s of a given s-tuple (C1, . . . , Cs) ∈ C. That
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is, for any given c1, . . . , cm−t ∈ Zmb there are exactly bm
2s−(m−t)m tuples

(C1, . . . , Cs) ∈ C having these c1, . . . , cm−t as “first di rows”.
Since |C| = bsm

2
, and since

∑

d∈Ns
0

|d|1=m−t

1 ≤ (m− t+ 1)s−1

we obtain

|M(t)| ≤ |C|(m− t+ 1)s−1


b

−m(m−t)−t ∑

n∈(Zm
b )⊤

∑

c1,...,cm−t∈Zm
b

n solves (5.12)

1− 1


 .

We have

∑

n∈(Zm
b )⊤

∑

c1,...,cm−t∈Zm
b

n solves (5.12)

1 =
∑

n∈(Zm
b )⊤



∑

c∈Zm
b

cn=0

1




m−t

.

Using

∑

c∈Zm
b

cn=0

1 =

{
bm if n = 0,

bm−1 if n 6= 0,

we obtain

|M(t)| ≤ |C|(m− t+ 1)s−1

(
b(m−t)m + (bm − 1)b(m−1)(m−t)

bm(m−t)+t − 1

)

≤ |C|(m− t+ 1)s−1 1

bt
.

Let us now determine t0 such that (m− t0 + 1)s−1b−t0 < (1− α). This is
certainly satisfied if t0 is chosen as

t0 =

⌈
(s− 1) logbm+ logb

1

1− α

⌉
.

Therefore, the set M(t0) of s-tuples of m ×m matrices over Zb generating

no (t0,m, s)-net over Zb has less than (1− α)|C| elements. Hence the result

follows.

We can use the last result and Theorem 5.10 to obtain an analogous result

for the star discrepancy of digital (t,m, s)-nets.



5.4 Average type and metrical results 233

Corollary 5.39 Let m, s ∈ N, m ≥ 2, and let b be a prime. Then there

exists a constant B(s, b) > 0, depending only on the dimension s and the

base b, with the property that for all given α, with 0 ≤ α < 1, there are more

than α|C| elements of C generating a digital (t,m, s)-net P over Zb with star

discrepancy satisfying

D∗
bm(P) ≤ B(s, b)

1− α
m2(s−1)

bm
.

Proof The result follows upon combining Theorems 5.10 and 5.37.

We do not give any details of the proof of Corollary 5.39 since we can im-

prove the result. As it turns out, the order of discrepancy of (logN)2(s−1)/N

is not best possible. The following result was first proved by Larcher [135,

Theorem 10].

Theorem 5.40 For m, s ∈ N, m ≥ 2 and prime base b let C be the set of all
s-tuples of m×m matrices over Zb. Then there exists a constant B(s, b) > 0,

depending only on the dimension s and the base b, with the property that

for all given α, with 0 ≤ α < 1, there are more than α|C| elements of C
generating a digital (t,m, s)-net P over Zb with star discrepancy satisfying

D∗
bm(P) ≤ 2

1− α
1

bm

s−1∑

w=0

(b− 1)w
(
m

w

)

× 2b− 1 + b ((s− 1) logbm+ logb 2− logb(1− α))
b− 1

≤ B(s, b)
1

1− α
ms−1

bm
logm+O(ms−1).

Here the implied O-constant depends only on s, b, and α.

Proof For (C1, . . . , Cs) ∈ C let c
(i)
j ∈ Zmb denote the jth row vector of the

m×m matrix Ci for 1 ≤ j ≤ m and 1 ≤ i ≤ s. For a nonnegative integer c

let

M(c) := {(C1, . . . , Cs) ∈ C : ∃d ∈ Ns0 with |d|1 = m− c such that

c
(i)
j , 1 ≤ j ≤ di, 1 ≤ i ≤ s are linearly dependent over Zb},

where as usual d is of the form d = (d1, . . . , ds). Then we have

|M(c)| ≤
∑

d∈Ns
0

|d|1=m−c

∑

λ∈Zm−c
b \{0}

|M(λ,d)|
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with

M(λ,d) :=



(C1, . . . , Cs) ∈ C :

s∑

i=1

di∑

j=1

λd1+···+di−1+jc
(i)
j = 0



 ,

where d = (d1, . . . , ds) ∈ Ns0 and λ := (λ1, . . . , λm−c) ∈ Zm−c
b . We now

determine the number of elements ofM(λ,d). There is an i ∈ {1, . . . ,m−c}
with λi 6= 0. Assume first that λ1 6= 0. Then for any choice of

c
(1)
2 , . . . , c(1)m , c

(2)
1 , . . . , c(2)m , . . . , c

(s)
1 , . . . , c(s)m ∈ Zmb

we can find exactly one vector c
(1)
1 ∈ Zmb such that

s∑

i=1

di∑

j=1

λd1+···+di−1+jc
(i)
j = 0.

The same argument holds with λ1 replaced by λd1+···+di−1+j and c
(1)
1 re-

placed by c
(i)
j for 1 ≤ j ≤ di and 1 ≤ i ≤ s. Therefore we have |M(λ,d)| =

b−m|C| and consequently

|M(c)| ≤ |C| 1

bm
bm−c ∑

d∈Ns0
|d|1=m−c

1 = |C| 1
bc

(
m− c+ s− 1

s− 1

)
.

For M(c) := C \ M(c) we have |M(c)| ≥ |C|(1 − R(c)) where R(c) :=
1
bc

(m−c+s−1
s−1

)
. For a positive integer c we consider now

Σ :=
1∣∣M(c)
∣∣
∑

C∈M(c)

D∗
bm(P(C1,...,Cs)),

where P(C1,...,Cs) denotes the digital net defined by the s-tuple (C1, . . . , Cs) ∈
C. By the discrepancy estimate for digital nets given in Theorem 5.29 we

obtain

Σ ≤ 1

|M(c)|
∑

(C1,...,Cs)∈M (c)

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to (C1,...,Cs)

b−|d|1−h(d)

≤ 1

|M(c)|
∑

(C1,...,Cs)∈M (c)

s−1∑

w=0

(b− 1)w
∑

d∈Nw

d admissible to (C1,...,Cs)

b−|d|1

×






m−|d|1∑

k=m−|d|1−c+1

∑∗
λ

1

b− 1

b

bk


+

1

bm−|d|1


 .
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Here,
∑∗

λ means summation over all λ := (λ1, . . . , λ|d|1+k) ∈ Z
|d|1+k
b \ {0},

for which

w∑

i=1

di∑

j=1

λd1+···+di−1+jc
(i)
j +

k∑

j=1

λ|d|1+jc
(w+1)
j = 0 ∈ Zmb .

The summand 1
bm−|d|1

results from the case where h(d) = m− |d|1 and the

factor 1
b−1 derives from the fact that, whenever, for given (C1, . . . , Cs), w,

d, and k, there is a possible summand λ, then there are at least b− 1 such

summands λ.

Therefore

Σ ≤ 1

bm

s−1∑

w=0

(b− 1)w
(
m

w

)

+
1∣∣M(c)
∣∣

b

b− 1

s−1∑

w=0

(b− 1)w
∑

d∈Nw

|d|1≤m

b−|d|1

×
m−|d|1∑

k=max(0,m−|d|1−c+1)

1

bk

∑

λ∈Z|d|1+k
b \{0}

|M(λ,d, w)|,

where M(λ,d, w) is the set of all (C1, . . . , Cs) ∈ C for which we have

w∑

i=1

di∑

j=1

λd1+···+di−1+jc
(i)
j +

k∑

j=1

λ|d|1+jc
(w+1)
j = 0.

As above we obtain that |M(λ,d, w)| = b−m|C|, and hence

Σ ≤ 1

bm

s−1∑

w=0

(b− 1)w
(
m

w

)
+

c∣∣M(c)
∣∣

b

b− 1

|C|
bm

s−1∑

w=0

(b− 1)w
(
m

w

)

≤ 1

bm

s−1∑

w=0

(b− 1)w
(
m

w

)[
1 +

cb

b− 1
(1−R(c))−1

]
:= A(c).

Therefore, for γ ≥ 1, we have

A(c) ≥ Σ

>
1

|M(c)|
γA(c)|{(C1, . . . , Cs) ∈M(c) : D∗

bm(P(C1,...,Cs)) > γA(c)}|

and hence the number of (C1, . . . , Cs) ∈ C such that D∗
bm(P(C1,...,Cs)) ≤

γA(c) is at least
(
1− γ−1

)
(1−R(c))|C|.

Let now γ = 1+α
1−α with 0 < α < 1 and choose c ≥ 1 such that R(c) ≤ 1−α

2 ,
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which is satisfied for c ≥
⌈
logb

(
2

(1−α)m
s−1
)⌉

. Then (1−γ−1)(1−R(c))|C| ≥
α|C| and

γA(c) ≤ 2

1− α
1

bm

s−1∑

w=0

(b− 1)w
(
m

w

)

× 2b− 1 + b((s − 1) logbm+ logb 2− logb(1− α))
b− 1

.

The result follows.

In view of the best possible order of the star discrepancy of finite sets (see

Section 3.2 and note that N = bm), this result shows that most choices of

s-tuples of matrices provide digital nets with almost (apart from the logm-

term) the smallest possible order of the star discrepancy.

Let us now turn to the weighted star discrepancy. We obtain an upper

bound on the average of the weighted star discrepancy over all digital nets

constructed over Zb with b
m points in [0, 1)s. Here we consider only weights of

product form that are independent of the dimension, that is, for ∅ 6= u ⊆ Is,
the weights γu,s are given by γu,s = γu =

∏
j∈u γj with nonnegative reals γj

independent of s. Define

Rb,γ(C1, . . . , Cs) :=
∑

∅6=u⊆Is
γuRb((Ci)i∈u).

Then it follows from Theorem 5.36 that for the weighted star discrepancy

of a digital net P over Zb generated by the m ×m matrices C1, . . . , Cs we

have

D∗
bm,γ(P) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)
+Rb,γ(C1, . . . , Cs). (5.13)

The sum in the above expression can be estimated by the following lemma,

which was proved by Joe [114, Lemma 1].

Lemma 5.41 Suppose that the weight sequence (γi)i≥1 satisfies
∑∞

i=1 γi <

∞, then for any s,N ∈ N we have

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

N

)|u|)
≤ max(1,Γ)

N
e
∑∞

i=1 γi ,

where Γ :=
∑∞

i=1
γi

1+γi
.
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Proof We have

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

N

)|u|)
=

s∏

i=1

(1 + γi)−
s∏

i=1

(
1 + γi

(
1− 1

N

))

=

s∏

i=1

(1 + γi)

[
1−

s∏

i=1

(
1− γi

N(1 + γi)

)]
.

Now we use an argument from [104, Proof of Theorem 7]. Since log(1−x) ≥
x(log(1− a))/a for 0 ≤ x ≤ a < 1 we obtain

log

(
s∏

i=1

(
1− γi

N(1 + γi)

))
=

s∑

i=1

log

(
1− γi

N(1 + γi)

)

≥ log

(
1− 1

N

) s∑

i=1

γi
1 + γi

.

This leads to the estimate

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

N

)|u|)
≤

s∏

i=1

(1 + γi)

[
1−

(
1− 1

N

)∑s
i=1

γi
1+γi

]
.

Since
∑∞

i=1 γi <∞ it follows that Γ :=
∑∞

i=1
γi

1+γi
<∞.

If Γ ≤ 1, then we have (1− 1/N)Γ ≥ 1− 1/N and hence

1−
(
1− 1

N

)Γ

≤ 1

N
.

If Γ > 1, then we obtain from the Mean Value Theorem that

1−
(
1− 1

N

)Γ

≤ Γ

N
.

Therefore we obtain

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

N

)|u|)
≤

s∏

i=1

(1 + γi)

[
1−

(
1− 1

N

)Γ
]

≤ max(1,Γ)

N

∞∏

i=1

(1 + γi)

=
max(1,Γ)

N
e
∑∞

i=1 log(1+γi)

≤ max(1,Γ)

N
e
∑∞

i=1 γi .
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Lemma 5.42 Let s,m ∈ N and let b be prime. For (C1, . . . , Cs) ∈ C we

have

Rb,γ(C1, . . . , Cs) =
∑

k∈D′

s∏

i=1

ρb(ki, γi),

where D′ is defined as in (5.8) and ρb(k, γ) is defined by

ρb(k, γ) :=

{
1 + γ if k = 0,

γρb(k) if k 6= 0,

with ρb(k) as in (5.9).

Proof Let {x0, . . . ,xbm−1} be the digital net generated by C1, . . . , Cs and

write xn = (xn,1, . . . , xn,s) for 0 ≤ n < bm. From Lemma 5.35 it follows that

for ∅ 6= u ⊆ Is we have

Rb((Ci)i∈u) = −1 +
1

bm

bm−1∑

n=0

∏

i∈u

(
1 +

bm−1∑

k=1

ρb(k) bwalk(xn,i)

)
.

Therefore, together with Lemma 4.75, we obtain

Rb,γ(C1, . . . , Cs)

=
∑

∅6=u⊆Is
γuRb((Ci)i∈u)

= −
∑

∅6=u⊆Is
γu +

∑

∅6=u⊆Is

1

bm

bm−1∑

n=0

∏

i∈u
γi

(
1 +

bm−1∑

k=1

ρb(k) bwalk(xn,i)

)

= 1−
s∏

i=1

(1 + γi)

+
1

bm

bm−1∑

n=0

(
−1 +

s∏

i=1

(
1 + γi + γi

bm−1∑

k=1

ρb(k) bwalk(xn,i)

))

= −
s∏

i=1

(1 + γi) +
1

bm

bm−1∑

n=0

s∏

i=1

(
bm−1∑

k=0

ρb(k, γi) bwalk(xn,i)

)

= −
s∏

i=1

(1 + γi) +

bm−1∑

k1,...,ks=0

s∏

i=1

ρb(ki, γi)
1

bm

bm−1∑

n=0

s∏

i=1

bwalki(xn,i)

=
bm−1∑

k1,...,ks=0
k=(k1,...,ks) 6=(0,...,0)

s∏

i=1

ρb(ki, γi)
1

bm

bm−1∑

n=0

bwalk(xn)
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=
∑

k∈D′

s∏

i=1

ρb(ki, γi).

Let s,m ∈ N and b be a prime. Let again C be the set of all s-tuples

(C1, . . . , Cs) of m×m matrices over Zb. Then we define

Ab(m, s) :=
1

|C|
∑

(C1,...,Cs)∈C
Rb,γ(C1, . . . , Cs), (5.14)

i.e., Ab(m, s) is the average of Rb,γ taken over all s-tuples of m×m matrices

over Zb. The following result was first proved in [49, Theorem 8]. A similar

result for the unweighted case can be found in [175, Theorem 4.33].

Theorem 5.43 For m, s ∈ N and a prime b let Ab(m, s) be defined by

(5.14). Then for b = 2 we have

A2(m, s) =
1

2m

(
s∏

i=1

(
1 + γi

(m
2

+ 1
))
−

s∏

i=1

(1 + γi)

)
,

and for b > 2 we have

Ab(m, s) ≤
1

bm

(
s∏

i=1

(
1 + γi

(
1 + 2m

(
1

π
log b+

1

5

)))
−

s∏

i=1

(1 + γi)

)
.

Proof We have

Ab(m, s) =
1

bm2s

∑

(C1,...,Cs)∈C

∑

k∈D′

s∏

i=1

ρb(ki, γi)

=
1

bm2s

bm−1∑

k1,...,ks=0
(k1,...,ks) 6=(0,...,0)

s∏

i=1

ρb(ki, γi)
∑

(C1,...,Cs)∈C

C⊤
1

k1+···+C⊤
s ks=0

1.

Let c
(i)
j denote the jth row vector, 1 ≤ j ≤ m, of the matrix Ci, 1 ≤ i ≤ s.

Then for (k1, . . . , ks) ∈ {0, 1, . . . , bm − 1}s, (k1, . . . , ks) 6= (0, . . . , 0), with

ki = κi,0 + κi,1b + · · · + κi,m−1b
m−1 for 1 ≤ i ≤ s, the condition in the

innermost sum of the above expression becomes

s∑

i=1

m−1∑

j=0

κi,jc
(i)
j+1 = 0. (5.15)

Since at least one ki 6= 0, it follows that there is a κi,j 6= 0. First assume

that κ1,0 6= 0. Then for any choice of

c
(1)
2 , . . . , c(1)m , c

(2)
1 , . . . , c(2)m , . . . , c

(s)
1 , . . . , c(s)m ∈ Zmb
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we can find exactly one vector c
(1)
1 such that condition (5.15) is fulfilled. The

same argument holds with κ1,0 replaced by κi,j and c
(1)
1 replaced by c

(i)
j+1.

Therefore we get

Ab(m, s) =
1

bm

bm−1∑

k1,...,ks=0
(k1,...,ks) 6=(0,...,0)

s∏

i=1

ρb(ki, γi)

=
1

bm

(
s∏

i=1

bm−1∑

k=0

ρb(k, γi)−
s∏

i=1

(1 + γi)

)

=
1

bm

(
s∏

i=1

(
1 + γi + γi

bm−1∑

k=1

ρb(k)

)
−

s∏

i=1

(1 + γi)

)

=
1

bm

(
s∏

i=1

(
1 + γi

bm−1∑

k=0

ρb(k)

)
−

s∏

i=1

(1 + γi)

)
.

From the definition of ρb in (5.9) we find that

2m−1∑

k=0

ρ2(k) = 1 +

m−1∑

r=0

2r+1−1∑

k=2r

1

2r+1
=
m

2
+ 1

and that for b > 2,

bm−1∑

k=0

ρb(k) = 1 +

m−1∑

r=0

br+1−1∑

k=br

1

br+1 sin (πκr/b)

= 1 +
m

b

b−1∑

κ=1

1

sin (πκ/b)
≤ 1 +m

(
2

π
log b+

2

5

)
,

where we have used

b−1∑

κ=1

1

sin (πκ/b)
≤ 2

π
b log b+

2

5
b,

which was shown in [165, p. 574]. The result follows.

We obtain the following metrical result.

Corollary 5.44 Let m, s ∈ N, let b be a prime, and let 0 ≤ α < 1. Then

for more than α|C| elements of C we have

Rb,γ(C1, . . . , Cs) ≤
1

1− α
1

bm

(
s∏

i=1

(1 + γih(p,m))−
s∏

i=1

(1 + γi)

)
,

where h(b,m) = 1 + 2m((log b)/π + 1/5) if b 6= 2 and h(2,m) = m/2 + 1.
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Proof For ε ≥ 1 we have

Ab(m, s) >
1

|C|
ε

bm

(
s∏

i=1

(1 + γih(p,m))−
s∏

i=1

(1 + γi)

)
Tb,m,s(ε),

where Tb,m,s(ε) is the number of (C1, . . . , Cs) ∈ C for which we have

Rb,γ(C1, . . . , Cs) >
ε

bm

(
s∏

i=1

(1 + γih(b,m))−
s∏

i=1

(1 + γi)

)
.

From Theorem 5.43 we obtain then that |C|ε−1 > Tb,m,s(ε) and the result

follows by setting ε = (1− α)−1.

Corollary 5.45 Let b be a prime. If
∑∞

i=1 γi < ∞, then for any δ > 0

there exists a constant c̃γ,δ > 0 with the property that for any s,m ∈ N

there exist m ×m matrices C1, . . . , Cs over Zb such that the weighted star

discrepancy of the digital net P generated by C1, . . . , Cs satisfies

D∗
bm,γ(P) ≤

c̃γ,δ

bm(1−δ) . (5.16)

Proof Let cb := 2
(
1
π log b+

4
5

)
, N = bm, and assume that

∑∞
i=1 γi < ∞.

Then we have
s∏

i=1

(1 + γimcb) =
s∏

i=1

(
1 + γi(logN)

cb
log b

)
≤

s∏

i=1

(1 + γic logN),

where c > 1 is an absolute constant. Now we use an argumentation presented

first in [104, Lemma 3]. Let

S(γ, N) :=
∞∏

i=1

(1 + γic logN)

and define σd := c
∑∞

i=d+1 γi for d ≥ 0. Then

log S(γ, N) =

∞∑

i=1

log(1 + γic logN)

≤
d∑

i=1

log(1 + σ−1
d + γic logN) +

∞∑

i=d+1

log(1 + γic logN)

≤ d log(1 + σ−1
d ) +

d∑

i=1

log(1 + γiσdc logN)

+

∞∑

i=d+1

log(1 + γic logN)
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≤ d log(1 + σ−1
d ) + σdc(logN)

d∑

i=1

γi + σd logN

≤ d log(1 + σ−1
d ) + σd(σ0 + 1) logN.

Hence we obtain

S(γ, N) ≤ (1 + σ−1
d )dbm(σ0+1)σd .

For δ > 0 choose d large enough to make σd ≤ δ/(σ0 + 1). Then we obtain

S(γ, N) ≤ cγ,δbδm.

The result follows now from (5.13), Lemma 5.41, and Theorem 5.43.

We can use the above corollary to give conditions on the weights γ un-

der which the weighted star discrepancy is strongly tractable (see Defini-

tion 3.63).

Corollary 5.46 Let N, s ∈ N. For product weights, if
∑∞

i=1 γi <∞, then

there exists a point set P consisting of N points in [0, 1)s such that for any

δ > 0 we have

D∗
N,γ(P) ≤

Cδ,γ
N1−δ ,

where Cδ,γ > 0 is independent of s and N . Hence for ε > 0 we have

N∗
γ(s, ε) ≤ ⌈C ′

δ,γε
−1/(1−δ)⌉ for any δ > 0 with C ′

δ,γ > 0 independent of s and

N . Thus the weighted star discrepancy is strongly tractable with ε-exponent

equal to one.

Remark 5.47 We remark that the point set P considered in Corollary 5.46

is a superposition of digital nets over Zb. This follows from the proof be-

low. However, the result is (at the moment) still not constructive as we

use Corollary 5.45 which is obtained from averaging over all digital nets.

A construction of the digital nets used in the superposition is given be-

low in Chapter 10, Algorithm 10.26, and in Chapter 11, Algorithm 11.19.

In this context we refer already here to Corollary 10.30 and Remark 10.31

and to Corollary 11.22 and Remark 11.23 respectively. We remark further

that strong tractability results for the weighted star discrepancy can also

be obtained from the results of Wang in [259] and [260]. Wang’s results are

constructive, but one needs much more restrictive conditions on the weights.

Proof of Corollary 5.46 From Corollary 5.45 we know that under the as-

sumption
∑∞

i=1 γi < ∞, for each δ > 0, there exists for each prime b and
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each m ∈ N a digital net over Zb with bm points, say Pbm,s ⊆ [0, 1)s, such

that

D∗
bm,γ(Pbm,s) ≤

Cδ,γ

bm(1−δ) ,

where Cδ,γ > 0 is independent of s and m.

Now, for simplicity, we consider the case b = 2 only. Let δ > 0 and let

N ∈ N with binary representation N = 2r1 + · · ·+2rm , where 0 ≤ r1 < r2 <

· · · < rm, i.e., rm = ⌊log2N⌋, where log2 denotes the logarithm in base 2.

For each 1 ≤ i ≤ m there exists a point set P2ri ,s ⊆ [0, 1)s, such that

D∗
2ri ,γ(P2ri ,s) ≤

Cδ,γ

2ri(1−δ)
.

Let PN,s = P2r1 ,s ∪ . . . ∪ P2rm ,s (here we mean a superposition where the

multiplicity of elements matters). Then it follows from a weighted version

of the triangle inequality for the star discrepancy (see Proposition 3.16 and

Exercise 3.31) that

D∗
N,γ(PN,s) ≤

m∑

i=1

2ri

N
D∗

2ri ,γ(P2ri ,s) ≤
Cδ,γ
N

m∑

i=1

2riδ

≤ Cδ,γ
N

⌊log2N⌋∑

j=0

2jδ ≤ C̃δ,γ
N1−δ .

Hence for each s,N ∈ N there exists a point set PN,s with D∗
N,γ(PN,s) ≤

C̃δ,γ

N1−δ which shows the desired result. This point set is a superposition of

digital nets over Z2. The results on strong tractability follow as well.

Results on digital sequences

Let us now consider the corresponding results for digital (T, s)-sequences.

Contrary to finite nets, digital (T, s)-sequences over Zb are generated by

s-tuples (C1, . . . , Cs) of N × N matrices over Zb. The set of these s-tuples

is infinite and so we have to use a suitable measure on this set to which

our average (or metrical) results are related. Let Ms denote the set of all

s-tuples of N×N matrices over Zb. We define the probability measure µs on

Ms as the product measure induced by a certain probability measure µ on

the set M of all infinite matrices over Zb. We can view M as the product

of denumerable many copies of the sequence space ZN
b over Zb, and so we

define µ as the product measure induced by a certain probability measure µ̃

on ZN
b . For µ̃ we just take the measure on ZN

b induced by the equiprobability

measure on Zb.
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Remark 5.48 Let us remark the following concerning the measure µ̃.

We can identify each c = (c1, c2, . . .) ∈ ZN
b with its generating function

L =
∑∞

k=1 ckz
−k ∈ Zb((z

−1)), where Zb((z
−1)) is the field of formal Laurent

series over Zb in the variable z−1. In this way we can identify ZN
b with the

set H of all generating functions. Consider the discrete exponential valuation

ν on H which is defined by ν(L) = −w if L 6= 0 and w is the least index

with cw 6= 0. For L = 0 we set ν(0) = −∞. With the topology induced by

the discrete exponential valuation ν and with respect to addition, H is a

compact abelian group, and µ̃ then is the unique Haar probability measure

on H.

Now we ask how “large” is the “average value” of the quality function

T if we compute the average by integration with respect to µs over Ms?

Or in modified form, given T0 : N → N0, how large is the measure of all

(C1, . . . , Cs) inMs, which generate a (T, s)-sequence with T(m) ≤ T0(m)+

O(1) for allm ≥ 1. Again, analogous questions can be stated for the sequence

of discrepancies of the corresponding digital sequences.

The first result was given (in a slightly different form) by Larcher &

Niederreiter in [138, Theorem 2].

Theorem 5.49 For given dimension s ∈ N and a given prime base b let

Ms denote the set of all s-tuples of N×N matrices over Zb. Then we have:

1. Let D : N→ [0,∞) be such that

∞∑

m=1

ms−1

bD(m)
<∞.

Then µs-almost all s-tuples (C1, . . . , Cs) ∈ Ms generate a digital (T, s)-

sequence over Zb with T(m) ≤ D(m) + O(1) for all m ∈ N, where

the implied O-constant may depend on the sequence (i.e., for almost all

(C1, . . . , Cs) ∈ Ms there is a constant K such that the (T, s)-sequence

generated by C, satisfies T(m) ≤ D(m) +K for all m ∈ N).

2. Let D : N→ [0,∞) be such that

Kb(s,D) :=
∞∑

m=1

ms−1

bD(m)
<∞.

Let 0 ≤ α < 1. Then the µs-measure of the s-tuples (C1, . . . , Cs) ∈ Ms of

N×N matrices over Zb generating a digital (T, s)-sequence over Zb with

T(m) ≤ D(m) +

⌊
log(Kb(s,D))− log(1− α)

log b

⌋
+ 1
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for all m ∈ N, is greater than α.

Example 5.50 For instance, µs-almost all s-tuples (C1, . . . , Cs) ∈ Ms

generate a digital (T, s)-sequence over Zb such that for some constant L we

have

T(m) ≤ s logbm+ 2 logb logm+ L

for all integers m ≥ 2.

Proof of Theorem 5.49 Note that we can assume without loss of generality

that D(m) ∈ N0 for all m ∈ N. Now we put

Kb(s,D) =
∞∑

m=1

ms−1

bD(m)
.

For M ∈ N let Ms(D,M) be the set of all (C1, . . . , Cs) ∈ Ms such that

δ(C
(m)
1 , . . . , C

(m)
s ) > D(m) +M for some m ∈ N, where C

(m)
i denotes the

left upper sub-matrix of Ci for 1 ≤ i ≤ s and where δ(C
(m)
1 , . . . , C

(m)
s ) is

defined in Definition 4.58. Note that if δ(C(m)) > D(m) +M , then there

exist d = (d1, . . . , ds) ∈ N0 with |d|1 = m−D(m)−M such that the system

of equations πm(c
(i)
j )z = 0 for 1 ≤ j ≤ di and 1 ≤ i ≤ s (where c

(i)
j denotes

the jth row vector of the matrix Ci and πm(c
(i)
j ) is the row vector from Zmb

consisting of the first m elements of c
(i)
j ), has at least 2bD(m)+M solutions

z ∈ (Zmb )
⊤ (see Lemma 4.87). It follows that

µs(Ms(D,M)) ≤
∞∑

m=1

∑

d∈N0
|d|1=m−D(m)−M

A(m,m−D(m)−M)

bm(m−D(m)−M)
,

where A(m,m− t) is the number of (m− t)-tuples (c1, . . . , cm−t) of elements

of Zmb such that the system ckz = 0 for 1 ≤ k ≤ m − t has at least 2bt

solutions z ∈ (Zmb )
⊤. Now

A(m,m− t)
≤

∑

c1,...,cm−t∈Zm
b

1

bt
(|{z ∈ (Zmb )

⊤ : ckz = 0 for 1 ≤ k ≤ m− t}| − bt)

=
∑

c1,...,cm−t∈Zm
b

1

bt




∑

z∈(Zm
b

)⊤

ckz=0 for 1≤k≤m−t

1− bt
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= bm(m−t)


b

−m(m−t)−t ∑

z∈(Zm
b )⊤

∑

c1,...,cm−t∈Zm
b

ckz=0 for 1≤k≤m−t

1− 1




and this last quantity is, as it was shown in the proof of Theorem 5.37, at

most bm(m−t)b−t. Therefore we obtain

µs(Ms(D,M)) ≤
∞∑

m=1

∑

d∈N
s
0

|d|1=m−D(m)−M

b−D(m)−M

≤
∞∑

m=1

ms−1b−D(m)−M = b−MKb(s,D).

Since M can be chosen arbitrary large, it follows that for µs-almost all

(C1, . . . , Cs) ∈Ms we have δ(C
(m)
1 , . . . , C

(m)
s ) ≤ D(m)+O(1) for all m ∈ N.

By Theorem 4.84 and Lemma 4.59 the first result follows.

For the second part we just have to look at the end of the first part of the

proof in more detail. The measure of s-tuples (C1, . . . , Cs) of N×N matrices

over Zb generating a digital (T, s)-sequence with T(m) ≤ D(m) +M for all

m ∈ N is at least 1− b−MKb(s,D). Let α with 0 ≤ α < 1 be given. Then

1− b−MKb(s,D) > α

provided that

M >
log(Kb(s,D))− log(1− α)

log b

and the result follows.

Finally we give the corresponding metrical result for the star discrepancy

of digital sequences. Again, by simply combining Theorem 5.49 and the star

discrepancy estimate given in (5.5) we could obtain such a result. But this

result is not best possible.

Corollary 5.51 Let s ∈ N and let b be a prime. Then µs-almost all s-

tuples (C1, . . . , Cs) ∈ Ms generate a digital sequence S over Zb whose star

discrepancy satisfies

ND∗
N (S) = O

(
(logN)2s(log logN)2

)
.

Proof For the star discrepancy of the first N elements of a (T, s)-sequence

S we have according to (5.5) that ND∗
N (S) ≤ B(s, b)

∑r
m=0 b

T(m)ms−1,

where r ∈ N0 such that br ≤ N < br+1. By Example 5.50, µs-almost all
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s-tuples (C1, . . . , Cs) ∈ Ms generate a digital (T, s)-sequences over Zb with

T(m) = s logbm+ 2 logb logm+O(1). For any such sequence S we have

ND∗
N (S) = O

(
r∑

m=0

bs logbm+2 logb logmms−1

)

= O

(
r∑

m=0

m2s−1(logm)2

)

= O
(
(logN)2s(log logN)2

)
.

Again this result can be improved. The following result was shown by

Larcher in [136, Theorem 1].

Theorem 5.52 Let s ∈ N and let b be a prime. Let G : N → R+ be

monotonically increasing such that

∞∑

m=1

ms−1 logm

G(m)
<∞.

Then for µs-almost all s-tuples (C1, . . . , Cs) ∈ Ms, the digital sequence S
generated by C1, . . . , Cs has star discrepancy satisfying

D∗
N (S) = O

(
G(logN)

N

)
.

Example 5.53 For example, by choosing for some ε > 0, G(m) :=

ms(logm)2+ε we obtain for µs-almost all (C1, . . . , Cs) ∈ Ms a star dis-

crepancy estimate for the corresponding sequence S of the form

D∗
N (S) = O

(
(logN)s(log logN)2+ε

N

)
.

For the proof of Theorem 5.52 we follow [136], where we make use of

Theorem 5.29 and of the subsequent notation and lemma. Let w with 0 ≤
w ≤ s − 1 be fixed. For an arbitrary w-tuple d of positive integers d :=

(d1, . . . , dw) let |d|1 := d1+ · · ·+dw. Let g = g(m) be a nonnegative integral-

valued function in the variable m. Let

M(g) := {(C1, . . . , Cw+1) ∈ Mw+1 : ∃m ≥ 1 and d admissible with

respect to m such that h(d) < m− |d|1 − g(m)}.

Recall that Mw+1 is the set of all w + 1-tuples of N × N matrices over Zb,

“admissible with respect to m” means that d is admissible for the matrices

C
(m)
1 , . . . , C

(m)
w , and the function h also is meant with respect to the matrices
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C
(m)
1 , . . . , C

(m)
w , C

(m)
w+1 (for the “admissibility-notation” and the definition of

the function h we refer to the beginning of Section 5.3).

Lemma 5.54 With the above notation we have

µw+1(M(g)) ≤
∞∑

m=1

mw

bg(m)
.

Proof Let c
(i)
j denote the jth row vector of the matrix Ci, where j ∈ N and

1 ≤ i ≤ s. For m ∈ N let πm(c
(i)
j ) be the row vector from Zmb consisting of

the first m components of c
(i)
j (i.e., πm(c

(i)
j ) ∈ Zmb is the jth row vector of

the matrix C
(m)
i ). We have

µw+1(M(g)) ≤
∞∑

m=1

∑

d∈Nw

|d|1<m−g(m)

∑

λ:=(λ1,...,λm−g(m))∈Z
m−g(m)
b

λ|d|1+1,...,λm−g(m) not all 0

µw+1(M(λ,d,m)),

where for λ := (λ1, . . . , λm−g(m)) ∈ Z
m−g(m)
b and for d = (d1, . . . , dw) ∈ Nw

we defineM(λ,d,m) as the set of all w+1-tuples (C1, . . . , Cw+1) ∈Mw+1

for which d is admissible with respect to C
(m)
1 , . . . , C

(m)
w+1 and

w∑

i=1

di∑

j=1

λd1+···+di−1+jπm(c
(i)
j ) +

m−|d|1−g(m)∑

j=1

λ|d|1+jπm(c
(w+1)
j ) = 0.

Since one of λ|d|1+1, . . . , λm−g(m) is different from zero, say λj, the row

vector πm(c
(w+1)
j−|d|1) is uniquely determined by the other rows. Therefore

µw+1(M(λ,d,m)) = 1
bm and hence

µw+1(M(g)) ≤
∞∑

m=1

∑

d∈Nw

|d|1<m

∑

λ∈Zm−g(m)
b

1

bm
≤

∞∑

m=1

mw

bg(m)
.

Proof of Theorem 5.52 Let the integer w with 0 ≤ w ≤ s− 1 be fixed, and

for g, like in the lemma above, let M := Mw+1 \ M(g). Let now N ∈ N,

the number of points, be given and r ∈ N be such that br−1 ≤ N < br.

Since r ≤ logN
log b +1, then in view of Theorem 5.32 it suffices to show that for

µw+1-almost all (C1, . . . , Cw+1) ∈ Mw+1 we have

r−1∑

m=1

∑

d∈Nw

d admissible to m

bm−(|d|1+h(p)) = O(G(r)).
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For the positive function G(m) define

Hr(C1, . . . , Cw+1) :=

r−1∑

m=1

1

G(m)

∑

d∈Nw

d admissible to m

bm−|d|1−h(d)

and consider the integral

J :=

∫

M
Hr(C1, . . . , Cw+1) dµw+1(C1, . . . , Cw+1).

We have

J ≤
∫

M

r−1∑

m=1

1

G(m)

∑

d∈Nw
d admissible to m
h(d)<m−|d|1

bm−|d|1−h(d) dµw+1(C1, . . . , Cw+1)

+

∫

M

r−1∑

m=1

1

G(m)

∑

d∈Nw
d admissible to m

|d|1≤m

1 dµw+1(C1, . . . , Cw+1)

=: J1 + J2.
Here, the second integral estimates the part where d satisfies h(d) = m−|d|1.
We have

J2 ≤
r−1∑

m=1

mw

G(m)
.

Hence it remains to estimate J1. We have

J1 ≤
∫

M

r−1∑

m=1

1

G(m)

×
∑

d∈Nw

d admissible to m

m−|d|1∑

k=m−g(m)−|d|1+1

∑

λ

bm−|d|1−k+1 dµw+1(C1, . . . , Cw+1),

where summation in the last sum is over all λ = (λ1, . . . , λ|d|1+k) ∈ Z
|d|1+k
b \

{0} for which
w∑

i=1

di∑

j=1

λd1+···+di−1+jπm(c
(i)
j ) +

k∑

j=1

λ|d|1+jπm(c
(w+1)
j ) = 0 ∈ Zmb . (5.17)

Therefore

J1 ≤
r−1∑

m=1

1

G(m)

∑

d∈Nw

|d|1≤m

m−|d|1∑

i=max(0,m−g(m)−|d|1+1)

∑

λ∈Zi+|d|1
b \{0}

bm−|d|1−i+1
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×
∫

1 dµw+1(C1, . . . , Cw+1),

where integration in the last integral is over all (C1, . . . , Cw+1) ∈ Mw+1 for

which (5.17) is satisfied. This integral (by the same argument as in the proof

of Lemma 5.54) is 1
bm . Consequently

J1 ≤ b
r−1∑

m=1

g(m)mw

G(m)
.

For L > 1 let g be given by

g(m) :=

⌈
logL

log b
+

(w + 2) logm

log b

⌉
≥ 1.

Then, using that g(m) = O(logm) as well as the assumption on G and that

w ≤ s− 1, we obtain

J ≤ (b+ 1)

r−1∑

m=1

g(m)mw

G(m)
≤ (b+ 1)

∞∑

m=1

g(m)mw

G(m)
<∞.

Therefore, for all L > 1 and for µw+1-almost all (C1, . . . , Cw+1) ∈ M, we

have that

Hr(C1, . . . , Cw+1) = O(1).

Now, since G is monotonically increasing, it follows that

1

G(r)

r−1∑

m=1

∑

d∈Nw

d admissible to m

bm−|d|1−h(d) ≤ Hr(C1, . . . , Cw+1)

and therefore we have for all L > 1 for µw+1-almost all (C1, . . . , Cw+1) ∈ M
that

r−1∑

m=1

∑

d∈Nw

d admissible to m

bm−|d|1−h(d) = O(G(r)).

By Lemma 5.54 we have

µw+1(M(g)) ≤ 1

L

π2

6
.

Hence, choosing L arbitrary large, we also get that for µw+1-almost all

(C1, . . . , Cw+1) ∈Mw+1 we have

r−1∑

m=1

∑

d∈Nw

d admissible to m

bm−|d|1−h(d) = O(G(r)).
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Hence the result follows.

Further metrical and average results for special sub-classes of digital nets

(so-called polynomial lattice point sets) are presented in Section 10.2.

Exercises

5.1 Prove Theorem 5.12.

5.2 Show that the discrepancy bound from (5.5) is

r∑

m=0

bT(m)ms−1 = O((logN)s)

if and only if
(
1
r

∑r
m=0 b

T(m)
)
r∈N is bounded. Hint: Use summation by

parts.

5.3 A (t,m, s)-net in base b whose projections onto the coordinates given by

∅ 6= u ⊆ Is have quality parameter tu is called a ((tu)∅6=u⊆Is ,m, s)-net
in base b. (The existence of the quality parameters tu for all ∅ 6= u ⊆ Is
is guaranteed by Lemma 4.16.)

Show the following extension of Theorem 5.26 for ((tu)∅6=u⊆Is ,m, s)-
nets in base b:

Let ∆b(t,m, s) be such that for the star discrepancy of any (t,m, s)-

net P in base b the inequality bmD∗
bm(P) ≤ ∆b(t,m, s) holds. Then for

the weighted star discrepancy, with respect to the weights γ = {γu,s :

u ⊆ Is}, of a ((tu)∅6=u⊆Is ,m, s)-net P in base b we have

bmD∗
bm,γ(P) ≤ max

∅6=u⊆Is
γu,s∆b(tu,m, |u|). (5.18)

5.4 Let s,m ∈ N and let b be a prime power. Let C1, . . . , Cs be m × m
matrices over Fb where c

(i)
j denotes the jth row vector of the matrix Ci

for 1 ≤ j ≤ m and 1 ≤ i ≤ s. For ∅ 6= u ⊆ Is let ρu := ρu(C1, . . . , Cs)

be the largest integer such that every system {c(i)j : 1 ≤ j ≤ di, i ∈ u}
with di ∈ {0, . . . ,m} for i ∈ u and

∑
i∈u di = ρ, is linearly independent

over Zb.

Show that C1, . . . , Cs generate a digital ((tu)∅6=u⊆Is ,m, s)-net over

Fb, where for every ∅ 6= u ⊆ Is we have tu = m− ρu(C1, . . . , Cs).

5.5 From [175, Theorem 4.34] it is known that for any m × m matrices

C1, . . . , Cs over Zb, b a prime, we have

Rb(C1, . . . , Cs) ≤
(
1− 1

b

)
k(b)s

(
(m+ 1)s −

(
ρ+ s

s

))
1

bρ
,

where k(b) = 1 if b = 2, k(b) = csc(π/b) + 1 if b > 2 and where
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ρ = ρ(C1, . . . , Cs) is the linear independence parameter of the matrices

C1, . . . , Cs as given in Definition 4.50.

Use this result to show that

Rmax,b,γ(C1, . . . , Cs)

≤ max
∅6=u⊆Is

γu,s

(
1− 1

b

)
k(b)|u|

(
(m+ 1)|u| −

(
ρu + |u|
|u|

))
1

bρ|u|
,

where ρ|u| = ρ|u|(C1, . . . , Cs) as in Example 5.4.

5.6 Show that for the weighted star discrepancy of a digital (0,m, s)-net P
over Zb, b ≥ s− 1 a prime, we have

bmD∗
bm,γ(P) ≤ max

∅6=u⊆Is
(|u|γu,s) + max

∅6=u⊆Is
γu,s(b(m+ 1)/2)|u|.

5.7 It is known that the first bm points of a Niederreiter sequence (see

Chapter 8) form a digital ((tu)∅6=u⊆Is ,m, s)-net in base b with tu ≤∑
i∈u(logb i + logb logb(i + b) + 1) for ∅ 6= u ⊆ Is (see, for example,

[49, Section 6] and the references therein). Show that the weighted star

discrepancy for such a digital net P can be estimated by

bmD∗
bm,γ(P)

≤ max
∅6=u⊆Is

(|u|γu,s) + max
∅6=u⊆Is

γu,s

(
b2(m+ 1)

2

)|u|∏

i∈u
i logb(i+ b).

Remark: This is [49, Theorem 6].

5.8 In Exercise 5.7, assume that the weights γu,s are of product form, i.e.,

γu,s =
∏
i∈u γi,s, for nonnegative γ1,s, . . . , γs,s, and assume that

Λ := sup
s∈N

max
∅6=u⊆Is

(
b2

2

)|u|∏

i∈u
γi,si logb(i+ b) <∞.

Show that we have

bmD∗
bm,γ(P) ≤ 2Λ(m+ 1)s.

5.9 In Exercise 5.7, assume that the weights γu,s are finite-order weights

of order k, i.e., γu,s = 0 for all u ⊆ Is with |u| > k. Set cγ,s,k :=

max
u⊆Is,1≤|u|≤k γu,s. Show that we have

bmD∗
bm,γ(P) ≤ cγ,s,ksk(1 + b2 logb(s + b)(m+ 1)/2)k .

Furthermore, if

Λ := sup
s∈N

max
u⊆Is

1≤|u|≤k

γu,s
∏

i∈u
i logb(i+ b) <∞,
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then for any δ > 0 there exists a Cb,γ,δ > 0, independent of s and m,

such that

D∗
bm,γ(P) ≤

Cb,γ,δ

bm(1−δ) .

Remark: This is [49, Corollary 4].

5.10 Show that the discrepancy estimate from Theorem 5.29 also holds for

digital nets which are digitally shifted by a digital b-adic shift (with

probability one) or by a digital shift of depth m (see Remark 5.30).

5.11 Let Rb(C1, . . . , Cs) be defined as in (5.7). Show, as in the proof of

Theorem 5.43, that

1

|C|
∑

(C1,...,Cs)∈C
Rb(C1, . . . , Cs) = O(ms/bm).
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Connections to other discrete objects

The problem of constructing point sets with low discrepancy has a certain

combinatorial flavour, and this flavour has become more pronounced with

the introduction of (t,m, s)-net by Niederreiter in 1987. First results on the

equivalence of nets and certain combinatorial objects are known since the

first paper [170] on the general theory of (t,m, s)-nets. Since 1992, espe-

cially by the work of Lawrence, Mullen, and Schmid, the investigations on

combinatorial aspects of (t,m, s)-nets were extended considerably. This led

to existence results and explicit constructions of (t,m, s)-nets in base b. In

this chapter we provide the most important equivalences between nets and

combinatorial objects.

6.1 Nets and orthogonal squares

The connection between (t,m, s)-nets and the combinatorial theory of or-

thogonal squares has been established by Niederreiter in [170, Section 5] and

can also be found in [175, Chapter 4.2].

Definition 6.1 Let b ≥ 2 be an integer. A square of order b is a b×b array
E = (ek,l)k,l=0,...,b−1 with entries from a set of order b, say from {0, . . . , b−1}.
Two squares E = (ek,l) and F = (fk,l) of the same order b are called

orthogonal if the b2 ordered pairs (ek,l, fk,l)k,l=0,...,b−1 are all distinct. The

squares E1, . . . , Es of the same order b are called mutually orthogonal if Ei
and Ej are orthogonal for all 1 ≤ i < j ≤ s.
A square E = (ek,l)k,l=0,...,b−1 of order b is called a Latin square of order b,

if for given integers k0 and l0, 0 ≤ k0, l0 ≤ b−1, the elements (ek,l0)k=0,...,b−1

and the elements (ek0,l)l=0,...,b−1 are permutations of the set {0, . . . , b− 1}.
Note that in a latin square of order b, each row and each column of the

square contains every element of {0, . . . , b− 1} exactly once.
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Example 6.2 The following squares of order three are mutually orthogo-

nal: 


1 0 0

1 2 2

0 1 2


 ,




1 1 2

2 0 1

0 0 2


 ,




0 1 2

1 1 2

0 2 0


 .

Two orthogonal Latin squares of order three:



0 1 2

1 2 0

2 0 1


 ,




0 1 2

2 0 1

1 2 0


 .

The basic relation between (0, 2, s)-nets in base b and mutually orthogonal

squares of order b is given by the following result of Niederreiter [170].

Theorem 6.3 Let b, s ≥ 2 be given. Then a (0, 2, s)-net in base b exists if

and only if there exist s mutually orthogonal squares of order b.

Proof Assume first that a (0, 2, s)-net in base b exists. We denote the points

of the net by x0, . . . ,xb2−1, with xn := (xn,1, . . . , xn,s). We intend to con-

struct s squares E1, . . . , Es of order b with Ei = (e
(i)
k,l)k,l=0,...,b−1, which are

mutually orthogonal. This is done by defining

e
(i)
k,l := ⌊bxkb+l,i⌋

for 0 ≤ k, l ≤ b − 1 and 1 ≤ i ≤ s. It follows that E1, . . . , Es are squares

over the same set {0, 1, . . . , b − 1}. It remains to prove their orthogonality.

That is, we have to show that for all i, j with 1 ≤ i < j ≤ s, and all

c, d ∈ {0, . . . , b − 1} there exist k, l ∈ {0, . . . , b − 1}, such that e
(i)
k,l = c and

e
(j)
k,l = d. Now,

e
(i)
k,l = ⌊bxkb+l,i⌋ = c and e

(j)
k,l = ⌊bxkb+l,j⌋ = d

means that the net-point xkb+l has its ith coordinate in the interval
[
c
b ,
c+1
b

)

and its jth coordinate in
[
d
b ,

d+1
b

)
, i.e., xkb+l is contained in the elementary

b-adic interval

J = [0, 1)i−1 ×
[
c

b
,
c+ 1

b

)
× [0, 1)j−i−1 ×

[
d

b
,
d+ 1

b

)
× [0, 1)s−j ,

of volume b−2. Since the (0, 2, s)-net has exactly one point in J , it follows

that E1, . . . , Es are mutually orthogonal.

Conversely, we now construct a (0, 2, s)-net in base b from mutually or-

thogonal squares E1, . . . , Es of order b.
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Let Ei = (e
(i)
k,l)k,l=0,...,b−1 for 1 ≤ i ≤ s. Then for 0 ≤ n ≤ bm − 1 and

1 ≤ i ≤ s we define

xn,i :=
1

b
e
(i)
k,l +

1

b2
ψ
(i)
k,l,

with k = ⌊n/b⌋ and l = n − kb, for 0 ≤ n ≤ b − 1 (this part alone would

mean the converse construction to the first part of the proof) and where the

ψ
(i)
k,l ∈ {0, . . . , b− 1} have the property that for any given u ∈ {0, . . . , b− 1}

and all 1 ≤ i ≤ s, the set {ψ(i)
k,l : e

(i)
k,l = u} equals the set {0, . . . , b −

1}. For 0 ≤ n ≤ bm − 1 let xn = (xn,1, . . . , xn,s). We have to show that

any elementary b-adic interval of volume b−2 contains exactly one of the

constructed points x0, . . . ,xbm−1.

The elementary b-adic intervals in question are either of the form

[0, 1)i−1 ×
[
c

b
,
c+ 1

b

)
× [0, 1)j−i−1 ×

[
d

b
,
d+ 1

b

)
× [0, 1)s−j

with 1 ≤ i < j ≤ s and 0 ≤ c, d ≤ b− 1, or of the form

[0, 1)i−1 ×
[
c

b2
,
c+ 1

b2

)
× [0, 1)s−i

with 1 ≤ i ≤ s and 0 ≤ c ≤ b2 − 1. The intervals of the first form contain

exactly one point, since ⌊bxn,i⌋ = e
(i)
k,l and since E1, . . . , Es are mutually

orthogonal.

Let us consider now an interval J of the second form. Let c = ub+ v with

0 ≤ u ≤ b− 1 and 0 ≤ v ≤ b− 1. Choose n such that e
(i)
k,l = u and such that

ψ
(i)
k,l = v. By the definition of ψ

(i)
k,l there is exactly one such n, and hence xn

is the only point contained in J .

Example 6.4 To illustrate the second part of the above proof, we construct

a (0, 2, 3)-net in base 3 from the mutually orthogonal squares

E1 =




1 0 0

1 2 2

0 1 2


 , E2 =




1 1 2

2 0 1

0 0 2


 and E3 =




0 1 2

1 1 2

0 2 0




considered in the example above. Firstly, for any 1 ≤ i ≤ 3 we have to

construct a suitable Ψ(i) = (ψ
(i)
k,l)k,l=0,...,2. For example we can choose

Ψ(1) =




0 0 1

1 0 1

2 2 2


 , Ψ(2) =




0 1 0

1 0 2

1 2 2


 and Ψ(3) =




0 0 0

1 2 1

1 2 2


 .
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It is easily checked that the Ψ(i) satisfy the demanded property. For 0 ≤
n ≤ 8 we have

xn =


e

(1)
k,l

3
+

Ψ
(1)
k,l

9
,
e
(2)
k,l

3
+

Ψ
(2)
k,l

9
,
e
(3)
k,l

3
+

Ψ
(3)
k,l

9




and obtain x0 = (1/3, 1/3, 0), x1 = (0, 4/9, 1/3), x2 = (1/9, 2/3, 2/3), x3 =

(4/9, 7/9, 4/9), x4 = (2/3, 0, 5/9), x5 = (7/9, 5/9, 7/9), x6 = (2/9, 1/9, 1/9),

x7 = (5/9, 2/9, 8/9) and x8 = (8/9, 8/9, 2/9).

The next result provides a connection between mutually orthogonal squares

and mutually orthogonal Latin squares.

Lemma 6.5 There exist s mutually orthogonal squares of order b, if and

only if there exist s− 2 mutually orthogonal Latin squares of order b.

Proof Assume first that we are given smutually orthogonal squares of order

b, say, E1, . . . , Es with Ei = (e
(i)
k,l)k,l=0,...,b−1 for 1 ≤ i ≤ s. In the following we

construct s−2 mutually orthogonal Latin squares of order b, say F3, . . . , Fs,

where Fi = (f
(i)
k,l )k,l=0,...,b−1 for 3 ≤ i ≤ s. To do so we construct a bijection

ϕ : {0, . . . , b− 1}2 → {0, . . . , b− 1}2

and then set

f
(i)
k,l := e

(i)
ϕ(k,l) (6.1)

for 0 ≤ k, l ≤ b − 1 and 3 ≤ i ≤ s. The bijection ϕ is generated with the

help of the squares E0 and E1 as follows. For 0 ≤ c, d ≤ b − 1 let ϕ(c, d)

be the place where the pair (c, d) occurs in the orthogonal pair E0, E1 of

squares. The squares F3, . . . , Fs are still mutually orthogonal since they are

generated from E3, . . . , Es by an identical permutation of their elements. It

only remains to show that F3, . . . , Fs are Latin squares. To this end, define

F1 and F2 using (6.1). Then we have

F1 =




0 . . . 0

1 . . . 1
...

...

b− 1 . . . b− 1


 and F2 =




0 1 . . . b− 1
...

...
...

0 1 . . . b− 1


 .

Each Fi, 3 ≤ i ≤ s, is orthogonal to F1 and to F2 and therefore must be a

Latin square.

We now prove the converse. To given s − 2 mutually orthogonal Latin
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squares F3, . . . , Fs of order b, we add the squares

F1 =




0 . . . 0

1 . . . 1
...

...

b− 1 . . . b− 1


 and F2 =




0 1 . . . b− 1
...

...
...

0 1 . . . b− 1


 .

Then it follows that the s squares F1, . . . , Fs are mutually orthogonal.

Corollary 6.6 Let s ≥ 2 and b ≥ 2 be given. A (0, 2, s)-net in base b exists

if and only if there exist s− 2 mutually orthogonal Latin squares of order b.

Remark 6.7 There is also a connection to finite projective planes which

has been noted in [174]. It is well known in Combinatorics that for b ≥ 2

the existence of b − 1 mutually orthogonal Latin squares is equivalent to

the existence of a finite projective plane of order b. See, for example, [160,

Theorem 9.3.2]. Hence there exists a finite projective plane of order b if and

only if there exists a (0, 2, b + 1)-net in base b.

Now we can give an alternative proof of the nonexistence result for (0,m, s)-

nets in base b, which has already been stated in Corollary 4.19. We restate

and prove this result in the following form.

Theorem 6.8 Let s,m, b ≥ 2 be integers. A (0,m, s)-net in base b can

only exist if s ≤ b+ 1.

For the proof of Theorem 6.8 we need an upper bound on the maximal

number of mutually orthogonal Latin squares of a given order b. (This upper

bound can be shown to be sharp for prime powers b, but it is not sharp for

arbitrary order b.)

Lemma 6.9 Not more than b − 1 mutually orthogonal Latin squares of

order b can exist.

Proof Assume we had b mutually orthogonal Latin squares of order b, say,

F1, . . . , Fb. Note that renaming the elements of one of the Fi in any way does

not affect the Latin square property of Fi nor does it affect its orthogonality

relation to the other Fj . Hence we may assume that the first row of each

of the Fi has the form 0 1 . . . b− 1. Consider now the first entries in

the second rows. None of the entries can be 0 because of the Latin square

property. Further, for no 0 ≤ i < j ≤ b − 1 can the entries be the same

because of the orthogonality of Fi and Fj and because of the special structure

of their first rows. This, however, contradicts the assumption of the existence

of b mutually orthogonal Latin squares.
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Proof of Theorem 6.8 The starting point for the proof is the fact, shown

in Lemma 4.17, that for m ≥ 2 a (0,m, s)-net in a base b can only exist if a

(0, 2, s)-net in base b exists. By Corollary 6.6, the existence of a (0, 2, s)-net

in base b is equivalent to the existence of s − 2 mutually orthogonal Latin

squares of order b. But by Lemma 6.9 there are not more than b−1 mutually

orthogonal Latin squares of order b and hence the result follows.

These considerations were the starting point for investigations of combi-

natorial objects in relation to (t,m, s)-nets which led to several generalisa-

tions of Theorem 6.3. However, for such results one needs generalisations

of orthogonal squares of order b, such as orthogonal hypercubes or gener-

alised orthogonal hypercubes of order b. Mullen & Whittle [164] have gen-

eralised Theorem 6.3 to the case of (t, t + 2, s)-nets in base b and Mullen

& Schmid [163] proved a result for (t, t + k, s)-nets in base b where k ≥ 2.

We also refer to the survey article of Mullen [162]. A somewhat simpler and

more direct approach to these results can be described by using the theory

of (ordered) orthogonal arrays, which we consider in the following section.

6.2 Nets and (ordered) orthogonal arrays

The connection between (t,m, s)-nets and the theory of orthogonal arrays

has been observed by Niederreiter [174].

Definition 6.10 Let b, s, k,M and λ be integers with b ≥ 2 and s ≥ k ≥ 1.

An orthogonal array OA(M,s, b, k) of sizeM , s constraints, b levels, strength

k and index λ is an M × s matrix A with entries from a set of b elements,

say {0, . . . , b− 1}, such that any M × k submatrix of A contains all possible

1× k rows with the same frequency λ.

It follows from the definition that we always have M = λbk.

Example 6.11 The 9× 3 matrix



1 1 0

0 1 1

0 2 2

1 2 1

2 0 1

2 1 2

0 0 0

1 0 2

2 2 0
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is an orthogonal array OA(9, 3, 3, 2) of index one.

Niederreiter [174, Theorem 1] showed the equivalence between (t, t+2, s)-

nets in base b and orthogonal arrays of strength two.

Theorem 6.12 Let s, b ≥ 2, and t ≥ 0 be integers. Then there exists

a (t, t + 2, s)-net in base b if and only if there exists an orthogonal array

OA(bt+2, s, b, 2) of index bt.

A generalisation of this result in form of an equivalence between (t, t+k, s)-

nets in base b and orthogonal arrays of strength k for k > 2 is not possi-

ble. Therefore one has to use the generalised concept of ordered orthogo-

nal arrays which was introduced given by Mullen & Schmid [163] (see also

Lawrence [147] and Schmid [231]).

Definition 6.13 Let b, s, k,M, T and λ be integers with b ≥ 2, T ≥ 1

and sT ≥ k ≥ 1. An ordered orthogonal array OOA(M,s, b, T, k) of size

M , s ordered constraints of heights T , b levels, strength k and index λ is a

M × sT matrix A, with entries from a set of b elements, say {0, . . . , b− 1},
with column labels (i, j) for 1 ≤ i ≤ s and 1 ≤ j ≤ T , such that for any

integers 0 ≤ d1, . . . , ds ≤ T with
∑s

i=1 di = k, theM×k submatrix obtained

by restricting to the columns (i, j), 1 ≤ j ≤ di, 1 ≤ i ≤ s, contains among

its rows every k-tuple over {0, . . . , b− 1} with the same frequency λ.

It follows from the definition that we always have M = λbk.

The M × sT matrix A can be written as A = (A1|A2| . . . |As) consisting
of M × T matrices Ai = (a

(i)
n,r), 1 ≤ i ≤ s, with entries in {0, . . . , b − 1}.

The condition for an OOA(M,s, b, T, k) means then that for any integers

0 ≤ d1, . . . , ds ≤ T with
∑s

i=1 di = k theM×k matrix consisting of the first

d1 columns of A1, the first d2 columns of A2, . . . , the first ds columns of

As contains among its rows every k-tuple over {0, . . . , b− 1} with the same

frequency Mb−k.
For s ≥ k it is clear that an OOA(M,s, b, 1, k) is an OA(M,s, b, k). Tables

for parameters of (ordered) orthogonal arrays can be obtained from the

MinT database to be found under http://mint.sbg.ac.at/.
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Example 6.14 The 8× 4 matrix



0 0 0 0

1 0 0 0

0 1 0 1

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 1

1 1 1 1




is an ordered orthogonal array OOA(8, 2, 2, 2, 3) of index one.

Theorem 6.15 Let s, b, k ≥ 2, and t ≥ 0 be integers. Then there exists

a (t, t + k, s)-net in base b if and only if there exists an ordered orthogonal

array OOA(bt+k, s, b, k − 1, k) of index bt.

Proof Let xn = (xn,1, . . . , xn,s) for 0 ≤ n ≤ bm − 1 be the points of a

(t, t+k, s)-net in base b and let xn,i =
∑∞

r=1 xn,i,rb
−r be the b-adic expansion

of xn,i for 0 ≤ n ≤ bm − 1 and 1 ≤ i ≤ s.
We now define a bt+k × s(k− 1) matrix A by setting A = (A1|A2| . . . |As),

where the bt+k × (k − 1) matrices Ai = (a
(i)
n,r), 1 ≤ i ≤ s, with entries in

{0, . . . , b− 1}, are given by

a(i)n,r = xn,i,r for 1 ≤ i ≤ s, 0 ≤ n ≤ bm − 1 and 1 ≤ r ≤ k − 1.

Let d1, . . . , ds be arbitrary integers with 0 ≤ di ≤ k − 1 for 1 ≤ i ≤ s and∑s
i=1 di = k. Consider now theM×k matrix Bd1,...,ds consisting of the first d1

columns of A1, the first d2 columns of A2, . . . , the first ds columns of As. We

have to show that any k-tuple (c1,1, . . . , c1,d1 , . . . , cs,1, . . . , cs,ds) ∈ {0, . . . , b−
1}k appears exactly bt times among the rows of the matrix Bd1,...,ds .

The k-tuple (c1,1, . . . , c1,d1 , . . . , cs,1, . . . , cs,ds) appears as rows in the ma-

trix Bd1,...,ds if and only if there is an element xn = (xn,1, . . . , xn,s) for which

the ith components have b-adic expansion of the form

xn,i =

di∑

r=1

ci,rb
−r +

∞∑

r=di+1

xn,i,rb
−r

for 1 ≤ i ≤ s. This however is equivalent to the condition

xn ∈
s∏

i=1

[
ci
bdi
,
ci + 1

bdi

)
=: J
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where ci := ci,1b
di−1 + · · · + ci,di−1b + ci,di for 1 ≤ i ≤ s. Since J is an ele-

mentary b-adic interval of volume b−d1−···−ds = b−k and since x0, . . . ,xbt+k−1

form a (t, t + k, s)-net in base b, it follows that the k-tuple in question ap-

pears exactly bt times among the rows of the matrix Bd1,...,ds . Hence the

matrix A is an ordered orthogonal array OOA(bt+k, s, b, k−1, k) of index bt.

Conversely, suppose that the bt+k × s(k − 1) matrix A = (a
(i)
n,r) is an

ordered orthogonal array OOA(bt+k, s, b, k − 1, k) of index bt. Then for 0 ≤
n ≤ bt+k − 1 we define the points xn = (xn,1, . . . , xn,s) by

xn,i =
k−1∑

r=1

a(i)n,rb
−r + a

(h(i))
n,1 b−k

for 1 ≤ i ≤ s where h(i) ∈ {1, . . . , s} is arbitrary with h(i) 6= i. Now we have

to show that the points x0, . . . ,xbt+k−1 form a (t, t+ k, s)-net in base b, i.e.,

we have to show that any elementary b-adic interval J =
∏s
i=1

[
ci
bdi
, ci+1
bdi

)
of

volume b−k, where 0 ≤ di ≤ k and 0 ≤ ci < bdi for 1 ≤ i ≤ s are integers,

contains exactly bt points xn.

Letting cib
−di =

∑di
r=1 ci,rb

−r we have that xn ∈ J if and only if for each

1 ≤ i ≤ s we have that ci,1, . . . , ci,di are the first di digits of the b-adic

representation of xn,i. Now we have to distinguish between two cases:

1. If di > 0 for at least two indices 1 ≤ i ≤ s, then we have 0 ≤ di ≤ k−1 for

all 1 ≤ i ≤ s. Consider the bt+k × k matrix Bd1,...,ds consisting of the first

d1 columns of A1, the first d2 columns of A2, . . . , the first ds columns

of As. Since A is an ordered orthogonal array OOA(bt+k, s, b, k − 1, k)

of index bt it follows that the k-tuple (c1,1, . . . , c1,d1 , . . . , cs,1, . . . , cs,ds) ∈
{0, . . . , b − 1}k appears exactly bt times among the rows of Bd1,...,ds and

hence J contains exactly bt points xn.

2. If di > 0 for only one index 1 ≤ i′ ≤ s, then we consider the bt+k×k matrix

B consisting of the first k−1 columns of Ai′ and the first column of Ah(i′).

Again, since A is an ordered orthogonal array OOA(bt+k, s, b, k− 1, k) of

index bt it follows that the k-tuple (ci′,1, . . . , ci′,k−1, ci′,k) ∈ {0, . . . , b−1}k
appears exactly bt times among the rows of B and hence J contains

exactly bt points xn.

Bierbrauer, Edel & Schmid [14] used a special family of ordered orthogo-

nal arrays, called linear ordered orthogonal arrays, to prove an equivalence

with digital nets over Fb (see also Martin & Stinson [157]). Furthermore, it

should be remarked that Lawrence [147] has independently obtained another

equivalence between nets and what he calls generalised orthogonal arrays.
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For an overview of many results concerning the relation of (t,m, s)-nets and

ordered orthogonal arrays we also refer to [238].

Exercises

6.1 Consider the digital (0, 2, 3)-net over Z2 which is generated by the ma-

trices

C1 =

(
1 0

0 1

)
, C2 =

(
0 1

1 0

)
, and C3 =

(
1 1

0 1

)
.

Construct three corresponding mutually orthogonal squares of order

two.

6.2 Construct an orthogonal array OA(8, 4, 2, 3) of index one.

6.3 Show that the orthogonal array OA(9, 3, 3, 2) of index one from Exam-

ple 6.11 is constructed from the (0, 2, 3)-net in base 3 given in Exam-

ple 6.4.

6.4 Construct an orthogonal array OA(4, 3, 2, 2) of index one from the dig-

ital (0, 2, 3)-net over Z2 from Exercise 6.1.

6.5 Let s ≥ 2, b ≥ 2, and t ≥ 0 be integers. It is known (see, for exam-

ple, [224, Theorem 2.2.1 or Theorem 2.2.4]) that an orthogonal array

OA(bt+2, s, b, 2) of index bt can only exist if s ≤ (bt+2 − 1)/(b − 1).

Deduce from this result that for m ≥ t+2, a (t,m, s)-net in base b can

only exist if s ≤ (bt+2 − 1)/(b− 1). Remark: This is [174, Corollary 1].

6.6 Let s ≥ 2, b ≥ 2, and t ≥ 0 be integers. Show that a (t, s)-sequence in

base b can only exist if s ≤ (bt+2− 1)/(b− 1)− 1. Remark: This is [174,

Corollary 2].

6.7 For given integers b ≥ 2 and s ≥ 2 let τb(s) be the least value of t for

which there exists a (t,m, s)-net in base b for any m ≥ t. Show that

τb(s) ≥ ⌈logb(bs− s+ 1)⌉ − 2.

6.8 Construct a (0, 3, 2)-net in base 2 from the ordered orthogonal array

OOA(8, 2, 2, 2, 3) of index one given in Example 6.14.

6.9 Consider the digital (0, 3, 3)-net over Z2 which is generated by the ma-

trices

C1 =




1 0 0

0 1 0

0 0 1


 , C2 =




0 0 1

0 1 0

1 0 0


 , and C3 =




1 1 1

0 1 0

0 0 1


 .

Construct the corresponding ordered orthogonal array OOA(8, 3, 2, 2, 3)

of index one.
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6.10 Consider the (1, 4, 4)-net over Z2 from Exercise 4.4 and construct the

corresponding ordered orthogonal array OOA(16, 4, 2, 2, 3) of index two.

6.11 Let s, b, k ≥ 2 and t ≥ 0 be integers. Show that the existence of an

orthogonal array OA(bt+k, s(k−1), b, k) of index bt implies the existence

of a (t, t + k, s)-net in base b. Hint: Show that an orthogonal array

OA(bt+k, s(k − 1), b, k) of index bt is also an ordered orthogonal array

OOA(bt+k, s, b, k− 1, k) of index bt. Remark: This is [163, Corollary 8].

6.12 Let b, k ≥ 2, s ≥ k and t ≥ 0 be integers. Show that the existence of

a (t, t+ k, s)-net in base b implies the existence of an orthogonal array

OA(bt+k, s, b, k) of index bt. Hint: Show that for s ≥ k an ordered or-

thogonal array OOA(bt+k, s, b, k−1, k) of index bt is also an orthogonal

array OA(bt+k, s, b, k) of index bt. Remark: This is [163, Corollary 9],

which is also mentioned in a slightly more general form in [204, Sec-

tion 2.4].
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Duality Theory

In this chapter we show that the construction of digital (t,m, s)-nets over

Fb can be reduced to the construction of certain Fb-linear subspaces of F
sm
b .

Using the standard inner product in Fsmb one can define and study the

dual linear subspace. If one defines a special weight on Fsmb , the so-called

Niederreiter-Rosenbloom-Tsfasman weight, then the t-parameter of a digital

net is closely related to the weight of the corresponding dual linear subspace.

This was shown independently by Niederreiter & Pirsic [187] and by Skrig-

anov [241]. This point of view gives new possibilities for the construction

of digital nets and it provides a connection to the theory of linear codes.

Further information on duality theory for digital nets can be found in the

overview articles [181, 182]. The duality theory for digital nets can also be

extended to digital sequences. This was first done in [48].

7.1 Fb-linear subspaces

Let s,m ∈ N and let Fb be the finite field of prime power order b. Let N be

an arbitrary Fb-linear subspace of F
sm
b . Let H be a matrix over Fb consisting

of sm columns such that the row-space of H is equal to N . Then we define

the dual space N⊥ ⊆ Fsmb of N to be the null space ofH. In other words,N⊥

is the orthogonal complement of N relative to the standard inner product

in Fsmb ,

N⊥ = {A ∈ Fsmb : B ·A = 0 for all B ∈ N}.

Note that N⊥ depends only on the linear space N and not on the spe-

cific matrix H. We have dim(N⊥) = sm − dim(N ) and (N⊥)⊥ = N (see

Exercise 7.1).

Let now G be a matrix over Fb with sm columns such that the row space

of G is equal to N⊥. Then we have HG⊤ = 0.
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We define a weight function on Fsmb which was first introduced by Nieder-

reiter [167] and later used in an equivalent form in coding theory by Rosen-

bloom & Tsfasman [225].

Definition 7.1 For a = (a1, . . . , am) ∈ Fmb let

vm(a) =

{
0 if a = 0,

max{j : aj 6= 0} if a 6= 0.

We extend this definition to Fsmb by writing A ∈ Fsmb as the concatenation

of s vectors of length m, i.e., A = (a1, . . . ,as) ∈ Fsmb with ai ∈ Fmb for

1 ≤ i ≤ s, and putting

Vm(A) =
s∑

i=1

vm(ai).

The weight Vm is called the Niederreiter-Rosenbloom-Tsfasman weight or

short NRT weight.

Note that dm(A,B) = Vm(A − B) for A,B ∈ Fsmb defines a metric on

Fsmb (see Exercise 7.2).

Definition 7.2 Let N be an arbitrary subset of Fsmb containing at least

two elements. Then the minimum distance of N is defined by

δm(N ) = min{Vm(A−B) : A,B ∈ N and A 6= B}.

Furthermore, we put δm(N ) = sm+ 1 whenever |N | = 1.

If N 6= {0} is a Fb-linear subspace of F
sm
b , this definition can be rewritten

in the form

δm(N ) = min{Vm(A) : A ∈ N \ {0}}.

Furthermore, we put δm({0}) = sm+ 1.

We show a general bound on the minimum distance of a subset of Fsmb .

Proposition 7.3 For any subset N of Fsmb consisting of bh elements we

have 1 ≤ δm(N ) ≤ sm−h+1. In particular, if N is a Fb-linear subspace of

Fsmb , then we have 1 ≤ δm(N ) ≤ sm− dim(N ) + 1.

Proof The lower bound holds trivially true. If h = 0, then N consists of

one element only and by definition we have δm(N ) = sm + 1. Hence the

result holds true in this case. For h ≥ 1 we define π : N → Fhb to be the

transformation which maps A ∈ N to the h-tuple of the last h components

of A. Now we consider two cases:
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1. If π is surjective, then there exist vectors A,B ∈ N , A 6= B, with

π(A − B) = (1, 0, . . . , 0) ∈ Fhb . Let 1 ≤ k ≤ s denote the unique integer

such that sm− km < h ≤ sm− km+m. Then we have

A−B = (x1,1, . . . , x1,m, . . . , xk−1,1, . . . , xk−1,m︸ ︷︷ ︸
(k−1)m

,

xk,1, . . . , xk,sm−h−(k−1)m, 1, 0, . . . , 0︸ ︷︷ ︸
h

)

and hence

Vm(A−B) ≤ (k − 1)m+ sm− h− (k − 1)m+ 1 = sm− h+ 1.

2. If π is not surjective, then there exist vectors A,B ∈ N , A 6= B with

π(A) = π(B) and hence π(A −B) = 0 ∈ Fhb . In the same way as above

we obtain Vm(A−B) ≤ sm− h.
Hence in any case we have δm(N ) ≤ sm− h+ 1 as desired.

If N is a Fb-linear subspace of Fsmb , then it consists of exactly bdim(N )

elements.

The following notion was first considered in [172] and then formally de-

fined in [187].

Definition 7.4 Let k,m, s be positive integers and let d be an integer with

0 ≤ d ≤ min(k,ms). The system {c(i)j ∈ Fkb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is called
a (d, k,m, s)-system over Fb if for any d1, . . . , ds ∈ N0 with 0 ≤ di ≤ m for

1 ≤ i ≤ s and
∑s

i=1 di = d the system

{c(i)j ∈ Fkb : 1 ≤ j ≤ di, 1 ≤ i ≤ s}
is linearly independent over Fb. Here the empty system is considered to be

linearly independent over Fb. A (d,m,m, s)-system over Fb is also called a

(d,m, s)-system over Fb.

For a given (d,m, s)-system {c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} let Ci,

1 ≤ i ≤ s, be the m × m matrix with the row vectors c
(i)
1 , . . . , c

(i)
m . With

these m×m matrices over Fb we build up the matrix

C = (C⊤
1 |C⊤

2 | . . . |C⊤
s ) ∈ Fm×sm

b

so that C⊤
1 , . . . , C

⊤
s are sub-matrices of C. Let C denote the row space of

the matrix C. The dual space is then given by

C⊥ = {A ∈ Fsmb : CA⊤ = 0 ∈ (Fmb )
⊤}.

The following result was shown by Niederreiter & Pirsic [187, Theorem 1].
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Theorem 7.5 The system {c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is a

(d,m, s)-system over Fb if and only if the dual space C⊥ of the row space C
satisfies δm(C⊥) ≥ d+ 1.

Proof For A = (a1, . . . ,as) ∈ Fsmb with ai = (ai,1, . . . , ai,m) ∈ Fmb for

1 ≤ i ≤ s we have
s∑

i=1

m∑

j=1

ai,jc
(i)
j = 0 ∈ Fmb

if and only if

CA⊤ = 0 ∈ (Fmb )
⊤,

i.e., if and only if A ∈ C⊥.
Now let the given system be a (d,m, s)-system over Fb and consider any

nonzero vector A ∈ C⊥. Then from the above we get
∑s

i=1

∑m
j=1 ai,jc

(i)
j =

0 ∈ Fmb . Putting vm(ai) = vi for 1 ≤ i ≤ s, we have

s∑

i=1

vi∑

j=1

ai,jc
(i)
j = 0 ∈ Fmb .

Since not all coefficients ai,j in this relation are equal to 0, the system

{c(i)j ∈ Fmb : 1 ≤ j ≤ vi, 1 ≤ i ≤ s} is linearly dependent over Fb. Thus

the definition of a (d,m, s)-system over Fb implies that
∑s

i=1 vi ≥ d + 1.

Therefore we have

Vm(A) =

s∑

i=1

vm(ai) =

s∑

i=1

vi ≥ d+ 1

and so δm(C⊥) ≥ d+ 1.

Conversely, assume that δm(C⊥) ≥ d + 1. Then we have to show that

any system {c(i)j ∈ Fmb : 1 ≤ j ≤ di, 1 ≤ i ≤ s} with d1, . . . , ds ∈ N0 and∑s
i=1 di = d is linearly independent over Fb. Suppose on the contrary that

such a system was linearly dependent over Fb, i.e., there exist coefficients

ai,j ∈ Fb, not all of them zero, such that

s∑

i=1

di∑

j=1

ai,jc
(i)
j = 0 ∈ Fmb .

Define ai,j = 0 for di < j ≤ m and 1 ≤ i ≤ s, then
s∑

i=1

m∑

j=1

ai,jc
(i)
j = 0 ∈ Fmb .
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Hence we get A ∈ C⊥ and so Vm(A) ≥ d + 1. But on the other hand we

have vm(ai) ≤ di for 1 ≤ i ≤ s and so

Vm(A) =
s∑

i=1

vm(ai) ≤
s∑

i=1

di = d,

which is a contradiction.

7.2 Duality theory for digital nets

It is clear that any system {c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} determines

a digital (t,m, s)-net over Fb with generating matrices C1, . . . , Cs where the

row vectors of the matrix Ci are given by c
(i)
1 , . . . , c

(i)
m (in this order) for

1 ≤ i ≤ s, and vice versa. In this context we also say the system generates

the digital net and we call the matrix

C = (C⊤
1 |C⊤

2 | . . . |C⊤
s ) ∈ Fm×sm

b

the overall generating matrix of the digital net. As before we denote by C
the row space of the matrix C which we call in this context the row space

of the digital net.

Example 7.6 Consider the generating matrices

C1 =




1 1 1

0 1 1

0 0 1


 and C2 =




0 0 1

0 1 0

1 0 0




as matrices over Z2. These matrices generate a digital (t, 3, 2)-net over Z2

with a certain t-parameter (what is t here?). The corresponding overall gen-

erating matrix C is given by

C =




1 0 0 0 0 1

1 1 0 0 1 0

1 1 1 1 0 0




and its row space C in Z6
2 is the linear span of the three the vectors

(1, 0, 0|0, 0, 1), (1, 1, 0|0, 1, 0), (1, 1, 1|1, 0, 0).
Hence

C = {(0, 0, 0|0, 0, 0), (1, 1, 1|1, 0, 0), (1, 1, 0|0, 1, 0), (0, 0, 1|1, 1, 0),
(1, 0, 0|0, 0, 1), (0, 1, 1|1, 0, 1), (0, 1, 0|0, 1, 1), (1, 0, 1|1, 1, 1)}

and dim(C) = 3.
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The dual space C⊥ is given by all vectors A ∈ Z6
2 such that CA⊤ = 0 ∈

(Z3
2)

⊤. Those vectors are given by the linear span of the three vectors

(0, 0, 1|1, 0, 0), (0, 1, 0|1, 1, 0), (1, 0, 0|1, 1, 1).
Hence

C⊥ = {(0, 0, 0|0, 0, 0), (0, 0, 1|1, 0, 0), (0, 1, 0|1, 1, 0), (1, 0, 0|1, 1, 1),
(0, 1, 1|0, 1, 0), (1, 0, 1|0, 1, 1), (1, 1, 0|0, 0, 1), (1, 1, 1|1, 0, 1)},

and dim(C⊥) = 3. Together we have dim(C) + dim(C⊥) = 6 = 2 · 3.
Now we show how the quality parameter of the digital net is connected

to the properties of the corresponding vector system.

Lemma 7.7 Let t,m ∈ N0 such that m ≥ 1 and 0 ≤ t ≤ m. A system

{c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} over Fb generates a digital (t,m, s)-net

over Fb if and only if it is an (m− t,m, s)-system over Fb.

Hence the construction of a digital (t,m, s)-net over Fb is the same as the

construction of an (m− t,m, s)-system over Fb.

Proof of Lemma 7.7 Assume that the system {c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤
i ≤ s} is an (m− t,m, s)-system over Fb. Then for any d1, . . . , ds ∈ N0 with∑s

i=1 di = m− t the system {c(i)j ∈ Fmb : 1 ≤ j ≤ di, 1 ≤ i ≤ s} is linearly

independent over Fb and hence we have ρ(C1, . . . , Cs) ≥ m − t, where ρ is

the linear independence parameter from Definition 4.50. By Lemma 4.52 the

matrices C1, . . . , Cs generate a digital (t,m, s)-net over Fb.

On the other hand assume that the system {c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤
i ≤ s} generates a digital (t,m, s)-net over Fb. Fix d1, . . . , ds ∈ N0 with∑s

i=1 di = m− t and consider the elementary interval in base b of the form

J =

s∏

i=1

[
Ai
bdi
,
Ai + 1

bdi

)

with integers 0 ≤ Ai < bdi for 1 ≤ i ≤ s. By the proof of Lemma 4.52 we have

that a point xn of the digital net, 0 ≤ n < bm, belongs to J if and only if the

b-adic digit vector n ∈ (Fmb )
⊤ corresponding to n satisfies the linear system

(4.8). Since the volume of J is bd1+···+ds = bt−m we have xn ∈ J for exactly

bt values of n and hence the linear system (4.8) has exactly bt solutions for

any possible choice of 0 ≤ Ai < bdi for 1 ≤ i ≤ s. This means that the matrix

(c
(1)
1 , . . . , c

(1)
d1
, . . . , c

(s)
1 , . . . , c

(s)
ds

)⊤ ∈ F
(m−t)×m
b has rank m − t and therefore

the vectors c
(i)
j for 1 ≤ j ≤ di and 1 ≤ i ≤ j are linearly independent over

Fb. Since this is true for any choice of d1, . . . , ds ∈ N0 with
∑s

i=1 di = m− t,
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it follows that the system {c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is an

(m− t,m, s)-system over Fb.

Combining Theorem 7.5 and Lemma 7.7 we obtain the following result.

Theorem 7.8 Let t,m ∈ N0 such that m ≥ 1 and 0 ≤ t ≤ m. A system

{c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} over Fb generates a digital (t,m, s)-net

over Fb if and only if δm(C⊥) ≥ m− t+ 1.

Corollary 7.9 A system {c(i)j ∈ Fmb : 1 ≤ j ≤ m, 1 ≤ i ≤ s} over Fb
generates a strict digital (t,m, s)-net over Fb with t = m− δm(C⊥) + 1.

Proof By Theorem 7.8 we have t ≥ m− δm(C⊥) + 1. Since dim(C) ≤ m it

follows that dim(C⊥) ≥ sm−m. Hence δm(C⊥) ≤ m+1 by Proposition 7.3.

From this it follows that m− δm(C⊥) + 1 is contained in the interval [0,m]

which means that m− δm(C⊥) + 1 is a possible value of t.

Example 7.10 Let us turn again to Example 7.6 and let us determine the

NRT weight of C⊥. We have

A ∈ C⊥ Vm(A)

(0, 0, 0|0, 0, 0) 0

(0, 0, 1|1, 0, 0) 4

(0, 1, 0|1, 1, 0) 4

(1, 0, 0|1, 1, 1) 4

(0, 1, 1|0, 1, 0) 5

(1, 0, 1|0, 1, 1) 6

(1, 1, 0|0, 0, 1) 5

(1, 1, 1|1, 0, 1) 6

and hence δm(C⊥) = 4. According to Corollary 7.9 it follows that C generates
a strict digital (0, 3, 2)-net over Z2.

Corollary 7.9 leads to the following procedure for constructing digital nets

on the basis of duality theory:

1. construct a Fb-linear subspace N of Fsmb with dim(N ) ≥ ms −m and a

large value for the minimum distance δm(N );

2. dualise N to get C which determines the digital net in the sense that C
is the row space of the overall generating matrix C of the digital net.

According to Corollary 7.9 this yields a strict digital (t,m, s)-net over Fb
with t = m− δm(C⊥) + 1 where C⊥ = N .
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Remark 7.11 Trivially, we have dim(C) ≤ m and so we have dim(N ) =

ms − dim(C) ≥ ms −m as demanded in the first item of the construction

procedure.

Corollary 7.12 Let m, s ∈ N, s ≥ 2. Then from any Fb-linear subspace N
of Fsmb with dim(N ) ≥ ms−m we can construct a strict digital (t,m, s)-net

over Fb with t = m− δm(N ) + 1.

Note that any A = (a1, . . . ,as) ∈ Fsmb can be transferred in a natural way

into the s-dimensional unit cube [0, 1)s, when we apply the mapping

Φm,ϕ : Fmb → [0, 1), a = (a1, . . . , am) 7→
ϕ−1(a1)

b
+ · · ·+ ϕ−1(am)

bm
(7.1)

to each component of A for some bijection ϕ : {0, . . . , b− 1} → Fb. (If b is a

prime then we always identify Fb with Zb and we use for ϕ the identity. In

this case we simply write Φm.)

Proposition 7.13 Let b be a prime power, let m, s ∈ N, s ≥ 2 and let ϕ :

{0, . . . , b− 1} → Fb be a bijection with ϕ(0) = 0. If the Fb-linear subspace N
of Fsmb has dim(N ) = ms−m, then the corresponding strict digital (t,m, s)-

net over Fb with t = m− δm(N ) + 1 is given by P = Φm,ϕ(N⊥).

Proof The generating matrices C1, . . . , Cs of the digital net are chosen such

that N⊥ is the row space of the overall generating matrix (C⊤
1 | . . . |C⊤

s ) ∈
Fsmb . Hence N⊥ is given by the elements An = (a1,n, . . . ,as,n) with ai,n =

(Cin)
⊤ for 1 ≤ i ≤ s, where n ∈ (Fmb )

⊤. Since dim(N ) = ms−m, and hence

dim(N⊥) = m, all these elements are different. Applying the map Φm,ϕ to

these elements gives the digital net (compare with the construction principle

given in Section 4.4).

Theorem 7.14 Let b be a prime power, let m, s ∈ N, s ≥ 2, and let

ϕ : {0, . . . , b − 1} → Fb be a bijection with ϕ(0) = 0. Let C and C⊥ in

Fsmb be mutually dual Fb-linear subspaces of dimensions m and ms − m

respectively. Then Φm,ϕ(C) is a digital (t,m, s)-net over Fb if and only if

δm(C⊥) ≥ m− t+ 1.

We use this principle based on duality theory later on to construct digital

(t,m, s)-nets over Fb. Furthermore, one can use the view point of duality the-

ory also for the construction of new nets from existing ones. Such methods,

which are discussed in Chapter 9, are usually called propagation rules.

The following easy example in this vein is the so-called direct product

construction, which was first introduced by Niederreiter & Xing [192, The-

orem 10].
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Example 7.15 Assume we are given a digital (t1,m1, s1)-net and a dig-

ital (t2,m2, s2)-net both over Fb. Then those nets correspond to an (m1 −
t1,m1, s1)-system {c(i)j ∈ Fm1

b : 1 ≤ j ≤ m1, 1 ≤ i ≤ s1} and an (m2 −
t2,m2, s2)-system {d(i)

j ∈ Fm2
b : 1 ≤ j ≤ m2, 1 ≤ i ≤ s2} over Fb respec-

tively.

Assume that m1 ≤ m2. Now we define the system {e(i)j ∈ Fm1+m2
b : 1 ≤

j ≤ m1 +m2, 1 ≤ i ≤ s1 + s2} over Fb by the concatenations

e
(i)
j =





(c
(i)
j ,0) ∈ Fm1+m2

b if 1 ≤ j ≤ m1, 1 ≤ i ≤ s1,
(0,d

(i−s1)
j ) ∈ Fm1+m2

b if 1 ≤ j ≤ m1, s1 < i ≤ s1 + s2,

0 ∈ Fm1+m2
b if m1 < j ≤ m1 +m2, 1 ≤ i ≤ s1 + s2.

We show that the system {e(i)j ∈ Fm1+m2
b : 1 ≤ j ≤ m1 +m2, 1 ≤ i ≤

s1+ s2} over Fb is a (d,m1+m2, s1+ s2)-system over Fb with d = min(m1−
t1,m2 − t2). Assume on the contrary that there are nonnegative integers

δ1, . . . , δs1+s2 with
∑s1+s2

i=1 δi = d and λ
(i)
j ∈ Fb, 1 ≤ j ≤ δi, 1 ≤ i ≤ s1 and

µ
(i)
j ∈ Fb, 1 ≤ j ≤ δi, 1 ≤ i ≤ s2, not all of the λ(i)j , µ

(i)
j zero, such that

s1∑

i=1

δi∑

j=1

λ
(i)
j (c

(i)
j ,0) +

s1+s2∑

i=s1+1

δi∑

j=1

µ
(i−s1)
j (0,d

(i−s1)
j ) = 0 ∈ Fm1+m2

b .

Then we must have

s1∑

i=1

δi∑

j=1

λ
(i)
j c

(i)
j = 0 ∈ Fm1

b and

s2∑

i=1

δs1+i∑

j=1

µ
(i)
j d

(i)
j = 0 ∈ Fm2

b .

If not all λ
(i)
j are zero, then we must have

∑s1
i=1 δi > m1 − t1, since {c(i)j ∈

Fm1
b : 1 ≤ j ≤ m1, 1 ≤ i ≤ s1} is an (m1− t1,m1, s1)-system over Fb. Hence

min(m1 − t1,m2 − t2) = d =

s1+s2∑

i=1

δi > m1 − t1,

a contradiction. If not all µ
(i)
j are zero, then the same argument leads to a

contradiction too (note that here we have an (m2 − t2,m2,m1, s2)-system

over Fb). Hence the system {e(i)j ∈ Fm1+m2
b : 1 ≤ j ≤ m1 + m2, 1 ≤ i ≤

s1+s2} is a (d,m1+m2, s1+s2)-system over Fb with d = min(m1−t1,m2−t2)
and therefore by Lemma 7.7 it generates a digital (t,m1 +m2, s1 + s2)-net

over Fb with

t = m1 +m2 − d = max(m1 + t2,m2 + t1).
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Further, more sophisticated propagation rules for digital nets are pre-

sented in Chapter 9.

7.3 Digital nets and linear codes

From Lemma 7.7 we know that constructing a digital (t,m, s)-net over Fb is

equivalent to constructing an (m−t,m, s)-system over Fb. On the other hand

it has been pointed out in [182] that if we can construct a (d, k, 1, s)-system

{c(i) : 1 ≤ i ≤ s} over Fb, then we obtain a linear code over Fb of length

s, dimension at least s − k, and minimum distance at least d + 1 if we use

the transpose of the vectors c(1), . . . , c(s) as the columns of a parity-check

matrix of the linear code. (The necessary notions from coding theory are

explained below) Thus there is a close link between digital nets and linear

codes via the theory of (d, k,m, s)-systems over Fb.

The general construction principle for obtaining digital nets from lin-

ear codes which we are going to present in this section was established by

Lawrence, Mahalanabis, Mullen & Schmid [148] (see also [231]).

The following result concerning (d, k,m, s)-systems is crucial for the sub-

sequent considerations.

Lemma 7.16 Let b be a prime power. From any given (d, t+d, 1, N)-system

over Fb we can construct a (d, t+ d, s)-system over Fb with

s =

{
⌊(N − 1)/h⌋ if d = 2h+ 1,

⌊N/h⌋ if d = 2h.

Proof Suppose that d1, . . . ,dN are the N vectors from Ft+db forming a

(d, t+d, 1, N)-system over Fb. This means that any d of the vectors d1, . . . ,dN
are linearly independent over Fb. We construct a system

{c(i)j ∈ Ft+db : 1 ≤ j ≤ t+ d, 1 ≤ i ≤ s}

in the following way:
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• If d = 2h+ 1, then the c
(i)
j are given by

i = 1 i = 2 i = 3 . . . i = s

c
(i)
1 d1 dh+1 d2h+1 . . . d(s−1)h+1
...

...
...

...
...

c
(i)
h dh d2h d3h . . . dsh

c
(i)
h+1 dsh+1 dsh+1 dsh+1 . . . dsh+1

c
(i)
h+2 d2h dh dh . . . dh

c
(i)
h+3 d2h−1 dh−1 dh−1 . . . dh−1
...

...
...

...
...

c
(i)
2h+1 dh+1 d1 d1 . . . d1

The vectors c
(i)
j for 2h + 2 ≤ j ≤ t + 2h + 1 and 1 ≤ i ≤ s can be

chosen arbitrarily in Ft+db . For this construction we need sh+1 vectors of

d1, . . . ,dN and therefore we may choose s = ⌊(N − 1)/h⌋.
• If d = 2h, then the c

(i)
j are given by

i = 1 i = 2 i = 3 . . . i = s

c
(i)
1 d1 dh+1 d2h+1 . . . d(s−1)h+1
...

...
...

...
...

c
(i)
h dh d2h d3h . . . dsh

c
(i)
h+1 d2h dh dh . . . dh

c
(i)
h+2 d2h−1 dh−1 dh−1 . . . dh−1
...

...
...

...
...

c
(i)
2h dh+1 d1 d1 . . . d1

The vectors c
(i)
j for 2h + 1 ≤ j ≤ t + 2h and 1 ≤ i ≤ s can be chosen

arbitrarily in Ft+db . For this construction we need sh vectors of d1, . . . ,dN
and therefore we may choose s = ⌊N/h⌋.

In both cases, for any d1, . . . , ds ∈ N0 with
∑s

i=1 di = d the subsystem of d

vectors {c(i)j ∈ Ft+db : 1 ≤ j ≤ di, 1 ≤ i ≤ s} is linearly independent over Fb

and hence {c(i)j ∈ Ft+db : 1 ≤ j ≤ t + d, 1 ≤ i ≤ s} is a (d, t + d, s)-system

over Fb.

Combining Lemma 7.16 and Lemma 7.7 we obtain the following result.
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Corollary 7.17 Let b be a prime power. From any given (d, t + d, 1, N)-

system over Fb we can construct a digital (t, t+ d, s)-net over Fb with

s =

{
⌊(N − 1)/h⌋ if d = 2h+ 1,

⌊N/h⌋ if d = 2h.

Now we turn to the theory of linear codes and show how one can obtain

(d, t + d, 1, N)-system over Fb. An introduction to algebraic coding theory

can be found, for example, in [155, Chapter 8].

Definition 7.18 A linear code C over Fb is a linear subspace of Fnb , for some

n ∈ N. If C has dimension k, then the linear code C is called an [n, k]-code

over Fb; n is called the length and k the dimension of the code.

The elements of C are called the code words. If we wish to specify also

the minimum distance d of an [n, k]-code, then we speak of an [n, k, d]-code.

The minimum distance κn(C) of a linear [n, k]-code C over Fb is equal to

the smallest of the weights of the nonzero code words, where the weight of

a code word c ∈ Fnb is the usual Hamming weight κn which is defined as the

number of nonzero entries of c, i.e.,

κn(C) := min{κn(c) : c ∈ C \ {0}}.

An k× n matrix over Fb whose rows form a basis of a linear [n, k]-code is

called a generating matrix of the code.

Given an [n, k]-code C, its dual code C⊥ is defined to be the set of vectors

from Fnb which are orthogonal to every code word of C, i.e.,

C⊥ = {v ∈ Fnb : v · c = 0 for all c ∈ C}.

If C is an [n, k]-code over Fb, then C⊥ is an [n, n− k]-code. A parity-check

matrix H for an [n, k]-code C is a generating matrix of C⊥. Hence H is an

(n − k) × n matrix over Fb. Note that for each code word c ∈ C we have

Hc⊤ = 0.

The following result provides a connection between the parity check ma-

trix of a linear code and its minimum distance.

Lemma 7.19 A linear [n, k]-code C over Fb with parity-check matrix H

has minimum distance d if and only if any d− 1 columns of H are linearly

independent over Fb but some d columns of H are linearly dependent over

Fb.

Proof We show that a linear code C over Fb with parity-check matrix H

has minimum distance d ≥ s + 1 if and only if any s columns of H are
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linearly independent over Fb. From this observation we easily obtain the

desired result. We follow [155, Lemma 8.14].

Assume there are s linearly dependent columns of H, then Hc⊤ = 0

and κn(c) ≤ s for suitable c ∈ C \ {0} and hence d ≤ s. Similarly, if any

s columns of H are linearly independent, then there is no c ∈ C \ {0} of

weight κn(c) ≤ s and hence d ≥ s+ 1.

Corollary 7.20 Let b be a prime power. Given a linear [n, k, d]-code over

Fb with d ≥ 3, a digital (n−k−d+1, n−k, s)-net over Fb can be constructed

with

s =

{
⌊(n− 1)/h⌋ if d = 2h+ 2,

⌊n/h⌋ if d = 2h+ 1.

Proof If H is the parity-check matrix of for the linear [n, k, d]-code over

Fb, then any d − 1 columns of H are linearly independent according to

Lemma 7.19. Hence the transpose of the column vectors of H form a (d −
1, n−k, 1, n)-system over Fb. Now the result follows from Corollary 7.17.

Remark 7.21 Assume we have a linear [n, k, d]-code C over Fb. This code

consists of bk different code words. Now fix some n − (d − 1) coordinates

and project each code word onto these coordinates. Since d is the minimum

distance of C, it follows that the projected code words still are all different

and hence we have bk = |C| ≤ bn−d+1 or equivalently n−k−d+1 ≥ 0 (this is

nothing else than the well known Singleton bound in coding theory). Hence

the quality parameter of digital nets obtained from [n, k, d]-codes over Fb
is nonnegative. A quality parameter t = 0 can be obtained from so-called

MDS codes, where MDS stands for “maximum distance separable”.

There is a huge amount of literature concerning the construction of dig-

ital nets from linear codes. See, for example, [2, 62, 63, 14, 181, 183, 241].

Furthermore we mention that there is also the notion of generalised linear

codes (using the NRT weight) with a connection to digital nets via ordered

orthogonal arrays. For more information we refer to [157, 187] and [238].

7.4 Duality for digital sequences

In this section we extend the duality theory for digital nets to digital se-

quences. This was first done in [48].

A digital sequence over Fb is fully determined by its generating matrices

C1, . . . , Cs ∈ FN×N
b . For m ∈ N we denote them×m left-upper sub-matrix of

Ci by C
(m)
i . The matrices C

(m)
1 , . . . , C

(m)
s are then the generating matrices
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of a digital net. As above, we also define the overall generating matrix of

this digital net by

C(m) = ((C
(m)
1 )⊤|(C(m)

2 )⊤| . . . |(C(m)
s )⊤) ∈ Fm×sm

b

for anym ∈ N. Hence a digital sequence can equivalently be described via the

sequence C(1), C(2), . . . of matrices or the sequence C1, C2, . . . of row spaces

thereof. Each C(m) or Cm ⊆ Fsmb describes the first bm points of the digital

sequence and each has a dual space C⊥m ⊆ Fsmb (which is the null space of

C(m) in Fsmb ) associated with it, as described in Section 7.1. Hence the dual

for a digital sequence now consists of a sequence (C⊥m)m≥1 of dual spaces

which have certain relations to each other.

The following proposition is a direct consequence of Theorem 7.1 and

Theorem 4.84.

Proposition 7.22 For s ∈ N, s ≥ 2, the matrices C1, . . . , Cs generate a

digital (T, s)-sequence if and only if for all m ∈ N we have

δm(C⊥m) ≥ m−T(m) + 1.

We recall that the digital (T, s)-sequence x0,x1, . . . over Fb is a strict

digital (T, s)-sequence (over Fb) if for allm ∈ N, T(m) is the least t-value for

all blocks of (to the firstm digits truncated) points xh, kb
m ≤ h < (k+1)bm,

with k ∈ N0.

Corollary 7.23 For s ∈ N, s ≥ 2 the matrices C1, . . . , Cs generate a strict

digital (T, s)-sequence with

T(m) = m− δm(C⊥m) + 1 for all m ∈ N.

To generalise the duality theory, we need the quantity

Um(A) = max
1≤i≤s

vm(ai),

where A = (a1, . . . ,as) ∈ Fsmb and ai ∈ Fmb for 1 ≤ i ≤ s.
The following definition is essential.

Definition 7.24 Let s ∈ N, s ≥ 2. For all m ∈ N, let Mm be an Fb-

linear subspace of Fsmb with dim(Mm) ≥ (s − 1)m. Let Mm+1,m be the

projection of the set {A ∈ Mm+1 : Um+1(A) ≤ m}, where A = (a1, . . . ,as)

with all ai ∈ Fm+1
b , on the first m coordinates of each ai for 1 ≤ i ≤ s.

Suppose thatMm+1,m is an Fb-linear subspace ofMm with dim(Mm+1,m) ≥
dim(Mm)−1 for all m ∈ N. Then the sequence (Mm)m≥1 of spaces is called

a dual space chain.
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We show in the following that for given generating matrices C1, . . . , Cs
of a digital sequence, the sequence (C⊥m)m≥1 of dual spaces (with Cm be-

ing the mth row space of the digital sequence) is a dual space chain and

that, conversely, a dual space chain (Mm)m≥1 determines generating matri-

ces C1, . . . , Cs ∈ FN×N
b of a digital sequence. Therefore the conditions of a

dual space chain are necessary and sufficient to describe a digital sequence.

Proposition 7.22 and Corollary 7.23 can be used to obtain the quality func-

tion T from (Mm)m≥1 for such a digital sequence. We assume throughout

the rest of this section that s ∈ N, s ≥ 2.

For C1, . . . , Cs ∈ FN×N
b and m ∈ N the left upper m× (m+ 1) submatrix

of Ci is denoted by C
(m×(m+1))
i for 1 ≤ i ≤ s. Furthermore, let

C(m+1,m) = ((C
(m×(m+1))
1 )⊤|(C(m×(m+1))

2 )⊤| . . . |(C(m×(m+1))
s )⊤).

The row space of C(m+1,m) ∈ F
(m+1)×sm
b is denoted by Cm+1,m ⊆ Fsmb .

Theorem 7.25 For given generating matrices C1, . . . , Cs of a digital se-

quence, the associated sequence (C⊥m)m≥1 of dual spaces is a dual space chain.

Proof Let generating matrices C1, . . . , Cs be given. They yield the cor-

responding sequence (C⊥m)m≥1 of dual spaces. We show that Mm := C⊥m
satisfies all the properties in Definition 7.24.

The dual space C⊥m is obviously a subspace of Fsmb with dim(C⊥m) = sm−
dim(Cm) ≥ sm−m, as Cm is the row space of C(m) and hence dim(Cm) ≤ m.

Note that Mm+1,m = C⊥m+1,m, the dual space of the row space Cm+1,m

of C(m+1,m). Since Cm ⊆ Cm+1,m, we have Mm+1,m ⊆ Mm. As dim(Cm) ≥
dim(Cm+1,m) − 1, dim(C⊥m) = sm − dim(Cm), and dim(C⊥m+1,m) = sm −
dim(Cm+1,m), it follows that dim(C⊥m+1,m) ≥ dim(C⊥m)−1. Thus, the theorem
is shown.

We can also show the converse, namely that for a given dual space chain

we can obtain a digital sequence.

Theorem 7.26 For a given dual space chain (Mm)m≥1, one can construct

generating matrices C1, . . . , Cs of a digital sequence such that for all m ∈ N

the mth row space Cm of the digital sequence satisfies C⊥m =Mm.

Proof We proceed by induction on m ∈ N. For m = 1 we have thatM1 is a

subspace of Fsb with dim(M1) ≥ s− 1. The dual spaceM⊥
1 ofM1 therefore

has dimension at most 1. The generating vector of this subspace can be used

to define C(1) (if the dimension is 0, then C(1) = 0).

Now assume we know C(m) with row space Cm =M⊥
m and we want to con-

struct C(m+1). We first construct C(m+1,m). If dim(Mm) = dim(Mm+1,m),
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then we obtain C(m+1,m) from C(m) by letting the last row of C(m+1,m)

be the zero vector. If dim(Mm) = dim(Mm+1,m) + 1, then dim(M⊥
m) =

dim(M⊥
m+1,m)−1, whereM⊥

m andM⊥
m+1,m are the dual spaces ofMm and

Mm+1,m in Fsmb , respectively. Note that asMm+1,m is a subspace ofMm,

we have thatM⊥
m is a subspace ofM⊥

m+1,m. The spaceM⊥
m is the row space

of C(m), and since dim(M⊥
m+1,m) = dim(M⊥

m) + 1, we can add another row

to C(m) to obtain the (m+1)× sm matrix C(m+1,m) such that its row space

isM⊥
m+1,m.

Let Mm+1,m = {A ∈ Mm+1 : Um+1(A) ≤ m}. Then Mm+1,m is a sub-

space ofMm+1 and the projection ofMm+1,m onto the first m coordinates

of each ai, 1 ≤ i ≤ s, is Mm+1,m. By the construction above, the dual

space M⊥
m+1,m ⊆ Fsmb of Mm+1,m is equal to the row space of C(m+1,m).

Now consider the dual spaceM⊥
m+1,m ⊆ F

s(m+1)
b ofMm+1,m. For 1 ≤ i ≤ s

let C
(m×(m+1))
i ∈ F

(m+1)×(m+1)
b be obtained from the matrix C

(m×(m+1))
i by

adding the zero vector as the last row and let

C
(m+1,m)

= ((C
(m×(m+1))
1 )⊤ | . . . |(C(m×(m+1))

s )⊤) ∈ F
(m+1)×s(m+1)
b .

For 1 ≤ i ≤ s let Vi = (vi,1, . . . , vi,s(m+1)) with vi,i(m+1) = 1 and vi,j = 0

for 1 ≤ j ≤ s(m+1) with j 6= i(m+1). Then the rows of C
(m+1,m)

and the

vectors V1, . . . ,Vs generate the spaceM⊥
m+1,m.

Now as Mm+1,m is a subspace of Mm+1, so M⊥
m+1 is a subspace of

M⊥
m+1,m. On the other hand, dim(M⊥

m+1) = s(m + 1) − dim(Mm+1) ≤
s(m+1)− (s−1)(m+1) = m+1. Thus, there are m+1 linear combinations

of the rows of C
(m+1,m)

and V1, . . . ,Vs which generate the spaceM⊥
m+1.

For 1 ≤ j ≤ m + 1, let Dj ∈ F
s(m+1)
b denote the jth row of C

(m+1,m)
. It

remains to show that there are λi,j ∈ Fb, 1 ≤ i ≤ s and 1 ≤ j ≤ m+1, such

that vectors of the form Dj+λ1,jV1+· · ·+λs,jVs for 1 ≤ j ≤ m+1 generate

the spaceM⊥
m+1. From these vectors we can then build the matrices C

(m+1)
i

which contain C
(m)
i , as the λi,j supply the entries for the final rows of the

C
(m+1)
i .

If D1, . . . ,Dm+1 are linearly independent, then the result holds as m+ 1

vectors are enough and none of the Dj’s can be left out. Otherwise there

would be a vector in the dual space of the generating vectors ofM⊥
m+1, with

Um+1(A) ≤ m, which is not inMm+1,m and hence not inMm+1.

Without loss of generality assume now that {D1, . . . ,Dk} is a maxi-

mal linearly independent subset of {D1, . . . ,Dm+1} for some k ≤ m. Then

Dk+1, . . . ,Dm+1 can be represented as linear combinations of D1, . . . ,Dk.
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In this case, as above, none of the vectors D1, . . . ,Dk can be left out, so

we can assume thatM⊥
m+1 is generated by the vectors D1 + µ1,1V1 + · · ·+

µs,1Vs, . . . ,Dk+µ1,kV1+· · ·+µs,kVs, for certain µi,j ∈ Fb, andm+1−k lin-

ear combinations ofV1, . . . ,Vs given by κ1,1V1+· · ·+κs,1Vs, . . . , κ1,m+1−kV1+

· · ·+κs,m+1−kVs, for certain κi,l ∈ Fb. But the lastm+1−k vectors can now

be replaced by vectors of the required form. Let Dk+1 = α1D1+ · · ·+αkDk

with all αj ∈ Fb. Now we add to the vector κ1,1V1 + · · · + κs,1Vs a linear

combination of the first k vectors generatingM⊥
m+1 and apply the equation

for Dk+1 to obtain Dk+1+(α1µ1,1+ · · ·+αkµ1,k−κ1,1)V1 + · · ·+(α1µs,1+

· · ·+αkµs,k−κs,1)Vs. The same can be done for the remaining vectors. This

completes the proof of the theorem.

Combining Theorem 7.26 with Corollary 7.23 leads to the following result:

Corollary 7.27 Let s ∈ N, s ≥ 2. From a dual space chain (Mm)m≥1, one

can construct a digital (T, s)-sequence over Fb with T(m) = m−δm(Mm)+1

for all m ∈ N.

In the proof above the construction of the generating matrices was not

unique. For certain dual space chains, uniqueness up to a certain reordering

of the points can be achieved as we show in the next theorem.

Theorem 7.28 Let (Mm)m≥1 be a dual space chain. The generating ma-

trices C1, . . . , Cs are unique up to a multiplication of C1, . . . , Cs from the

right with the same nonsingular upper triangular matrix if and only if

dim(Mm+1,m) = (s − 1)m− 1

for all m ∈ N.

Proof We retain the notation in the proof of Theorem 7.26. Note that if

the vectors D1, . . . ,Dm+1 are linearly dependent, then, as can be seen from

the last paragraph of the proof of Theorem 7.26, there is more than one

possible choice for the λi,j ∈ Fb, 1 ≤ i ≤ s and 1 ≤ j ≤ m + 1, such

that the vectors Dj + λ1,jV1 + · · · + λs,jVs for 1 ≤ j ≤ m + 1 generate

the space M⊥
m+1. The vectors D1, . . . ,Dm+1 are linearly dependent if and

only if dim(M⊥
m+1,m) < m + 1, which is equivalent to dim(Mm+1,m) =

sm−dim(M⊥
m+1,m) > sm−(m+1) = (s−1)m−1. Hence if dim(Mm+1,m) >

(s− 1)m− 1, then the generating matrices are not unique. This proves the

“only if” part of the theorem.

To prove the “if” part, observe that if dim(Mm+1,m) = (s−1)m−1, then it

follows from the definition of a dual space chain that (s−1)m ≤ dim(Mm) ≤
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dim(Mm+1,m) + 1 = (s− 1)m. Hence we have dim(Mm) = (s− 1)m for all

m ∈ N.

We now use induction. The result clearly holds for m = 1. The con-

struction of C(m+1,m) from C(m) is not affected by adding a scalar multi-

ple of a previous row to the last row of C(m+1,m). Now to the construc-

tion of C(m+1) from C(m+1,m). As Mm+1,m is a subspace of Mm+1, we

can consider the factor space Mm+1/Mm+1,m. We have dim(Mm+1) =

dim(Mm+1,m)+dim(Mm+1/Mm+1,m). From dim(Mm+1) = (s−1)(m+1)

and dim(Mm+1,m) = (s − 1)m − 1 we obtain dim(Mm+1/Mm+1,m) = s.

For 1 ≤ i ≤ s let

Ri = {A = (a1, . . . ,as) ∈ Mm+1 : vm+1(ai) = m+1, vm+1(aj) ≤ m ∀j 6= i}.

From dim(Mm+1/Mm+1,m) = s we know that none of the Ri is empty. Now

for 1 ≤ i ≤ s the matrix (C
(m+1)
i )⊤ can be obtained from (C

(m×(m+1))
i )⊤ by

replacing the (m + 1)st column with the column (which is initially empty)

−(C(m+1,m)
)⊤A⊤ where A ∈ Ri such that ai,m+1 = 1. Then we have

C(m+1)A⊤ =

s∑

j=1

(C
(m+1)
i )⊤a⊤

j

=
s∑

j=1
j 6=i

(C
(m×(m+1))
j )⊤a⊤

j + (C
(m×(m+1))
i )⊤πm(ai)⊤ − (C

(m+1,m)
)⊤A⊤

=

s∑

j=1

(C
(m×(m+1))
j )⊤a⊤

j − (C
(m+1,m)

)⊤A⊤

= (C
(m+1,m)

)⊤A⊤ − (C
(m+1,m)

)⊤A⊤ = 0,

where πm(ai) is the projection of ai to the first m components. Hence the

elements of Ri for 1 ≤ i ≤ s are contained in C⊥m+1 and thereforeMm+1 =

C⊥m+1.

By construction, for a given C(m+1,m) the matrix C(m+1) is therefore

uniquely determined. Also, if we multiply the matrix C(m+1,m) by a nonsin-

gular lower triangular matrix from the left, then also the (m+ 1)st column

of (C
(m+1)
i )⊤ gets multiplied with the same nonsingular lower triangular

matrix from the left for each 1 ≤ i ≤ s. But this means that the matri-

ces C
(m+1)
i get multiplied from the right with the same nonsingular upper

triangular matrix. Hence the proof is complete.

Remark 7.29 Consider the digital net generated by C
(m)
1 , . . . , C

(m)
s . Amongst

these points, there are bdim(M⊥
m) distinct points, i.e., bsm−dim(Mm) distinct
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points. Hence if dim(Mm) = (s − 1)m, then sm − dim(Mm) = m, i.e.,

all points are distinct. If on the other hand dim(Mm) > (s − 1)m, then

dim(M⊥
m) = sm− dim(Mm) < sm− (s − 1)m = m, and hence each point

occurs with multiplicity bdim(Mm)−(s−1)m. Equivalently, the last dim(Mm)−
(s − 1)m rows of C(m) can be chosen 0. This also implies that T(m) ≥
dim(Mm)− (s− 1)m.

Remark 7.29 and Theorem 7.28 motivate the following definition.

Definition 7.30 Let s ≥ 2. We call a dual space chain (Mm)m≥1 regular

if dim(Mm+1,m) = (s− 1)m− 1 for all m ∈ N.

Remark 7.31 In the duality theory for digital sequences we need to define

suitable subspaces Mm of Fsmb . We note that it suffices to define Mm for

all sufficiently large m, say for all m ≥ r with some positive integer r.

The reason is that then, by dualisingMr, the rth row space of the digital

sequence is determined, and so a matrix C(r) ∈ Fr×srb with this row space can

be chosen. This determines the matrices C
(r)
i ∈ Fr×rb for 1 ≤ i ≤ s. By using

left upper submatrices of the C
(r)
i , all matrices C

(m)
i ∈ Fm×m

b , 1 ≤ i ≤ s,

1 ≤ m < r, are determined, and so are the matrices C(m) ∈ Fm×sm
b for

1 ≤ m < r. Again for 1 ≤ m < r, the dual of the row space of C(m) yields

the space Mm. By the proof of Theorem 7.25, the conditions for a dual

space chain are automatically satisfied for 1 ≤ m < r, and so it suffices to

check the conditions for a dual space chain for m ≥ r.

Exercises

7.1 Let N ⊆ Fsmb be a Fb-linear subspace and let N⊥ be its orthogonal

complement. Show that N⊥ is a Fb-linear subspace too with dim(N ) =

sm− dim(N⊥) and (N⊥)⊥ = N .

7.2 Show that dm(A,B) = Vm(A − B) for A,B ∈ Fsmb , where Vm is the

NRT weight, is a metric on Fsmb .

7.3 Consider the generating matrices

C1 =




1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1


 and C2 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




of a digital (t, 4, 2)-net over Z2. Determine the corresponding row space

C of the corresponding overall generating matrix and its orthogonal

complement C⊥. How large is the parameter t?
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7.4 Show that if there exist digital (tk,mk, sk)-nets over Fb for 1 ≤ k ≤ n,
then there exists a digital (t,

∑n
k=1mk,

∑n
k=1 sk)-net over Fb with t =∑n

k=1mk − min1≤k≤n(mk − tk). In particular, if there exists a digital

(t,m, s)-net over Fb, then for any n ∈ N there exists a ((n − 1)m +

t, nm, ns)-net over Fb.

7.5 Give explicitly the generating matrices of the digital (t, 8, 4)-net over

Z2 which is obtained from the direct product construction using the

digital net from Exercise 7.3. How large is the t-value of this digital

net?

7.6 Assume that the points x0, . . . ,xbm1−1 form a digital (t1,m1, s1)-net

and that the points y0, . . . ,ybm2−1 form a digital (t2,m2, s2)-net both

over Fb. Show that the s1 + s2-dimensional point set consisting of the

points (xk,yl) for 0 ≤ k < bm1 and 0 ≤ l < bm2 form a digital (t,m, s)-

net over Fb wherem = m1+m2, s = s1+s2 and t = max(m1+ t2,m2+

t1). Is the assertion also true for not necessarily digital nets?

7.7 Construct a [4, 2, 3]-code over F4.

7.8 Consider the code whose codewords are the binary representations of

the numbers 1, . . . , 2m − 1, that is, Hm = {(κ0, . . . , κm−1) : 1 ≤ κ0 +

κ12+ · · ·+κm−12
m−1}. Find the values of n, k, d such that the set Hm

is an [n, k, d]-code.

7.9 Show that if C is a [n, k] linear code, then C⊥ is an [n, n − k] linear
code.

7.10 Consider a Niederreiter sequence over Z2 in dimension s = 2. Find the

corresponding dual space chain.
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Special constructions of digital nets and sequences

This section is devoted to explicit constructions of digital nets and sequences.

Some examples have already appeared in previous chapters. We have seen in

Section 4.4 that the construction of a digital (t, s)-sequence is furnished by s

matrices of size N×N over a finite field Fb, where b is a prime power. Indeed,

the van der Corput sequence can be generated by the digital construction

scheme of Section 4.4 using the matrix

C1 =




1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .



.

Unfortunately, the construction of a second generating matrix to obtain

a, say digital (0, 2)-sequence over Fb is already nontrivial (one such example

was given in Section 4.4; see Example 4.78).

The first examples of the construction of such matrices were given by

Sobol′ [251] and Faure [66]. These constructions deal directly with the con-

struction of the generating matrices. Niederreiter’s essential insight [171]

was that these constructions can be described more neatly using polynomial

arithmetic over finite fields. This is explained in the following section.

8.1 Sobol′, Faure, and Niederreiter sequences

Although Sobol′ was the first to construct digital (t, s)-sequences in base

2 in 1967 and Faure introduced constructions of digital (0, s)-sequences in

prime base b with b ≥ s in 1982, it seems now most convenient to introduce

digital (t, s)-sequences using Niederreiter’s unifying approach based on poly-
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nomial arithmetic over finite fields. By considering generalised Niederreiter

sequences, the constructions of Sobol′ and Faure appear as special cases.

Classical Niederreiter sequence

We introduce the classical construction of (t, s)-sequences due to Niederre-

iter [171]. We follow [175, Section 4.5] in our presentation, which is a slight

simplification of the original construction.

Let s ∈ N, b a prime power and let p1, . . . , ps ∈ Fb[x] be distinct monic

irreducible polynomials over Fb. Let ei = deg(pi) for 1 ≤ i ≤ s. For integers
1 ≤ i ≤ s, j ≥ 1 and 0 ≤ k < ei, consider the expansions

xk

pi(x)j
=

∞∑

r=0

a(i)(j, k, r)x−r−1 (8.1)

over the field of formal Laurent series Fb((x
−1)). Then we define the matrix

Ci = (c
(i)
j,r)j≥1,r≥0 by

c
(i)
j,r = a(i)(Q+ 1, k, r) ∈ Fb for 1 ≤ i ≤ s, j ≥ 1, r ≥ 0, (8.2)

where j − 1 = Qei + k with integers Q = Q(i, j) and k = k(i, j) satisfying

0 ≤ k < ei.

Definition 8.1 A digital sequence over Fb generated by the N×N matrices

Ci = (c
(i)
j,r)j≥1,r≥0 for 1 ≤ i ≤ s where the c

(i)
j,r are given by (8.2) is called a

Niederreiter sequence.

Theorem 8.2 The Niederreiter sequence with generating matrices defined

as above, is a digital (t, s)-sequence over Fb with

t =

s∑

i=1

(ei − 1).

Proof According to Theorem 4.84 we need to show that for all integers m >∑s
i=1(ei − 1) and all d1, . . . , ds ∈ N0 with 1 ≤∑s

i=1 di ≤ m−
∑s

i=1(ei − 1),

the vectors

πm(c
(i)
j ) = (c

(i)
j,0, . . . , c

(i)
j,m−1) ∈ Fmb for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

are linearly independent over Fb. Suppose to the contrary that we have

s∑

i=1

di∑

j=1

f
(i)
j πm(c

(i)
j ) = 0 ∈ Fmb
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for some f
(i)
j ∈ Fb, where, without loss of generality we may assume that

di ≥ 1 for all 1 ≤ i ≤ s. By comparing components, we obtain

s∑

i=1

di∑

j=1

f
(i)
j c

(i)
j,r = 0 for 0 ≤ r ≤ m− 1. (8.3)

Consider the rational function

L =

s∑

i=1

di∑

j=1

f
(i)
j

xk(i,j)

pi(x)Q(i,j)+1
=

∞∑

r=0




s∑

i=1

di∑

j=1

f
(i)
j c

(i)
j,r


x−r−1.

From (8.3) we obtain that ν(L) < −m, where ν(L) denotes the discrete

exponential evaluation as introduced in the first lines of Section 10.1.

If we put Qi = ⌊(di − 1)/ei⌋ for 1 ≤ i ≤ s, then a common denominator

of L is g(x) =
∏s
i=1 pi(x)

Qi+1, which implies that Lg is a polynomial. On

the other hand we have

ν(Lg) < −m+ deg(g) = −m+

s∑

i=1

(Qi + 1)ei ≤ −m+

s∑

i=1

(di − 1 + ei) ≤ 0.

Thus Lg = 0, hence L = 0, and therefore

s∑

i=1

di∑

j=1

f
(i)
j

xk(i,j)

pi(x)Q(i,j)+1
= 0.

The left-hand side is a partial fraction decomposition of a rational func-

tion, and hence it follows from the uniqueness of the partial fraction decom-

position that all f
(i)
j = 0.

The quality parameter t =
∑s

i=1(ei − 1) is exact, i.e. the Niederreiter

sequence is a strict (
∑s

i=1(ei − 1), s)-sequence over Fb. This was shown in

[47, Theorem 1].

Remark 8.3 For fixed s and b list all monic irreducible polynomials over

Fb in a sequence according to nondecreasing degrees, and let p1, . . . , ps be the

first s terms of this sequence. Then it has been shown by Niederreiter [175,

Theorem 4.54] that for the strict quality parameter t of the corresponding

Niederreiter sequence we have

t ≤ s(logb s+ logb logb s+ 1).
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Generalised Niederreiter sequence

In this subsection we introduce a generalisation of Niederreiter’s sequence

due to Tezuka [253, 254]. This sequence differs from the Niederreiter se-

quence introduced above, by replacing xk in (8.1) with polynomials yi,j,k(x),

where 1 ≤ i ≤ s, j ≥ 1, and 0 ≤ k < ei. In order for Theorem 8.2 to apply

to these sequences, for each j ≥ 1 and 1 ≤ i ≤ s the set of polynomials

{yi,j,k(x) : 0 ≤ k < ei} needs to be linearly independent (mod pi(x)) over

Fb. The generalised Niederreiter sequence is then defined by the expansion

yi,j,k(x)

pi(x)j
=

∞∑

r=0

a(i)(j, k, r)x−r−1

over the field of formal Laurent series Fb((x
−1)). Then we define the matrix

Ci = (c
(i)
j,r)j≥1,r≥0 by

c
(i)
j,r = a(i)(Q+ 1, k, r) ∈ Fb for 1 ≤ i ≤ s, j ≥ 1, r ≥ 0, (8.4)

where j − 1 = Qei + k with integers Q = Q(i, j) and k = k(i, j) satisfying

0 ≤ k < ei.

Definition 8.4 A digital sequence over Fb generated by the matrices Ci =

(c
(i)
j,r)j≥1,r≥0 for 1 ≤ i ≤ s where the c

(i)
j,r are given by (8.4) is called a

generalised Niederreiter sequence.

The proof of Theorem 8.2 still applies, hence a generalised Niederreiter

sequence is a digital (t, s)-sequence over Fb with t =
∑s

i=1(ei − 1).

Sobol′ sequence

Sobol′ [251] was the first to introduce a construction of (t, s)-sequences.

This sequence, nowadays referred to as Sobol′ sequence, is the generalised

Niederreiter sequence where b = 2, p1(x) = x, and for 2 ≤ i ≤ s, pi(x) is

the (i − 1)th primitive polynomial in a list of primitive polynomials which

is sorted in increasing order according to their degree. Further, there are

polynomials gi,0, . . . , gi,ei−1 with deg(gi,h) = ei−h+1 such that yi,j,k = gi,k
for all j ≥ 1, 0 ≤ k < ei, and 1 ≤ i ≤ s.
A Sobol′ sequence can also be generated in the following way: Let p1, . . . , ps ∈

F2[x] be primitive polynomials ordered according to their degree and let

pi(x) = xei + a1,ix
ei−1 + a2,ix

ei−2 + · · · + aei−1x+ 1 for 1 ≤ i ≤ s.

Choose odd natural numbers 1 ≤ m1,i, . . . ,mei,i such that mk,i < 2k for
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1 ≤ k ≤ ei, and for all k > ei define mk,i recursively by

mk,i = 2a1,imk−1,i ⊕ · · · ⊕ 2ei−1aei−1mk−ei+1,i ⊕ 2eimk−ei,i ⊕mk−ei,i,

where ⊕ is the bit-by-bit exclusive-or operator. The numbers

vk,i :=
mk,i

2k

are called direction numbers. Then for n ∈ N0 with base 2 expansion n =

n0 + 2n1 + · · ·+ 2r−1nr−1 we define

xn,i = n0v1,i ⊕ n1v2,i ⊕ · · · ⊕ nr−1vr,i.

The Sobol′ sequence is then the sequence of points x0,x1, . . ., where xn =

(xn,1, . . . , xn,s).

For an efficient implementation of Sobol′ sequences see [3, 18] and for ques-

tions concerning the choice of polynomials gi,0, . . . , gi,ei−1 see, for example,

[115].

Faure sequence

Faure [66] introduced a construction of (0, s)-sequences over prime fields

Fb with s ≤ b. These sequences, nowadays referred to as Faure sequences,

correspond to the case where the base b is a prime number such that b ≥ s,
pi(x) = x− i+ 1 for 1 ≤ i ≤ s and all yi,j,k(x) = 1.

The generating matrices of Faure sequences can also be written down

explicitly in terms of the Pascal matrix. The Pascal matrix is given by

P =




(
0
0

) (
0
1

) (
0
2

)
. . .(

1
0

) (
1
1

) (
1
2

)
. . .(2

0

) (2
1

) (2
2

)
. . .

...
...

...
. . .


 ,

where we set
(k
l

)
= 0 for l > k.

The generating matrices C1, . . . , Cs of the Faure sequence are now given

by

Ci = (P⊤)i−1 (mod b) for 1 ≤ i ≤ s.

For example, the case s = 2 is explicitly represented in Example 4.78.

The implementation of Faure sequences has been discussed in [5] and [78].
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Original Niederreiter sequence

The sequence originally introduced by Niederreiter [171] corresponds to the

case where yi,j,k(x) = xkgi,j,k(x), where gcd(gi,j,k, pi) = 1 for all j ∈ N,

1 ≤ i ≤ s and 0 ≤ k < ei.

For questions concerning the implementation of Niederreiter sequences see

[19].

8.2 Niederreiter-Özbudak nets

In this section we present the constructions of digital (t,m, s)-nets over Fb
due to Niederreiter & Özbudak [184], see also [195]. These constructions are

based on duality theory, i.e., instead of a direct construction of generating

matrices like in the constructions presented so far, here one constructs Fb
linear subspaces N of Fsmb which correspond to digital (t,m, s)-nets over Fb
via duality theory as outlined in Section 7.2.

Construction of (0,m, s)-nets

We begin with the simplest case of the construction by Niederreiter &

Özbudak [184], i.e., we start with a construction of a digital (0,m, s)-net

over Fb for m ∈ N and 2 ≤ s ≤ b. As already mentioned this construction is

based on duality theory.

Let

Lm,s = {f ∈ Fb[x] : deg(f) ≤ ms−m− 1}.

Note that dim(Lm,s) = ms−m. Now choose distinct elements a1, . . . , as ∈ Fb
and set pi(x) = x− ai for 1 ≤ i ≤ s. Let

f(x) = c
(i)
0 + c

(i)
1 (x− ai) + · · · + c

(i)
m−1(x− ai)m−1 + · · ·

be the expansion of f ∈ Lm,s in terms of powers of x− ai. Then we define

θpi,m(f) = (c
(i)
m−1, . . . , c

(i)
1 , c

(i)
0 ) ∈ Fmb for 1 ≤ i ≤ s

and

θm(f) = (θp1,m(f), . . . , θps,m(f)) ∈ Fmsb .

Then θm : Lm,s → Fmsb is an Fb-linear map.

Let vm be the weight function from Definition 7.1. Then for any nonzero

f ∈ Lm,s we have

vm(θpi,m(f)) ≥ m− νpi(f) for 1 ≤ i ≤ s,
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where νpi is the valuation associated with the irreducible polynomial pi(x) =

x−ai, i.e., νpi(f) is the largest integer ℓ such that pi(x)
ℓ divides f(x). Thus

we get

Vm(θm(f)) =

s∑

i=1

vm(θpi,m(f)) ≥ ms−
s∑

i=1

νpi(f). (8.5)

By the definition of νpi we have pi(x)
νi(f) divides f(x) for 1 ≤ i ≤ s, and

hence
∏s
i=1 pi(x)

νpi (f) divides f(x). This implies that

s∑

i=1

νpi(f) ≤ deg(f).

Therefore, (8.5) implies that

Vm(θm(f)) ≥ ms− deg(f) ≥ m+ 1. (8.6)

Let Nm be the image of the map θm. From (8.6) and the fact that θm
is Fb-linear, it follows in particular that θm is injective, as otherwise, there

would be nonzero f1, f2 ∈ Lm,s, f1 6= f2, such that θm(f1) = θm(f2), but

then

0 = Vm(θm(f1)− θm(f2)) = Vm(θm(f1 − f2)) ≥ ms− deg(f1 − f2) ≥ m+ 1,

which is a contradiction. Hence we get

dim(Nm) = dim(Lm,s) = ms−m.

Furthermore δm(Nm) ≥ m+ 1 by (8.6), thus δm(Nm) = m+ 1 by Proposi-

tion 7.3 and t = m+1−δm(Nm) = 0, by duality theory (see Corollary 7.12).

Hence Nm is the dual space of a digital (0,m, s)-net over Fb.

Construction of (0,m, s + 1)-nets

One way of obtaining (0,m, s+1)-nets is by including the place at ∞. This

can be done in the following way.

Let p∞(x) = 1/x and f ∈ Lm,s+1. For 1 ≤ i ≤ s we define θpi,m(f) as

above. Let now f(x) = c
(s+1)
0 +c

(s+1)
1 x+ · · ·+c(s+1)

ms−1x
ms−1 and let νp∞ be the

valuation at ∞, i.e., the valuation associated with p∞(x) = 1/x. In other

words, νp∞(f) is the largest integer ℓ such that p∞(x)ℓ divides f(x). As

f(x) = c
(s+1)
ms−1(1/x)

−ms+1 + c
(s+1)
ms−2(1/x)

−ms+2 + · · · + c
(s+1)
1 (1/x)−1 + c

(s+1)
0

the largest integer ℓ such that p∞(x)ℓ divides f is − deg(f), and hence

νp∞(f) = − deg(f).



292 Special constructions of digital nets and sequences

Now we define

θp∞,m(f) = (c
(s+1)
ms−m, . . . , c

(s+1)
ms−2, c

(s+1)
ms−1) ∈ Fmb ,

Then we have

vm(θp∞,m(f)) ≥ deg(f)− (ms−m− 1) = −νp∞(f)− (ms−m− 1).

Let θm(f) = (θp1,m(f), . . . , θps,m(f), θp∞,m(f)) ∈ F
m(s+1)
b . Then we have

Vm(θm(f)) =

s+1∑

i=1

vm(θpi,m(f))

≥ ms−
s∑

i=1

νpi(f)−ms+m+ 1− νp∞(f)

≥ m+ 1,

where the last inequality follows as νp∞(f) = − deg(f) and as
∏s
i=1 pi(x)

νpi (f)

divides f(x), we have deg(f) ≥∑s
i=1 νpi(f). But the last equality just states

that 0 ≥ − deg(f) +
∑s

i=1 νpi(f) = νp∞(f) +
∑s

i=1 νpi(f). This also follows

from Remark B.13, namely, we have

0 = νp∞(f) +
∑

p

νp(f) deg(p(x)) ≥ νp∞(f) +
s∑

i=1

νpi(f),

where the sum over all p is extended over all monic irreducible p(x) ∈ Fb[x].

Let Nm be the image of the map θm. This map is again injective, hence

dim(Nm) = dim(Lm,s+1) = ms,

and δm(Nm) ≥ m + 1. Thus, as above by duality theory, Nm is the dual

space of a digital (0,m, s + 1)-net over Fb.

Construction of (t,m, s)-nets

We now consider a special case of the construction of Niederreiter & Özbudak

which is more general as the cases considered above, in that we also include

the cases where s > b+ 1 (and hence t > 0).

Let s ∈ N and for 1 ≤ i ≤ s chose pi ∈ Fb[x]∪{1/x}, where pi is irreducible
if pi(x) ∈ Fb[x] or pi(x) = 1/x. Let ei = deg(pi) for pi(x) ∈ Fb[x] and ei = 1

if pi(x) = 1/x. Let m >
∑s

i=1(ei − 1) and f ∈ Lm,s. If ei = 1, then we have

already defined θpi,m(f) above. Now consider 1 ≤ i ≤ s with ei > 1. Let

mi = ⌊m/ei⌋ and

f(x) = c
(i)
0 (x) + c

(i)
1 (x)pi(x) + · · ·+ c

(i)
mi−1(x)pi(x)

mi−1 + · · · ,
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where c
(i)
k (x) ∈ Fb[x] with deg(c

(i)
k ) < ei for all k ∈ N0 and 1 ≤ i ≤ s. We

can write c
(i)
k (x) = c

(i)
k,0 + · · ·+ c

(i)
k,ei−1x

ei−1 with c
(i)
k,ℓ ∈ Fb and set

ϑ(i)(c
(i)
k ) = (c

(i)
k,ei−1, . . . , c

(i)
k,0) ∈ Feib .

Let now

θpi,m(f) = (0, . . . , 0, ϑ(i)(c
(i)
mi−1), . . . , ϑ

(i)(c
(i)
0 )) ∈ Fmb ,

where we include ri = m− eimi zeroes at the beginning of the vector. Note

that 0 ≤ ri < ei. Hence the case where ei = 1 is included in the above, since

then deg(c
(i)
k ) = 0 and ri = 0.

Now set

θm(f) = (θp1,m(f), . . . , θps,m(f)) ∈ Fmsb .

For any nonzero f ∈ Lm,s we have

vm(θpi,m(f)) ≥ m− eiνpi(f)− (ei − 1) for 1 ≤ i ≤ s with pi irreducible,

and

vm(θp∞,m(f)) ≥ deg(f)−(m(s−1)−m−1) = −νp∞(f)−(m(s−1)−m−1).

If all p1, . . . , ps are irreducible, then pi(x)
νpi(f) divides f(x) and hence∏s

i=1 pi(x)
νpi (f) divides f(x). Therefore

s∑

i=1

eiνpi(f) ≤ deg(f),

and hence

Vm(θm(f)) =

s∑

i=1

vm(θpi,m(f))

≥ ms−
s∑

i=1

eiνpi(f)−
s∑

i=1

(ei − 1)

≥ ms− deg(f)−
s∑

i=1

(ei − 1)

≥ m+ 1−
s∑

i=1

(ei − 1).

Otherwise, assume without loss of generality that p1(x) = p∞(x) = 1/x.
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Then
∑s

i=2 eiνpi(f) ≤ deg(f) = −νp∞(f) = −νp1(f), hence
∑s

i=1 eiνpi(f) ≤
0 and

Vm(θm(f)) =

s∑

i=1

vm(θpi,m(f))

≥ −νp1(f)− (m(s − 1)−m− 1)

+m(s− 1)−
s∑

i=2

eiνpi(f)−
s∑

i=2

(ei − 1)

≥ m+ 1−
s∑

i=1

(ei − 1).

Thus in both cases we have Vm(θm(f)) ≥ m+ 1−∑s
i=1(ei − 1).

Let Nm be the image of the map θm. This map is again injective, hence

dim(Nm) = dim(Lm,s) = ms−m,

and δm(Nm) ≥ m + 1 −∑s
i=1(ei − 1). Thus, by duality theory, Nm is the

dual space of a digital (t,m, s)-net over Fb with t =
∑s

i=1(ei − 1).

General Construction of Niederreiter and Özbudak

For the following constructions we need results from the theory of algebraic

function fields. A short introduction to the necessary material can be found

in Appendix B.

We can now introduce the above construction over arbitrary algebraic

function fields with finite constant field. Let F/Fb be an algebraic function

field with full constant field Fb and genus g = g(F/Fb). Note that the case

g = 0 corresponds to the construction introduced above (compare with

Example B.32).

Choose s ∈ N distinct places P1, . . . , Ps of F with degrees e1, . . . , es. For

1 ≤ i ≤ s let νPi be the normalised discrete valuation of F corresponding to

Pi and let ti be a local parameter at Pi. Further, for each 1 ≤ i ≤ s let FPi

be the residue class field of Pi, i.e., FPi = OPi/MPi , and let ϑi : FPi → Feib
be an Fb-linear vector space isomorphism. Let m > g+

∑s
i=1(ei−1), choose

an arbitrary divisor G of F/Fb with deg(G) = ms −m + g − 1 and define

ai := νPi(G) for 1 ≤ i ≤ s.
For each 1 ≤ i ≤ s we define an Fb-linear map

θi : L(G)→ Fmb
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on the Riemann-Roach space

L(G) = {f ∈ F ∗ : div(f) +G ≥ 0} ∪ {0},

where div(f) denotes the principal divisor of f ∈ F ∗. We fix i and repeat

the following definitions related to θi for each 1 ≤ i ≤ s.
Note that for each f ∈ L(G) we have νPi(f) ≥ −ai, and so the local

expansion of f at Pi has the form

f =
∞∑

j=−ai
c
(i)
j t

j
i ,

where all c
(i)
j ∈ FPi . We denote c

(i)
j by f (j)(Pi). Hence we have

νPi


f −

w∑

j=−ai
f (j)(Pi)t

j
i


 ≥ w + 1

for any integer w ≥ −ai. Let again mi = ⌊m/ei⌋ and ri = m − eimi. Note

that 0 ≤ ri < ei. For f ∈ L(G), the image of f under θi, for 1 ≤ i ≤ s, is

defined as

θi(f) := (0, . . . , 0, ϑi(f
(−ai+mi−1)(Pi)), . . . , ϑi(f

(−ai)(Pi))) ∈ Fmb ,

where we add the ri-dimensional zero vector (0, . . . , 0) ∈ Frib in the begin-

ning.

Now we set

θ(f) := (θ1(f), . . . , θs(f)) ∈ Fmsb

and define the Fb-linear map

θ : L(G)→ Fmsb , f 7→ θ(f).

The image of θ is denoted by Nm = Nm(P1, . . . , Ps;G). In general, the

vector space Nm = Nm(P1, . . . , Ps;G) also depends on the choice of lo-

cal parameters t1, . . . , ts and on the choice of the Fb-linear isomorphisms

ϑ1, . . . , ϑs, but we suppress this dependence in the notation for the sake of

simplicity.

In the following theorem we assume that s ≥ 2 to avoid the trivial cases

where s = 1.

Theorem 8.5 Let F/Fb be an algebraic function field with full constant

field Fb and genus g = g(F/Fb). Let s ∈ N, s ≥ 2, and let P1, . . . , Ps be s
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distinct places of F with degrees e1, . . . , es respectively. Letm > g+
∑s

i=1(ei−
1) and let G be a divisor of F/Fb with deg(G) = ms−m+ g − 1. Then

dim(Nm) ≥ ms−m

and

δm(Nm) ≥ m+ 1− g −
s∑

i=1

(ei − 1).

Proof First note that according to the Riemann-Roch theorem we have

that dim(L(G)) ≥ deg(G) + 1− g = ms−m ≥ 1 and hence L(G) ⊇ Fb.

Let f ∈ L(G) \ {0}. Let ℓi = νPi(f). Then we have ℓi ≥ −ai for 1 ≤ i ≤ s
and f (j)(Pi) = 0 for −ai ≤ j < ℓi, and hence also ϑi(f

(j)(Pi)) = 0 ∈ Feib for

−ai ≤ j < ℓi. On the other hand we have f (ℓi)(Pi) 6= 0 and ϑi(f
(ℓi)(Pi)) 6=

0 ∈ Feib . Therefore we have

vm(θi(f)) ≥ m− (ℓi + ai)ei − ei + 1 for 1 ≤ i ≤ s.

Thus

Vm(θ(f)) =

s∑

i=1

vm(θi(f)) ≥ sm−
s∑

i=1

(ℓi + ai)ei −
s∑

i=1

(ei − 1).

For f ∈ L(G)\{0} we have div(f)+G ≥ 0 and therefore νP (f)+νP (G) ≥ 0

for all places P of F . Further we have deg(G) =
∑

P νP (G) deg(P ) and

deg(div(f)) = 0. Hence

s∑

i=1

(ℓi + ai)ei =
s∑

i=1

(νPi(f) + νPi(G)) deg(Pi)

≤
∑

P

(νP (f) + νP (G)) deg(P )

=
∑

P

νP (G) deg(P )

= deg(G) = ms−m+ g − 1.

Thus we obtain

Vm(θ(f)) ≥ sm− (ms−m+ g − 1)−
s∑

i=1

(ei − 1) = m+ 1− g −
s∑

i=1

(ei − 1)

and therefore δm(Nm) ≥ m+ 1− g −∑s
i=1(ei − 1).

Next we show that θ is injective. Let f1, f2 ∈ L(G) with f1 6= f2 but
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θ(f1) = θ(f2). Then

0 < m+1− g−
s∑

i=1

(ei − 1) ≤ Vm(θ(f1 − f2)) = Vm(θ(f1)− θ(f2)) = Vm(0),

which is absurd and therefore θ is injective.

Hence

dim(Nm) = dim(L(G)) ≥ deg(G) + 1− g = ms−m,
which implies the first part and the result is shown.

By duality theory, the space Nm is the dual space of a digital (t,m, s)-net

with t = g +
∑s

i=1(ei − 1).

Corollary 8.6 Under the assumptions of Theorem 8.5, there exists a dig-

ital (t,m, s)-net over Fb with

t = g +

s∑

i=1

(ei − 1).

Remark 8.7 The case introduced at the beginning of this section corre-

sponds to choosing F as the rational function field, which implies that g = 0

(see Example B.32), and the divisor G being chosen as G = (ms−m+1)P∞
such that νP∞(G) = ms −m − 1 and νP (G) = 0 for all other places. Note

that in the general result Pi may be chosen as the place at ∞ for some

1 ≤ i ≤ s.

8.3 Niederreiter-Xing sequence

As an example of the use of duality theory for digital sequences, we show

how to approach the construction of digital sequences by Niederreiter &

Xing [190] via this duality theory. We note that the construction in [190]

yields most of the currently best digital (t, s)-sequences with respect to the

quality parameter t, see [237]. Beside the duality theory for digital sequences

we again need results from the theory of algebraic function fields which is

utilised in [190]. For the necessary material we refer to Appendix B.

Let b be an arbitrary prime power and let s ≥ 2 be a given dimension. Let

F/Fb be an algebraic function field with full constant field Fb such that F

has at least s+1 different rational places which are denoted by Q,P1, . . . , Ps.

We recall that for an arbitrary divisor G of F/Fb, the Riemann-Roch space

L(G) is defined by

L(G) = {f ∈ F ∗ : div(f) +G ≥ 0} ∪ {0},
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where div(f) denotes the principal divisor associated with f ∈ F ∗. Note that
L(G) is a finite-dimensional vector space over Fb and that by the supplement

to the Riemann-Roch theorem (Theorem B.31) we have

dim(L(G)) = deg(G) + 1− g (8.7)

whenever deg(G) ≥ 2g − 1, where g = g(F/Fb) is the genus of F/Fb. Fur-

thermore, L(G) = {0} whenever deg(G) < 0 by Remark B.29.

For any m ∈ N, we define the divisor

Gm = (g − 1−m)Q+
s∑

i=1

mPi

of F . For any f ∈ L(Gm), we then have νPi(f) ≥ −m for 1 ≤ i ≤ s, where

νPi is the normalised valuation of F belonging to the place Pi. Therefore the

local expansion of f at Pi has the form

f =

∞∑

j=−m
f
(j)
i tji for 1 ≤ i ≤ s,

with ti being a local parameter of F at Pi and f
(j)
i ∈ Fb for 1 ≤ i ≤ s

and j ≥ −m (note that Pi is a rational place and hence deg(Pi) = 1). For

1 ≤ i ≤ s, we define the Fb-linear map ψm,i : L(Gm)→ Fmb by

ψm,i(f) = (f
(−1)
i , f

(−2)
i , . . . , f

(−m)
i ) for f ∈ L(Gm).

Furthermore, let Ψm : L(Gm)→ Fsmb be the Fb-linear map defined by

Ψm(f) = (ψm,1(f), . . . , ψm,s(f)) for f ∈ L(Gm).

The following simple result is crucial.

Lemma 8.8 Let g = g(F/Fb) be the genus of F/Fb. Then for any m ≥
max(g, 1), the Fb-linear map Ψm is injective.

Proof Let f ∈ L(Gm) with Ψm(f) = 0 ∈ Fsmb . Then νPi(f) ≥ 0 for 1 ≤ i ≤
s and hence f ∈ L((g − 1−m)Q). Note that

deg((g − 1−m)Q) = g − 1−m < 0.

From Remark B.29 we obtain that L((g−1−m)Q) = {0}. Hence f = 0 and

Ψm is injective.

Next we define subspaces Mm of Fsmb which form a dual space chain
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(see Definition 7.24). In view of Remark 7.31, it suffices to define Mm for

m ≥ g + 1. We put

Mm = Ψm(L(Gm)) for m ≥ g + 1.

Again by Remark 7.31, we need to check the conditions for a dual space

chain only for m ≥ g + 1.

For m ≥ g + 1, the definition of Gm shows that

deg(Gm) = g − 1−m+ sm ≥ g − 1 +m ≥ 2g,

(note thatQ,P1, . . . , Ps are rational places) and so (8.7) yields dim(L(Gm)) =
(s − 1)m. Therefore, by Lemma 8.8 we have dim(Mm) = dim(L(Gm)) =

(s − 1)m and hence the condition dim(Mm) ≥ (s − 1)m in Definition 7.24

is satisfied.

We put

Dm := {A ∈ Mm+1 : Um+1(A) ≤ m} for m ≥ g + 1.

A typical element ofMm+1 = Ψm+1(L(Gm+1)) is

A = (ψm+1,1(f), . . . , ψm+1,s(f)) with f ∈ L(Gm+1).

The condition Um+1(A) ≤ m means that the last coordinate of each vector

ψm+1,i(f) ∈ Fm+1
b , 1 ≤ i ≤ s, is 0. Therefore f

(−m−1)
i = 0 for 1 ≤ i ≤ s,

that is, νPi(f) ≥ −m for 1 ≤ i ≤ s, and so

f ∈ L
(
(g − 2−m)Q+

s∑

i=1

mPi

)
.

In this way we obtain

Dm = Ψm+1

(
L
(
(g − 2−m)Q+

s∑

i=1

mPi

))
.

Now we consider the set Mm+1,m in Definition 7.24. By what we have

shown above, the elements ofDm are of the form Ψm+1(f) with f ∈ L((g−2−
m)Q+

∑s
i=1mPi). By performing the projection indicated in Definition 7.24,

we see that Ψm+1(f) is projected to Ψm(f). Therefore

Mm+1,m = Ψm

(
L
(
(g − 2−m)Q+

s∑

i=1

mPi

))
. (8.8)

Since L((g− 2−m)Q+
∑s

i=1mPi) ⊆ L(Gm), it follows thatMm+1,m is an
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Fb-linear subspace ofMm. For m ≥ g + 1, we have

deg
(
(g − 2−m)Q+

s∑

i=1

mPi

)
= g − 2−m+ sm ≥ g − 2 +m ≥ 2g − 1,

and so (8.7) yields dim(L((g − 2 −m)Q +
∑s

i=1mPi)) = (s − 1)m − 1. By

Lemma 8.8 and (8.8) we obtain

dim(Mm+1,m) = (s− 1)m− 1 = dim(Mm)− 1.

We have thus demonstrated that for m ≥ g + 1 the sequence (Mm) of

spaces satisfies all conditions in Definition 7.24, and indeed in the stronger

form given in Definition 7.30. Thus, in view of Theorem 7.26 and Re-

mark 7.31, the sequence (Mm) of spaces determines a digital sequence. The

following result shows that this digital sequence is a digital (t, s)-sequence

over Fb with the same quality parameter t as in the construction of Nieder-

reiter & Xing [190].

Theorem 8.9 Let s ∈ N, s ≥ 2, and let b be a prime power. Let F/Fb be

an algebraic function field with full constant field Fb, genus g = g(F/Fb) and

at least s + 1 rational places. Then the construction above yields a digital

(t, s)-sequence over Fb with t = g.

Proof We have to show that for the quality function T of this sequence we

have T(m) ≤ g for all m ≥ g + 1. Since Mm is the dual of the mth row

space of the digital sequence, it suffices to show by Corollary 7.23 that

δm(Mm) ≥ m− g + 1 for all m ≥ g + 1. (8.9)

Consider a nonzero element of Mm, that is, an element Ψm(f) with a

nonzero f ∈ L(Gm). By the definition of Ψm, we have

Vm(Ψm(f)) =

s∑

i=1

vm(ψm,i(f)).

We put ki = vm(ψm,i(f)) for 1 ≤ i ≤ s and recall that

ψm,i(f) = (f
(−1)
i , f

(−2)
i , . . . , f

(−m)
i ).

If ki = 0, then ψm,i(f) = 0 ∈ Fmb , and so νPi(f) ≥ 0. Otherwise 1 ≤ ki ≤ m
and f

(−ki)
i 6= 0, f

(−ki−1)
i = · · · = f

(−m)
i = 0, hence νPi(f) = −ki. In all cases

we have νPi(f) ≥ −ki for 1 ≤ i ≤ s. Therefore

f ∈ L
(
(g − 1−m)Q+

s∑

i=1

kiPi

)
.
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Since f 6= 0, this implies

deg
(
(g − 1−m)Q+

s∑

i=1

kiPi

)
≥ 0,

which is equivalent to
∑s

i=1 ki ≥ m− g + 1. Therefore

Vm(Ψm(f)) =

s∑

i=1

ki ≥ m− g + 1,

and so (8.9) is shown.

8.4 Xing-Niederreiter sequence

In this section we present the construction of Xing & Niederreiter [265].

This sequence for the special case of rational places was implemented by

Pirsic [217] and generating matrices of this sequence can be downloaded

from the website of Pirsic at:

http://www.ricam.oeaw.ac.at/people/page/pirsic/niedxing/

Let F/Fb be an algebraic function field with full constant field Fb and

genus g = g(F/Fb). Let

L(G) = {f ∈ F : div(f) +G ≥ 0} ∪ {0},
where div(f) denotes the principal divisor of f , and let ℓ(G) denote the

dimension of L(G).
Let s ∈ N be a given dimension. Assume that F/Fb has at least one

rational place P∞ and let G be a positive divisor of F/Fb with deg(G) = 2g

and P∞ /∈ supp(G). Let P1, . . . , Ps be s distinct places of F/Fb with Pi 6= P∞
for 1 ≤ i ≤ s. Put ei = deg(Pi) for 1 ≤ i ≤ s. Then we have ℓ(G) = g+1 by

the supplement to the Riemann-Roch theorem (Theorem B.31).

We choose now a basis of L(G) in the following way. Note that ℓ(G−P∞) =

g by the supplement to the Riemann-Roch theorem (Theorem B.31) and

ℓ(G− (2g+1)P∞) = 0 as a consequence of Remark B.29. Since ℓ(G− kP∞)

decreases at most by one as k increases by one there exist integers 0 = n0 <

n1 < · · · < ng ≤ 2g such that

ℓ(G− nuP∞) = ℓ(G− (nu + 1)P∞) + 1 for 0 ≤ u ≤ g,
and hence L(G − nuP∞) \ L(G − (nu + 1)P∞) is not empty for 0 ≤ u ≤ g.

Choose wu ∈ L(G− nuP∞) \ L(G− (nu + 1)P∞), then

νP∞(wu) = nu for 0 ≤ u ≤ g. (8.10)



302 Special constructions of digital nets and sequences

Let a0, . . . , ag ∈ Fb such that we have a0w0 + · · · + agwg = 0. Let U ⊆
{0, . . . , g} such that au 6= 0 for u ∈ U . If for u, v ∈ U we have νP∞(auwu) =

νP∞(avwv), then we obtain nu − nv = νP∞(ava
−1
u ) = 0 since ava

−1
u ∈ F∗

b

(see Remark B.22) and this is a contradiction. Hence for u, v ∈ U we have

νP∞(auwu) 6= νP∞(avwv) and therefore we obtain

νP∞(0) = νP∞

(∑

u∈U
auwu

)
= min

u∈U
νP∞(auwu)

= min
u∈U

(νP∞(au) + νP∞(wu)) = min
u∈U

nu ≤ 2g

in contradiction to νP∞(0) = ∞. Hence a0 = · · · = ag = 0 and therefore

the system {w0, w1, . . . , wg} ⊆ L(G) is linearly independent over Fb. Since

ℓ(G) = g + 1 it follows that {w0, w1, . . . , wg} is a basis of L(G) over Fb.
For each 1 ≤ i ≤ s we consider the chain

L(G) ⊂ L(G+ Pi) ⊂ L(G+ 2Pi) ⊂ · · ·

of vector spaces over Fb. By starting from the basis {w0, w1, . . . , wg} of L(G)
and successively adding basis vectors at each step of the chain, we obtain

for each n ∈ N a basis

{w0, w1, . . . , wg, k
(i)
1 , k

(i)
2 , . . . , k(i)nei}

of L(G+ nPi). We note that we then have

k
(i)
j ∈ L

(
G+

(⌊
j − 1

ei

⌋
+ 1

)
Pi

)
for 1 ≤ i ≤ s and j ≥ 1. (8.11)

The following lemma was shown in [265, Lemma 2].

Lemma 8.10 The system {w0, w1, . . . , wg}∪{k(i)j }1≤i≤s,j≥1 of elements of

F is linearly independent over Fb.

Proof Suppose that

g∑

u=0

auwu +

s∑

i=1

N∑

j=1

b
(i)
j k

(i)
j = 0

for some N ∈ N and au, b
(i)
j ∈ Fb. For a fixed 1 ≤ h ≤ s we write

k :=

N∑

j=1

b
(h)
j k

(h)
j = −

g∑

u=0

auwu −
s∑

i=1
i6=h

N∑

j=1

b
(i)
j k

(i)
j . (8.12)
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If k 6= 0, then by the construction of the k
(h)
j we have k 6∈ L(G). By (8.11)

we have νP (k) ≥ −νP (G) for any place P 6= Ph and hence we obtain that

νPh
(k) ≤ −νPh

(G) − 1.

On the other hand using (8.12) and (8.11) we have

νPh
(k) = νPh


−

g∑

u=0

auwu −
s∑

i=1
i6=h

N∑

j=1

b
(i)
j k

(i)
j




≥ min


νPh

(
g∑

u=0

auwu

)
, min

1≤i≤s
i6=h

νPh




N∑

j=1

b
(i)
j k

(i)
j






≥ −νPh
(G)

since
∑g

u=0 auwu ∈ L(G) and since for i 6= h and z ∈ L(G + nPi) we have

νPh
(z) ≥ −νPh

(G+ nPi) = −νPh
(G).

Thus we must have k = 0. It follows that b
(h)
j = 0 for 1 ≤ j ≤ N , and

since h was arbitrary, we get b
(i)
j = 0 for 1 ≤ i ≤ s and 1 ≤ j ≤ N , and so

also au = 0 for 0 ≤ u ≤ g.

Let z be a local parameter at P∞ and let the integers 0 = n0 < n1 <

· · · < ng ≤ 2g be as in (8.10). For r ∈ N0 we put

zr =

{
zr if r /∈ {n0, n1, . . . , ng},
wu if r = nu for some u ∈ {0, 1, . . . , g}.

Note that in this case νP∞(zr) = r for all r ∈ N0. For 1 ≤ i ≤ s and j ∈ N

we have k
(i)
j ∈ L(G + nPi) for some n ∈ N and also P∞ /∈ supp(G + nPi),

hence νP∞(k
(i)
j ) ≥ 0. Thus we have the local expansions

k
(i)
j =

∞∑

r=0

a
(i)
j,rzr for 1 ≤ i ≤ s and j ∈ N, (8.13)

where all coefficients a
(i)
j,r ∈ Fb. For 1 ≤ i ≤ s and j ∈ N we now define the

sequences

c
(i)
j = (c

(i)
j,0, c

(i)
j,1, . . .) := (a

(i)
j,n)n∈N0\{n0,...,ng} (8.14)

= (â
(i)
j,n0

, a
(i)
j,1, . . . , â

(i)
j,n1

, a
(i)
j,n1+1, . . . , â

(i)
j,ng

, a
(i)
j,ng+1, . . .) ∈ FN

b ,
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where the hat indicates that the corresponding term is deleted. We define

the matrices C1, . . . , Cs ∈ FN×N
b by

Ci =




c
(i)
1

c
(i)
2

c
(i)
3
...




for 1 ≤ i ≤ s, (8.15)

i.e., the vector c
(i)
j is the jth row vector of Ci for 1 ≤ i ≤ s. The matrices

C1, . . . , Cs are now the generating matrices of the Xing-Niederreiter sequence

as introduced in [265].

Regarding the quality parameter t of this sequence we have the following

result.

Theorem 8.11 Let s ∈ N and let b be a prime power. Let F/Fb be an

algebraic function field with full constant field Fb and genus g = g(F/Fb)

which contains at least one rational place P∞, and let G be a positive divisor

of F/Fb with deg(G) = 2g and P∞ /∈ supp(G). Let P1, . . . , Ps be s distinct

places of F/Fb with Pi 6= P∞ for 1 ≤ i ≤ s. Then the matrices C1, . . . , Cs ∈
FN×N
b given by (8.15) are generating matrices of a digital (t, s)-sequence over

Fb with

t = g +
s∑

i=1

(ei − 1),

where ei = deg(Pi) for 1 ≤ i ≤ s.
Proof According to Theorem 4.84 it suffices to show that for all m > g +∑s

i=1(ei−1) and any d1, . . . , ds ∈ N0 with 1 ≤∑s
i=1 di ≤ m−g−

∑s
i=1(ei−1),

the vectors

πm(c
(i)
j ) = (c

(i)
j,0, c

(i)
j,1, . . . , c

(i)
j,m−1) ∈ Fmb for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

are linearly independent over Fb.

Suppose that we have

s∑

i=1

di∑

j=1

f
(i)
j πm(c

(i)
j ) = 0 ∈ Fmb (8.16)

for some f
(i)
j ∈ Fb, where without loss of generality we assume that di ∈ N

for 1 ≤ i ≤ s. Now consider the element k ∈ F given by

k =
s∑

i=1

di∑

j=1

f
(i)
j k

(i)
j −

s∑

i=1

di∑

j=1

f
(i)
j

g∑

u=0

a
(i)
j,nu

wu. (8.17)
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Put R = {n0, n1, . . . , ng} and use (8.13) to obtain

k =
s∑

i=1

di∑

j=1

f
(i)
j

( ∞∑

r=0

a
(i)
j,rzr −

g∑

u=0

a
(i)
j,nu

znu

)
=

∞∑

r=0
r /∈R




s∑

i=1

di∑

j=1

f
(i)
j a

(i)
j,r


 zr.

From (8.14) and (8.16) we obtain

s∑

i=1

di∑

j=1

f
(i)
j a

(i)
j,r = 0

for the first m nonnegative integers r that are not in R. Assuming that∑g
u=1(nu − nu−1 − 1) ≥ m we would have

ng = g +

g∑

u=1

(nu − nu−1 − 1) ≥ g +m > 2g

since m > g and this contradicts the fact that ng ≤ 2g. Hence we arrive at

νP∞(k) ≥ m+ g + 1. (8.18)

Furthermore, (8.11) and (8.17) yield

k ∈ L
(
G+

s∑

i=1

(⌊
di − 1

ei

⌋
+ 1

)
Pi

)
. (8.19)

Combining (8.18) and (8.19) we obtain that

k ∈ L
(
G+

s∑

i=1

(⌊
di − 1

ei

⌋
+ 1

)
Pi − (m+ g + 1)P∞

)
.

But

deg

(
G+

s∑

i=1

(⌊
di − 1

ei

⌋
+ 1

)
Pi − (m+ g + 1)P∞

)

= 2g +

s∑

i=1

(⌊
di − 1

ei

⌋
+ 1

)
ei − (m+ g + 1)

≤ g −m− 1 +
s∑

i=1

(ei − 1) +
s∑

i=1

di

≤ −1.
Hence

L
(
G+

s∑

i=1

(⌊
di − 1

ei

⌋
+ 1

)
Pi − (m+ g + 1)P∞

)
= {0}
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by Remark B.29 and therefore we have k = 0. From (8.17) and Lemma 8.10

we conclude that f
(i)
j = 0.

Exercises

8.1 Consider the first 24 points of a Niederreiter sequence in base 2 and

dimension 3. Find the smallest value of t such that these points form

a digital (t,m, s)-net.

8.2 Show that Sobol′ sequence defined via the recurrence relation is a spe-

cial case of a generalised Niederreiter sequence as stated in the section

on Sobol′ sequences.
8.3 Let Su be the sequence consisting of the points of a Niederreiter se-

quence projected onto the components given by u, where ∅ 6= u ⊆ Is.
Show that this sequence is a digital (tu, |u|)-sequence over Fb with

tu =
∑

i∈u(ei − 1) (with the notation from Section 8.1).

8.4 Show that the generating matrices of a Faure sequence defined via the

polynomials can be written in terms of Pascal matrices as stated in the

section on Faure sequences.

8.5 Find the generating matrices of a Niederrieter-Özbudak net where b =

2, m = 2, and s = 3.

8.6 Find the generating matrices of a Niederreiter-Özbudak net where b =

2, m = 2, and s = 4.

8.7 Consider the construction by Niederreiter-Xing for the case where the

genus of the algebraic function field is zero. Prove the result for this

case.

8.8 Consider the construction by Niederreiter-Xing for the case where the

genus of the algebraic function field is zero. Find the generating matri-

ces for the case where b = 2, m = 2, and s = 3.

8.9 Consider the construction by Xing-Niederreiter for the case where the

genus of the algebraic function field is zero. Prove the result for this

case.

8.10 Consider the construction by Xing-Niederreiter for the case where the

genus of the algebraic function field is zero. Find the generating matri-

ces for the case where b = 3, m = 2, and s = 3.
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Propagation rules for digital nets

Propagation rules for digital (t,m, s)-nets are methods of how one can obtain

a new digital (t,m, s)-net from given ones. This leads to new digital nets

with improved quality parameters. Indeed many of the best digital nets are

obtained from using some propagation rule as can be seen from the MinT

database to be found under:

http://mint.sbg.ac.at/

Some propagation rules appeared already in previous chapters which we

repeat here for convenience.

Theorem 9.1 Assume there exists a digital (t,m, s)-net over Fb. Then we

have the following:

Propagation Rule I There exists a digital (t, u, s)-net over Fb for t ≤
u ≤ m.

Propagation Rule II There exists a digital (t,m, r)-net over Fb for

1 ≤ r ≤ s.
Propagation Rule III There exists a (t + u,m + u, s)-net over Fb for

all u ∈ N0.

A further more sophisticated propagation rule as those given above is the

direct product construction as presented in Example 7.15.

Theorem 9.2 (Propagation Rule IV) Assume we are given a digital (t1,m1,

s1)-net and a digital (t2,m2, s2)-net both over Fb. Then there exists a digital

(t,m1 +m2, s1 + s2)-net over Fb with

t = m1 +m2 − d = max(m1 + t2,m2 + t1).

In the following we present some further propagation rules for digital nets.

It should be remarked that there are also several propagation rules for not
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necessarily digital nets (a propagation rule for nets does not necessarily

imply a propagation rule for digital nets, since the procedure involved in the

propagation rule for nets, when applied to digital nets, need not output a

digital net, although it is, by definition, a net). A list of such rules is stated

in [177, Section 3] and re-stated in [182, Section 3]; see also [231]. Some

propagation rules for nets also appeared in Section 4.2 (see Lemmas 4.14,

4.16 and 4.17, Theorem 4.24 and Corollaries 4.23 and 4.26). Propagation

rules for nets (in a more general setting) are also the topic of the paper [8]

where most of the following results are generalised to the not necessarily

digital case.

9.1 The (u, u+ v)-construction

There is a construction stemming from coding theory called the (u, u + v)-

construction which can also be applied to digital nets (see, e.g., Bierbrauer,

Edel & Schmid [14]).

Let P1 be a digital (t1,m1, s1)-net over Fb, with generating matrices

C1,1, . . . , Cs1,1, and let P2 be a digital (t2,m2, s2)-net over Fb with gen-

erating matrices C1,2, . . . , Cs2,2. We assume that s1 ≤ s2. From these two

digital nets we form a new digital (t,m, s)-net over Fb, where m = m1 +m2

and s = s1 + s2. Let P be the digital net generated by the m×m matrices

D1, . . . ,Ds over Fb, given by

Dj =

(
Cj,1 −Cj,2

0m2×m1 0m1×m2

)
, 1 ≤ j ≤ s1

and

Dj =

(
0m2×m1 Cj−s1,2
0m1×m1 0m1×m2

)
, s1 + 1 ≤ j ≤ s,

where 0k×l denotes a k × l matrix consisting only of zeros.

This construction for D1, . . . ,Ds is called (u, u + v)-construction. The

(u, u+ v)-construction can also be applied to the points directly (see Exer-

cise 9.5).

The following propagation rule was shown in [14, Corollary 5.1].

Theorem 9.3 (Propagation Rule V) Let b be a prime power, let P1 be

a digital (t1,m1, s1)-net over Fb, with generating matrices C1,1, . . . , Cs1,1,

and let P2 be a digital (t2,m2, s2)-net over Fb with generating matrices

C1,2, . . . , Cs2,2. Then the digital net P generated by the matrices D1, . . . ,Ds

over Fb as given above is a digital (t,m, s)-net over Fb, where m = m1+m2,
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s = s1 + s2, and

t = m+ 1−min(2(m1 − t1 + 1),m2 − t2 + 1).

Proof The proof is based on duality theory for digital nets (see Section 7.2).

Let m = m1 + m2 and s = s1 + s2. For 1 ≤ k ≤ 2 and 1 ≤ i ≤ sk let

C ′
i,k ∈ Fm×mk

b be given by: the first mk rows of Ci,k and C ′
i,k are the same

and the remaining rows of C ′
i,k are rows of (0, . . . , 0) ∈ Fmk

b , i.e.,

C ′
i,k =

(
Ci,k

0(m−mk)×mk

)
,

where 0(m−mk)×mk denotes the (m−mk)×mk zero matrix over Fb. Let

Ck = ((C ′
1,k)

⊤|(C ′
2,k)

⊤| . . . |(C ′
sk ,k

)⊤) ∈ Fmk×skm
b .

Let Ck ⊆ Fskmb denote the row space of the matrix Ck and C⊥k denote the

dual space of Ck. Let
D = (D⊤

1 |D⊤
2 | . . . |D⊤

s ) ∈ Fm×sm
b

and let D ⊆ Fsmb denote the row space of the matrix D and D⊥ denote the

dual space of D.
For U = (u1, . . . ,us1) ∈ C⊥1 with ul ∈ Fmb we define the vector U =

(u1, . . . ,us1 , 0, . . . , 0) ∈ Fs2mb , i.e., we append (s2 − s1)m zeros. Then we

have

D⊥ = {(U,U +V) ∈ F
(s1+s2)m
b : U ∈ C⊥1 ,V ∈ C⊥2 }, (9.1)

since for U ∈ C⊥1 and V ∈ C⊥2 we have C1U
⊤ = 0 ∈ (Fm1

b )⊤ and C2V
⊤ =

0 ∈ (Fm2
b )⊤ and hence

D(U,U +V)⊤ =

(
C1U

⊤

−C(s1)
2 U⊤

)
+

(
0

C2(U+V)⊤

)

=

(
0m1×1

C2U
⊤ − C(s1)

2 U⊤

)
= 0 ∈ (Fmb )

⊤,

where C
(s1)
2 = ((C ′

1,2)
⊤| . . . |(C ′

s1,2)
⊤) ∈ Fm2×s1m

b .

(The right-hand side of (9.1) is usually used to define the (u, u + v)-

construction, from which its name derives.)

From (9.1) we obtain dimD⊥ = dimC⊥1 + dimC⊥2 and hence

dimD = m− dimD⊥ = m1 − dim C⊥1 +m2 − dimC⊥2 = dimC1 + dimC2.
Therefore dimD ≤ m1 +m2.

We now obtain a lower bound on δm(D⊥). Let U = (u1, . . . ,us1) ∈ C⊥1 ,
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U = (u1, . . . ,us2) ∈ Fs2mb , where uj ∈ Fmb and uj = 0 ∈ Fmb for s1 < j ≤ s2.
Further let V = (v1, . . . ,vs1) ∈ C⊥2 where vj ∈ Fmb . For any (U,U +V) ∈
D⊥ \ {0} we have

Vm(U,U+V) =

s1∑

i=1

vm(ui) +

s2∑

i=1

vm(ui + vi)

=

s1∑

i=1

(vm(ui) + vm(ui + vi)) +

s2∑

i=s1+1

vm(vi).

If V = 0, then U 6= 0 and hence

Vm(U,U) = 2

s1∑

i=1

vm(ui) ≥ 2(m1 − t1 + 1),

since U ∈ C⊥1 .
Now assume that V ∈ C⊥2 \ {0}. If ui + vi = 0, then vm(ui) = vm(vi),

and if ui + vi 6= 0, then either vm(ui + vi) ≥ vm(vi) or vm(ui) = vm(vi).

Therefore we have vm(ui) + vm(ui + vi) ≥ vm(vi) and hence

Vm(U,U +V) ≥
s1∑

i=1

vm(vi) +

s2∑

i=s1+1

vm(vi) ≥ m2 − t2 + 1,

since V ∈ C⊥2 .
Thus it follows that

δm(D⊤) ≥ min(2(m1 − t1 + 1),m2 − t2 + 1),

The result now follows from Corollary 7.9.

9.2 The matrix-product construction

The matrix-product construction for digital nets was introduced by Nieder-

reiter & Özbudak [185], which itself is a generalisation of the matrix-product

construction of codes in [17]. The (u, u + v)-construction considered above

is a special case thereof.

For the construction of the generating matrices we need matrices which

are nonsingular by column (NSC matrices; see [17]) which we introduce

in the following. Let A be an M × M matrix over a finite field Fb. For

1 ≤ l ≤ M , let Al denote the matrix which consists of the first l rows of

A. For 1 ≤ k1 < · · · < kl ≤ M , let A(k1, . . . , kl) denote the l × l matrix

consisting of the columns k1, . . . , kl of Al.
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Definition 9.4 We call an M ×M matrix A defined over a finite field

Fb nonsingular by columns (NSC) if A(k1, . . . , kl) is nonsingular for each

1 ≤ l ≤M and 1 ≤ k1 < · · · < kl ≤M . A is then called an NSC matrix.

Explicit constructions of NSC matrices are given in [17, Section 3]. For

example, the Vandermonde matrix

AM =




1 . . . 1

α1 . . . αM
...

. . .
...

αM−1
1 . . . αM−1

M


 ,

where we assume that Fb = {α1, . . . , αb}, is an NSC matrix for all 1 ≤M ≤
b. In [17] it is also shown that an NSC matrix can only exist if M ≤ b.

Further constructions of NSC matrices are given in [17, Section 5.2].

In [185], the matrix product construction was introduced via the dual

space. Here we only show how the new generating matrices can be obtained

from the generating matrices of the digital nets.

For 1 ≤ k ≤ M let C1,k, . . . , Csk,k be the generating matrices of a digital

(tk,mk, sk)-net over Fb. Let m = m1 + · · · +mM . Let σ0 = 0 and for 1 ≤
k ≤ M let σk = s1 + · · · + sk. For 1 ≤ k ≤ M and σk−1 < j ≤ σk let

C ′
j,k ∈ Fm×mk

b be given by: the first mk rows of Cj,k and C ′
j,k are the same

and the remaining rows of C ′
j,k are rows of (0, . . . , 0) ∈ Fmk

b , i.e.,

C ′
j,k =

(
Cj,k

0(m−mk)×mk

)
,

where 0(m−mk)×mk denotes the (m−mk)×mk zero matrix over Fb.

Let A ∈ FM×M
b be an NSC matrix. As A is nonsingular it has an inverse

matrix A−1 := (dk,l)1≤k,l≤M in Fb. Then for 1 ≤ k ≤M and σk−1 < j ≤ σk
let

Dj =
(
dk,1C

′
j−σk−1,1

| . . . |dk,MC ′
j−σk−1,M

)
∈ Fm×m

b . (9.2)

This construction for generating matrices D1, . . . ,Ds is called matrix-

product construction. The following propagation rule was shown in [185,

Corollary 4.6].

Theorem 9.5 (Propagation Rule VI) Assume we are given digital (tk,mk,

sk)-nets, 1 ≤ k ≤M , over Fb, and an M ×M NSC matrix A.

Then the digital net constructed by the matrix-product construction which

is generated by D1, . . . ,Ds ∈ Fm×m
b as in (9.2), where s = s1+ · · ·+ sM and
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m = m1 + · · ·+mM , is a digital (t,m, s)-net over Fb, where

t = m+ 1− min
1≤l≤M

(M − l + 1)(ml − tl + 1).

Remark 9.6 For M = 2 and

A =

(
1 1

0 1

)

the matrix-product construction yields the (u, u+ v)-construction.

9.3 A double m construction

In [187], Niederreiter & Pirsic introduced a propagation rule which uses two

digital nets, a digital (t1,m, s)-net and a digital (t2,m, s)-net, to construct

a digital (t, 2m, s)-net.

Assume we are given two digital nets over the same finite field Fb, a

digital (t1,m, s)-net with generating matrices C1,1, . . . , Cs,1 ∈ Fm×m
b and a

digital (t2,m, s)-net with generating matrices C1,2, . . . , Cs,2 ∈ Fm×m
b . Then

we consider the digital (t, 2m, s)-net with generating matrices D1, . . . ,Ds

given by

Di =

(
Ci,2 Ci,1
−Ci,2 0m×m

)
∈ F2m×2m

b , for 1 ≤ i ≤ s. (9.3)

This construction for D1, . . . ,Ds is called the double m construction

In [187] the double m construction is described via the dual space, which

we repeat in the following. As in the previous sections, for 1 ≤ k ≤ 2, we

form the matrices

Ck = ((C1,k)
⊤| . . . |(Cs,k)⊤) ∈ Fm×sm

b .

The row space of Ck is denoted by Ck ⊆ Fmsb and the dual space of Ck is

denoted by C⊥k ⊆ Fmsq . We have dim(C⊥k ) ≥ (s− 1)m.

For 1 ≤ k ≤ 2, let Ak = (a1,k . . . as,k) ∈ C⊥k and set

N = (a1,1,a1,1 + a1,2,a2,1,a2,1 + a2,2, . . . ,as,1,as,1 + as,2) ∈ F2ms
b .

Let the space of vectors N obtained this way be denoted by N , i.e.,

N = {N ∈ F2ms
b : A1 ∈ C⊥1 ,A2 ∈ C⊥2 }. (9.4)

We have

dim(N ) = dim(C⊥1 ) + dim(C⊥2 ) ≥ 2(sm−m),

and hence dim(N⊥) ≤ 2sm− dim(N ) ≤ 2m.



9.3 A double m construction 313

It can be shown (see Exercise 9.6) that N is the dual space of the row

space of the matrix

E = (D⊤
1 | . . . |D⊤

s ) ∈ F2m×2sm
b ,

where Di is given by (9.3) for 1 ≤ i ≤ s. (Hence N⊥ is the row space of E.)

In order to bound the quality parameter for the digital net with generating

matrices D1, . . . ,Ds, we define

d(C⊥1 , C⊥2 ) := max
1≤i≤s

max
Ri

max(0, vm(ai,1)− vm(ai,1 + ai,2)),

where Ri is the set of all ordered pairs (A1,A2), with Ak = (a1,k . . . as,k) ∈
C⊥k \{0}, aj,1+aj,2 = 0 for j 6= i and ai,1+ai,2 6= 0. We define the maximum

over Ri to be zero if Ri is empty.

Theorem 9.7 (Propagation Rule VII) Let C1,1, . . . , Cs,1 be the generat-

ing matrices of a digital (t1,m, s)-net and C1,2, . . . , Cs,2 be the generating

matrices of a digital (t2,m, s)-net over the same Fb.

Then the digital net generated by D1, . . . ,Ds given by (9.3) is a digital

(t, 2m, s)-net over Fb, where

t ≤ max(t1 + d(C⊥1 , C⊥2 ), t2)

if C⊥1 ∩ C⊥2 = {0}, and

t ≤ max(t1 + d(C⊥1 , C⊥2 ), t2, 2m+ 1− δm(C⊥1 ∩ C⊥2 ))

if C⊥1 ∩ C⊥2 6= {0}.

Proof Using Theorem 7.8 , it is sufficient to show that 2m− t+1 is a lower

bound on δ2m(N ). Hence we only need to show a lower bound on Vm(N) for

all nonzero vectors N in N .

Let N ∈ N be nonzero, then

V2m(N) =
s∑

i=1

v2m(ai,1,ai,1 + ai,2).

We consider several cases. If A1 = 0, then A2 6= 0 and therefore

V2m(N) ≥ m+
s∑

i=1

vm(ai,2) ≥ m+ δm(C⊥2 ) ≥ 2m− t2 + 1.

If A2 = 0, then A1 6= 0 and analogously we obtain

V2m(N) ≥ m+

s∑

i=1

vm(ai,1) ≥ m+ δm(C⊥1 ) ≥ 2m− t1 + 1.
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If A1,A2 6= 0, but A1 +A2 = 0, then A1 ∈ C⊥1 ∩ C⊥2 . If C⊥1 ∩ C⊥2 = {0},
then this case is not possible. If C⊥1 ∩ C⊥2 6= {0}, then

V2m(N) = Vm(A1) ≥ δm(C⊥1 ∩ C⊥2 ).

The last case is where A1,A2 6= 0 and A1 +A2 6= 0. Then

V2m(N) =

s∑

i=1
ai,1+ai,2 6=0

(m+ vm(ai,1 + ai,2)) +

s∑

i=1
ai,1+ai,2=0

vm(ai,1).

If the first sum in the last expression has at least two terms, then V2m(N) ≥
2m+ 2. Otherwise it has exactly one term, say for i = i0, and then

V2m(N) = m+ vm(ai0,1 + ai0,2) +
s∑

i=1
i 6=i0

vm(ai,1)

= m+ Vm(A1) + vm(ai0,1 + ai0,2)− vm(ai0,1)
≥ 2m− t1 + 1−max(0, vm(ai0,1)− vm(ai0,1 + ai0,2))

≥ 2m− t1 + 1− d(C⊥1 , C⊥2 ).

Therefore we have

δ2m(N ) ≥ min(2m− t1 + 1− d(C⊥1 , C⊥2 ), 2m− t2 + 1)

if C⊥1 ∩ C⊥2 = {0}, and

δ2m(N ) ≥ min(2m− t1 + 1− d(C⊥1 , C⊥2 ), 2m − t2 + 1, δm(C⊥1 ∩ C⊥2 ))

if C⊥1 ∩ C⊥2 6= {0}. Thus the result follows.

9.4 A base change propagation rule

In this section we introduce the base change propagation rule of [192, The-

orem 9], which is sometimes also referred to as trace code for digital nets.

Theorem 9.8 (Propagation Rule VIII) Let b be a prime power and r be a

positive integer. If P is a digital (t,m, s)-net over Fbr , then we can construct

a digital ((r − 1)m+ t, rm, rs)-net Q over Fb from P.

Proof Let P be a digital (t,m, s)-net over Fbr , with generating matrices

C1, . . . , Cs, where each matrix Ci, 1 ≤ i ≤ s has row vectors c1,i, . . . , cm,i ∈
Fmbr . We now choose an ordered basis B1, . . . , Br of Fbr over Fb and an Fb-

linear isomorphism ϕ : Fmbr → Frmb . Then we consider the generating matrices
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of a net Q,

D(i−1)r+k :=




d1,(i−1)r+k
...

drm,(i−1)r+k


 ∈ Frm×rm

b , 1 ≤ i ≤ s, 1 ≤ k ≤ r,

where dj,(i−1)r+k = ϕ(Bkcj,i) for 1 ≤ j ≤ m, 1 ≤ i ≤ s, 1 ≤ k ≤ r and

dj,(i−1)r+k = 0 for m < j ≤ rm, 1 ≤ i ≤ s, 1 ≤ k ≤ r. We claim that Q is a

digital ((r − 1)m+ t, rm, rs)-net over Fb.

Choose d1, . . . , drs ∈ N0 such that

d1 + · · ·+ drs ≤ rm− (r − 1)m− t = m− t

and let δ
(i,k)
j ∈ Fb be such that

s∑

i=1

r∑

k=1

d(i−1)r+k∑

j=1

δ
(i,k)
j dj,(i−1)r+k = 0 ∈ Frmb . (9.5)

Due to the definition of the vectors dj,(i−1)r+k and the fact that di ≤ m,

(9.5) can be rewritten as

s∑

i=1

r∑

k=1

d(i−1)r+k∑

j=1

δ
(i,k)
j ϕ (Bkcj,i) = 0 ∈ Frmb . (9.6)

Now let e
(i,k)
j = 1 for 1 ≤ j ≤ d(i−1)r+k and e

(i,k)
j = 0 for j > d(i−1)r+k.

Let d′i = max1≤k≤r d(i−1)r+k. Then (9.6) can be written as

0 =

s∑

i=1

r∑

k=1

d′i∑

j=1

e
(i,k)
j δ

(i,k)
j ϕ (Bkcj,i)

= ϕ




s∑

i=1

d′i∑

j=1

r∑

k=1

e
(i,k)
j δ

(i,k)
j Bkcj,i




= ϕ




s∑

i=1

d′i∑

j=1

γ
(i)
j cj,i


 ,

where γ
(i)
j :=

∑r
k=1 e

(i,k)
j δ

(i,k)
j Bk ∈ Fbr for 1 ≤ i ≤ s and 1 ≤ j ≤ m. Since ϕ

is an Fb-linear isomorphism, we conclude that

s∑

i=1

d′i∑

j=1

γ
(i)
j cj,i = 0 ∈ Fmbr .
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As d′1+ · · ·+d′s ≤ d1+ · · ·+drs ≤ m−t, it follows that γ
(i)
j = 0 for 1 ≤ j ≤ d′i

and 1 ≤ i ≤ s. Hence δ
(i,k)
j = 0 for all 1 ≤ j ≤ d(i−1)r+k, 1 ≤ k ≤ r, and

1 ≤ i ≤ s. Hence Q is a digital ((r − 1)m+ t, rm, rs)-net over Fb.

9.5 A dual space base change propagation rule

In this section we introduce another propagation rule, first established by

Niederreiter & Xing [194], where we change the ground field from Fbr to Fb,

for some prime power b and some positive integer r. The difference to the

previous propagation rule is that the Fb-linear transformation from Fbr to

Frb is now applied to the dual space instead of applying it to the generating

matrices. The following result, which should be compared to Corollary 4.26

for not necessarily digital nets, appeared as [194, Corollary 1].

Theorem 9.9 (Propagation Rule IX) Given a digital (t,m, s)-net over

Fbr , we can construct a digital (t′, rm, s)-net over Fb, where

t′ ≤ rt+ (r − 1)(s − 1).

Proof Let ϕ : Fbr → Frb denote again an Fb-linear isomorphism. Let the

matrices C1, . . . , Cs ∈ Fm×m
br denote the generating matrices of the digital

(t,m, s)-net over Fbr , and let C = (C⊤
1 | . . . |C⊤

s ) be its over all generating

matrix. The row space of C is denoted by C ⊆ Fsmbr and the dual space of

C by C⊥ ⊆ Fsmbr . For a vector A = (a1, . . . ,as) ∈ C⊥, with aj ∈ Fmbr , let

aj = ϕ(aj) ∈ Frmb and A = (a1, . . . ,as), where we extend the Fb-linear

isomorphism from Fbr → Frb componentwise, to an Fb-linear isomorphism

from Fmbr → Frmb . Then we obtain a linear space C⊥ ⊆ Fsrmb , by setting

C⊥ = {A : A ∈ C⊥}.
Note that dimFb

(C⊥) = r dimFbr
(C⊥), and dimFbr

(C⊥) ≥ sm − m since

dimFbr
(C) ≤ m. Thus dimFb

(C⊥) ≥ rsm − rm, and the dual space of C⊥,
denoted by C, satisfies dimFb

(C) ≤ rm. Let C ∈ Frm×srm
b be a matrix whose

row space is C, and let C = (D⊤
1 | . . . |D⊤

s ), whereDj ∈ Frm×rm
b for 1 ≤ j ≤ s.

The matrices D1, . . . ,Ds now generate a digital net over Fb.

We now investigate the quality of this digital net. Let A = (a1, . . . ,as) ∈
C⊥ be a nonzero vector. We have Vrm(A) = vrm(a1)+ · · ·+vrm(as). As A is

nonzero, it follows that A is nonzero. If vm(ai) = 0, then ai = 0 and hence

ai = 0, which implies vrm(ai) = 0.

Let vm(ai) > 0, and ai = (ai,1, . . . , ai,m). Let j0 > 0 be the largest index

such that ai,j0 6= 0. Then ai = (ϕ(ai,1), . . . , ϕ(ai,m)), and ϕ(ai,j0) 6= 0, and
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ϕ(ai,j) = 0, for j > j0. Then

vrm(ai) ≥ r(j0 − 1) + 1 = rvm(ai)− (r − 1).

The above inequality also holds if vm(ai) = 0, hence

Vrm(A) ≥
s∑

i=1

(rvm(aj)− (r − 1))

= rVm(A)− s(r − 1) ≥ rδm(C⊥)− s(r − 1).

As the last inequality holds for all nonzeroA ∈ C⊥, it follows that δrm(C⊥) ≥
rδm(C⊥)− s(r − 1) ≥ r(m− t+ 1)− s(r − 1). Since rm− t′ + 1 = δrm(C⊥)
we obtain the desired result.

9.6 A base change propagation rule for projective spaces

In this section we introduce the propagation rule for digital nets which ap-

pears in MinT under the name “base reduction for projective spaces”. Let

r ∈ N and let C1, . . . , Cs ∈ Fm×m
br be the generating matrices of a digital

(t,m, s)-net over Fbr . Note that the linear independence condition in Defini-

tion 4.58 stays unchanged if we multiply a row of Ci by some nonzero element

in Fbr . Doing so, we can obtain generating matrices C ′
1, . . . , C

′
s ∈ Fm×m

br ,

which also generate a digital (t,m, s)-net over Fbr , and for which the first

column of each C ′
i only consists of zeroes and ones.

Let ϕ : Fbr → Frb be an Fb-linear isomorphism such that ϕ(1) = (0, . . . , 0, 1).

For a vector c = (c1, . . . , cm) ∈ Fmbr we define ϕ(c) = (ϕ(c1), . . . , ϕ(cm)) ∈
Frmb , and for a matrix C ∈ Fm×m

br with C = (c1, . . . , cm)
⊤, we define

ϕ(C) = (ϕ(c1), . . . , ϕ(cm))⊤ ∈ Fm×rm
b .

For 1 ≤ i ≤ s let now D′
i = ϕ(C ′

i) ∈ Fm×rm
b . Note that the first r −

1 columns of D′
i are zero for each 1 ≤ i ≤ s, as the first column of C ′

i

consists only of zeroes and ones. Let Di ∈ F
(rm−r+1)×(rm−r+1)
b be the matrix

obtained by discarding the first r − 1 columns of D′
i and augmenting (r −

1)(m − 1) arbitrary row vectors in Frm−r+1
b at the bottom. Then, because

we only discarded zeroes, the number of linearly independent rows of Di is

the same as the number of linearly independent rows of D′
i. From the proof

of Theorem 9.8 we obtain that the number of linearly independent rows of

the matrices D′
i is the same as the number of linearly independent rows of

the generating matrices C ′
1, . . . , C

′
s, which in turn is the same as the number

of linearly independent rows of the generating matrices C1, . . . , Cs. Thus we

obtain the following result.
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Theorem 9.10 (Propagation Rule X) Let r ∈ N. Given a digital (t,m, s)-

net over Fbr , using the construction outlined in this section, we can obtain

a digital ((r − 1)(m− 1) + t, rm− r + 1, s)-net over Fb.

Exercises

9.1 Prove Theorem 9.1.

9.2 Give a proof of Theorem 9.2 without using duality theory.

9.3 Prove Theorem 9.2 for (t,m, s)-nets in base b (not necessarily digital).

9.4 Let P1 be a digital (t1,m1, s1)-net over Fb with generating matrices

C1,1, . . . , Cs1,1 and let P2 be a digital (t2,m2, s2)-net over Fb with

generating matrices C1,2, . . . , Cs2,2. Show that the generating matrices

D1, . . . ,Ds1+s2 of the direct product of P1 and P2 are given by

Dj =

(
Cj,1 0m1×m2

0m2×m1 0m2×m2

)
, 1 ≤ j ≤ s1,

and

Dj =

(
0m2×m1 Cj−s1,2
0m1×m1 0m1×m2

)
, s1 + 1 ≤ j ≤ s1 + s2,

where 0k×l denotes a k × l matrix consisting only of zeros.

9.5 Let P1 = {x0,1, . . . ,xbm1−1,1} be a digital (t1,m1, s1)-net over Fb and

let P2 = {x0,2, . . . ,xbm2−1,2} be a digital (t2,m2, s2)-net over Fb, where

xn,k = (xn,k,1, . . . , xn,k,s) and xn,k,i = xn,k,i,1b
−1 + xn,k,i,2b

−2 + · · · +
xn,k,i,mk

b−mk for 0 ≤ n < bmk , 1 ≤ i ≤ sk and 1 ≤ k ≤ 2. As-

sume that s1 ≤ s2 and apply the (u, u + v)-construction to P1 and

P2. Show that the resulting point set P consists of the bm1+m2 points

zh = (zh,1, . . . , zh,s1+s2) in [0, 1)s1+s2 for 0 ≤ h < bm1+m2 , where for

1 ≤ i ≤ s1, 0 ≤ l < bm2 , and 0 ≤ h < bm1 we have

zlbm1+h,i =
xh,i,1,1 ⊖ xl,i,2,1

b
+ · · · + xh,i,1,m ⊖ xl,i,2,m

bm

and for s1 < i ≤ s1 + s2, 0 ≤ l < bm2 and 0 ≤ h < bm1 we have

zlbm1+h,i = yl,i−s1.

9.6 Show that the space spanned by the rows of

E = (D⊤
1 | . . . |D⊤

s ) ∈ F2m×2sm
b ,

where Di is given by (9.3) for 1 ≤ i ≤ s, is N⊥ as given by (9.4).
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9.7 Show that for M = 2 and

A =

(
1 1

0 1

)

the matrix-product construction yields the (u, u+ v)-construction.

9.8 Consider the double m construction.

Find digital (t,m, s)-nets P1,P2,P3,P4 over Z2 such that C⊥1 ∩C⊥2 =

{0} and C⊥3 ∩ C⊥4 6= {0}, where C⊥j is the dual net corresponding to

the digital net Pj for j = 1, . . . , 4. Find the t value of the digital net

which one obtains from applying the double m construction to P1,P2
and P3,P4.

9.9 Consider the Hammersley net over F4 with m = 2. Use Propagation

rule VIII to obtain a digital (2, 4, 4)-net over Z2.

9.10 Consider the Hammersley net over F4 with m = 2. Use Propagation

rule IX to obtain a digital (1, 4, 2)-net over Z2.

9.11 Consider the Hammersley net over F4 with m = 2. Use Propagation

rule X to obtain a digital (1, 3, 2)-net over Z2.
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Polynomial lattice point sets

In this section we introduce and analyse special digital nets whose con-

struction is based on rational functions over finite fields. Nowadays these

point sets are known under the name polynomial lattice point sets and QMC

rules using them as underlying nodes are called polynomial lattice rules. In

its overall structure polynomial lattice point sets are very similar to usual

lattice point sets as introduced in Definition 3.47 (see also the book by

Niederreiter [175, Chapter 5] or the book by Sloan & Joe [243]). The main

difference is that here one uses polynomial arithmetic in Fb[x] instead of the

usual arithmetic in Z. Hence many results for polynomial lattice point sets

have analogues for lattice point sets and vice versa.

10.1 Polynomial lattice point sets and digital nets

In [173] (see also [175, Section 4.4]) Niederreiter introduced a special fam-

ily of digital (t,m, s)-nets over Fb. Those nets are obtained from rational

functions over finite fields. For a prime power b let Fb((x
−1)) be the field

of formal Laurent series over Fb. Elements of Fb((x
−1)) are formal Laurent

series of the form

L =
∞∑

l=w

tlx
−l,

where w is an arbitrary integer and all tl ∈ Fb. Note that Fb((x
−1)) contains

the field of rational functions over Fb as a subfield. Further let Fb[x] be

the set of all polynomials over Fb. The discrete exponential valuation ν on

Fb((x
−1)) is defined by ν(L) = −w if L 6= 0 and w is the least index with

tw 6= 0. For L = 0 we set ν(0) = −∞. Observe that we have ν(p) = deg(p)

for all nonzero polynomials p ∈ Fb[x].

We give the general definition of polynomial lattice point sets as special
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digital nets over Fb. They were introduced in this form in [175, Section 4.4],

though the name “polynomial lattice point sets” appeared only later. The

polynomial lattice structure is not immediately obvious from the subsequent

definition. However, for prime numbers b there is an equivalent but more con-

cise definition of polynomial lattice point sets which makes the connection

to ordinary lattice point sets obvious. This result is given in Theorem 10.5.

Definition 10.1 Let b be a prime power and letm, s ∈ N. Choose p ∈ Fb[x]

with deg(p) = m ≥ 1 and let q = (q1, . . . , qs) ∈ Fb[x]
s. For 1 ≤ i ≤ s,

consider the expansions

qi(x)

p(x)
=

∞∑

l=wi

u
(i)
l x

−l ∈ Fb((x
−1))

where wi ≤ 1. Define the m × m matrices C1, . . . , Cs over Fb where the

elements c
(i)
j,r+1 of the matrix Ci are given by

c
(i)
j,r+1 = u

(i)
r+j ∈ Fb, (10.1)

for 1 ≤ i ≤ s, 1 ≤ j ≤ m, 0 ≤ r ≤ m−1. Then C1, . . . , Cs are the generating

matrices of a digital (t,m, s)-net over Fb. The digital net obtained from the

polynomials p and q = (q1, . . . , qs) ∈ Fb[x]
s, without explicitly specifying the

involved bijection ϕ (see Definition 4.47), is denoted by P(q, p). The point

set P(q, p) is called a polynomial lattice point set and a QMC rule using it

is called a polynomial lattice rule.

Remark 10.2 Note that the matrices defined by (10.1) are of the form

Ci = Ci(qi, p) =




u
(i)
1 u

(i)
2 . . . u

(i)
m

u
(i)
2 u

(i)
3 . . . u

(i)
m+1

...
...

...

u
(i)
m u

(i)
m+1 . . . u

(i)
2m−1



,

i.e., the matrix Ci is a so-called Hankel matrix associated with the lin-

ear recurring sequence (u
(i)
1 , u

(i)
2 , . . .). If gcd(qi, p) = 1, then p is called the

minimal polynomial of the linear recurring sequence (see for example [175,

Appendix A]) and Ci is nonsingular (see [155, Theorem 6.75]).

Remark 10.3 From Remark 10.2 it follows that if gcd(qi, p) = 1 for all

1 ≤ i ≤ s, then each one-dimensional projection of the point set P(q, p)
onto the ith coordinate is a (0,m, 1)-net over Fb.

The following result concerning the determination of the Laurent series

coefficients of rational functions is useful in obtaining the matrices from the
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polynomials q and p. It was already stated in [153, 220, 233] for the case

b = 2.

Proposition 10.4 Let b be a prime power. For p ∈ Fb[x], p(x) = xm +

a1x
m−1+ · · ·+am−1x+am and q ∈ Fb[x] with q(x) = q1x

m−1+ · · ·+qm−1x+

qm, the coefficients ul, l ∈ N, in the Laurent series expansion of

q(x)

p(x)
=

∞∑

l=1

ulx
−l

can be computed as follows: the first m coefficients u1, . . . , um are obtained

by solving the linear system




1 0 . . . . . . 0

a1 1
. . .

...
... a1

. . .
. . .

...

am−2
. . .

. . . 0

am−1 am−2 . . . a1 1







u1
u2
...

um


 =




q1
q2
...

qm


 ,

and for l > m, ul is obtained from the linear recursion in Fb,

ul + ul−1a1 + ul−2a2 + · · ·+ ul−mam = 0.

Proof Consider q(x) = p(x)
∑∞

l=1 ulx
−l and compare the coefficients of xl,

l ∈ Z, on both sides of the equation.

In case that b is a prime it was shown by Niederreiter [176] that there is

an equivalent but simpler form of the construction of the point set P(q, p).
In this case we can identify Zb with Fb and choose the bijection ϕ to be

the identity map, see Definition 4.47. (We always assume this setting in the

prime b case.)

For the following we need to introduce some definitions and some notation.

For m ∈ N let υm be the map from Zb((x
−1)) to the interval [0, 1) defined

by

υm

( ∞∑

l=w

tlx
−l
)

=

m∑

l=max(1,w)

tlb
−l.

We frequently associate a nonnegative integer k, with b-adic expansion k =

κ0 + κ1b+ · · · + κab
a, with the polynomial k(x) = κ0 + κ1x+ · · · + κax

a ∈
Zb[x] and vice versa. Further, for arbitrary k = (k1, . . . , ks) ∈ Zb[x]

s and
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q = (q1, . . . , qs) ∈ Zb[x]
s, we define the “inner product”

k · q =
s∑

i=1

kiqi ∈ Zb[x]

and we write q ≡ 0 (mod p) if p divides q in Zb[x].

With these definitions we can give the following equivalent but simpler

form of the construction of P(q, p).
Theorem 10.5 Let b be a prime and let m, s ∈ N. For p ∈ Zb[x] with

deg(p) = m and q = (q1, . . . , qs) ∈ Zb[x]
s, the polynomial lattice point set

P(q, p) is the point set consisting of the bm points

xh =

(
υm

(
h(x)q1(x)

p(x)

)
, . . . , υm

(
h(x)qs(x)

p(x)

))
∈ [0, 1)s,

for h ∈ Zb[x] with deg(h) < m.

Proof To prove the result it is enough to consider only one component of

the point set P(q, p). Hence, for simplicity we omit the sub- and superscripts

for the dimension.

Let q, p ∈ Zb[x] with deg(p) = m and q(x)
p(x) =

∑∞
k=w ukx

−k. If w > 1 set

u1 = · · · = uw−1 = 0. Then for h ∈ Zb[x] with h = h0+h1x+· · ·+hm−1x
m−1

we have

υm

(
h(x)q(x)

p(x)

)
= υm

(( ∞∑

k=w

ukx
−k
)
(h0 + h1x+ · · ·+ hm−1x

m−1)

)

= υm

(
m∑

k=1

x−k
m−1∑

r=0

uk+rhr

)

=

m∑

k=1

b−k
m−1∑

r=0

uk+rhr,

where the innermost sum is evaluated in Zb. We have

m−1∑

r=0

uk+rhr = (uk, . . . , uk+m−1) · h,

where h = (h0, . . . , hm−1) ∈ Zmb if h has b-adic expansion h = h0 + h1b +

· · ·+ hm−1b
m−1. From this the result follows.

The representation of P(q, p) from Theorem 10.5 is the reason for calling

P(q, p) a polynomial lattice point set and for calling a QMC rule using a

polynomial lattice point set a polynomial lattice rule. The vector q is called
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the generating vector of P(q, p). The polynomial p is referred to as the modu-

lus. As already mentioned, in its overall structure a polynomial lattice point

set is very similar to an ordinary lattice point set as given in Definition 3.47.

The main difference is that here we use polynomial arithmetic in Fb[x] in-

stead of the usual arithmetic in Z.

It follows from Definition 10.1 that the point set P(q, p) is a digital

(t,m, s)-net over Fb. We determine now the quality parameter t of such

a digital net as a function q and p. Before we do so let us express the dual

net (see Definition 4.76) of a polynomial lattice point set in terms of q and

the modulus p.

For a prime power b let ϕ : {0, . . . , b − 1} → Fb be a bijection with

ϕ(0) = 0 ∈ Fb (for simplicity we denote the zero-element in Fb by 0 instead

of 0 as we did so far) as used in the construction of a digital net over Fb (see

Definition 4.47). Then for k ∈ {0, . . . , bm − 1} with b-adic expansion k =

κ0+κ1b+· · ·+κm−1b
m−1 we recall the notation k = (ϕ(κ0), . . . , ϕ(κm−1))

⊤ ∈
(Fmb )

⊤. Furthermore, we often associate the integer k with the polynomial

k(x) = ϕ(κ0) + ϕ(κ1)x + · · · + ϕ(κm−1)x
m−1 ∈ Fb[x] and vice versa (as we

already did before in the prime b case).

The following lemma was first shown by Niederreiter in [173, Proof of

Lemma 2] (see also [175, Lemma 4.40]).

Lemma 10.6 Let b be a prime power and let m, s ∈ N. Let C1, . . . , Cs be

the generating matrices of a polynomial lattice point set P(q, p) as given in

Definition 10.1. Then for k = (k1, . . . , ks) ∈ {0, . . . , bm − 1}s we have

C⊤
1 k1 + · · ·+ C⊤

s ks = 0, (10.2)

where 0 = (0, . . . , 0)⊤ ∈ (Fmb )
⊤ if and only if

k · q ≡ 0 (mod p),

where in the last expression k is the associated vector of polynomials in Fb[x].

Proof For 1 ≤ i ≤ s let qi(x)
p(x) =

∑∞
l=wi

u
(i)
l x

−l ∈ Fb((x
−1)). For fixed

1 ≤ i ≤ s we have

ki(x)qi(x)

p(x)
=



m−1∑

j=0

ϕ(κi,j)x
j






∞∑

l=wi

u
(i)
l x

−l


 =

m−1∑

j=0

ϕ(κi,j)

∞∑

l=wi

u
(i)
l x

j−l

=
m−1∑

j=0

ϕ(κi,j)
∞∑

r=wi−j
u
(i)
j+rx

−r,

and hence, for r ∈ N the coefficient of x−r in ki(x)qi(x)
p(x) is

∑m−1
j=0 u

(i)
j+rϕ(κi,j).
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Summing up we obtain that for r ∈ N the coefficient of x−r in 1
pk ·q is given

by
∑s

i=1

∑m−1
j=0 u

(i)
j+rϕ(κi,j). However, condition (10.2) is equivalent to

s∑

i=1

m−1∑

j=0

u
(i)
j+rϕ(κi,j) = 0 ∈ Fb

for all 1 ≤ r ≤ m. Therefore we obtain

1

p
k · q = g + L

for some g ∈ Fb[x] and L ∈ Fb((x
−1)) of the form

∑∞
k=m+1 fkx

−k, i.e., for
the discrete exponential valuation of L we have ν(L) < −m. Equivalently,

we have k · q − gp = Lp. On the left hand side, we have a polynomial

over Fb, whereas on the right hand side we have a Laurent series Lp with

ν(Lp) < 0 since deg(p) = m. This is only possible if Lp = 0, which means

that k · q − gp = 0 or equivalently k · q ≡ 0 (mod p).

We introduce some notation. For a prime power b andm ∈ N we denote by

Gb,m the subset of Fb[x] consisting of all polynomials q with degree smaller

than m, i.e.,

Gb,m := {q ∈ Fb[x] : deg(q) < m},

where we use the convention deg(0) = −1. Furthermore we define G∗
b,m :=

Gb,m \ {0}. Obviously we have |Gb,m| = bm and |G∗
b,m| = bm − 1.

Now Lemma 10.6 motivates the following definition.

Definition 10.7 The dual net of a polynomial lattice point set P(q, p)
with p ∈ Fb[x], deg(p) = m, and q ∈ Fb[x]

s is given by

Dq,p = {k ∈ Gsb,m : k · q ≡ 0 (mod p)}.

Furthermore, let D′
q,p := Dq,p \ {0}.

For the determination of the quality parameter of a polynomial lattice

point set we have to introduce a new quantity which is often called the

“figure of merit”.

Definition 10.8 Let b be a prime power and let s,m ∈ N. For p ∈ Fb[x]

with deg(p) = m, and q ∈ Fb[x]
s the figure of merit ρ(q, p) is defined as

ρ(q, p) = s− 1 + min
h∈D′

q,p

s∑

i=1

deg(hi),

where h = (h1, . . . , hs).
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The figure of merit ρ(q, p) is closely related to the quality parameter t of

P(q, p) considered as a (t,m, s)-net over Fb.

Theorem 10.9 Let b be a prime power and let m, s ∈ N. Let p ∈ Fb[x]

with deg(p) = m and let q ∈ Fb[x]
s. Then the point set P(q, p) is a strict

digital (t,m, s)-net over Fb with t = m− ρ(q, p).

Proof We again follow [173, Proof of Lemma 2] (see also [175, Corol-

lary 4.41]). It suffices to show that we have ρ(C1, . . . , Cs) = ρ(q, p), where

ρ(C1, . . . , Cs) is the linear independence parameter as defined in Defini-

tion 4.50. The result then follows from Theorem 4.52. Let ϕ : {0, . . . , b−1} →
Fb with ϕ(0) = 0 be the bijection used in the construction of the digital net

P(q, p).
According to the definition of ρ(C1, . . . , Cs) there are d1, . . . , ds ∈ N0 with

d1+ · · ·+ds = ρ(C1, . . . , Cs)+1 such that the system consisting of the union

of the first di row vectors c
(i)
1 , . . . , c

(i)
di

of the matrix Ci, where i = 1, . . . , s,

is linearly dependent over Fb. That is, there exist κi,j ∈ Zb for 0 ≤ j < di,

1 ≤ i ≤ s, not all zero, such that

s∑

i=1

di−1∑

j=0

ϕ(κi,j)c
(i)
j+1 = 0 ∈ Fmb .

Putting κi,j = 0 for di ≤ j ≤ m−1 and 1 ≤ i ≤ s and ki = κi,0+κi,1b+ · · ·+
κi,m−1b

m−1 and correspondingly ki = (ϕ(κi,0), . . . , ϕ(κi,m−1))
⊤ ∈ (Fmb )

⊤ for

1 ≤ i ≤ s we obtain

C⊤
1 k1 + · · · + C⊤

s ks = 0 ∈ (Fmb )
⊤.

By Lemma 10.6 this is equivalent to k ·q ≡ 0 (mod p) for k = (k1, . . . , ks) ∈
Fb[x]

s \ {0} where ki(x) = ϕ(κi,0) +ϕ(κi,1)x+ · · ·+ϕ(κi,m−1)x
m−1 ∈ Fb[x].

Hence, from the definition of ρ(q, p) we obtain

ρ(q, p) ≤ s− 1 +

s∑

i=1

deg(ki) ≤ s− 1 +

s∑

i=1

(di − 1) = ρ(C1, . . . , Cs).

On the other hand, from the definition of ρ(q, p) we find that there exists

a nonzero k = (k1, . . . , ks) ∈ Fb[x]
s with deg(ki) < m for 1 ≤ i ≤ s and

k·q ≡ 0 (mod p) such that ρ(q, p) = s−1+∑s
i=1 deg(ki). From Lemma 10.6

we obtain C⊤
1 k1+ · · ·+C⊤

s ks = 0 ∈ (Fmb )
⊤ where ki ∈ (Fmb )

⊤ is determined

by the coefficients of the polynomials ki for 1 ≤ i ≤ s. For 1 ≤ i ≤ s let

di = deg(ki) + 1. Then the system consisting of the union of the first di row
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vectors of Ci, where i = 1, . . . , s, is linearly dependent over Fb and hence

ρ(C1, . . . , Cs) ≤ −1 +
s∑

i=1

di = −1 +
s∑

i=1

(deg(ki) + 1) = ρ(q, p).

Remark 10.10 Let q = (q1, . . . , qs) ∈ Fb[x]
s with gcd(q1, p) = 1. Then

the condition h · q = h1q1 + · · · + hsqs ≡ 0 (mod p) in Definition 10.8 of

the figure of merit ρ(q, p) is equivalent to h1 + h2q
∗
1q2 + · · · + hsq

∗
1qs ≡ 0

(mod p), where q∗1 ∈ Fb[x] is such that q∗1q1 ≡ 1 (mod p) (q∗1 always exists

as long as gcd(q1, p) = 1). Therefore the figure of merit is the same for q and

for (1, q∗1q2, . . . , q
∗
1qs) and hence it suffices to consider the figure of merit for

vectors q of the form q = (1, q2, . . . , qs) ∈ Fb[x]
s only.

From Theorem 10.9 we find that to obtain a polynomial lattice point set

which is a digital (t,m, s)-net over Fb with a small quality parameter t, we

have to choose p ∈ Fb[x] with deg(p) = m and a vector of polynomials

q = (q1, . . . , qs) ∈ Fb[x]
s in such a way that the figure of merit ρ(q, p) is

large.

For dimension s = 2 there is a general construction which yields the

maximal value ρ(q, p) = m (and hence t = 0). This construction uses a

connection between the figure of merit ρ(q, p) and continued fractions for

rational functions over Fb. We briefly outline this construction by following

Niederreiter [175, Section 4.4].

Let b be a prime power, let m ∈ N, let p ∈ Fb[x] with deg(p) = m and let

q = (1, q) where q ∈ Fb[x] with gcd(q, p) = 1. Let

q

p
= [A0;A1, . . . , Al]

be the continued fraction expansion of the rational function q/p, with partial

quotients An ∈ Fb[x] satisfying deg(An) ≥ 1 for 1 ≤ n ≤ l. Put

K

(
q

p

)
= max

1≤n≤l
deg(An).

Theorem 10.11 Let b be a prime power, let m ∈ N, let p ∈ Fb[x] with

deg(p) = m and let q = (1, q) where q ∈ Fb[x] with gcd(q, p) = 1. Then we

have

ρ(q, p) = m+ 1−K
(
q

p

)
.

For a proof of this result we refer to the book of Niederreiter [175, Theo-

rem 4.46].

It follows that to obtain a large value of ρ(q, p) we have to choose q and
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p with deg(p) = m ≥ 1 such that K(q/p) is small. The smallest value that

can be obtained is K(q/p) = 1, namely, by choosing the partial quotients

A0, . . . , Am with deg(Ar) = 1 for all 1 ≤ r ≤ m (here A0 can be chosen

arbitrarily and hence we choose A0 = 0) and letting q/p be the resulting

rational function. For this choice and for q = (1, q) we obtain ρ(q, p) = 1

and hence, by Theorem 10.9, the polynomial lattice point set P(q, p) is a

digital (0,m, 2)-net over Fb.

To get suitable parameters p and q for s ≥ 3 explicitly, one has to resort

to a computer search.

Remark 10.12 From Definition 10.1 it is clear that it is enough to consider

generating vectors q = (q1, . . . , qs) ∈ Gsb,m only, where m = deg(p).

Despite this restriction, the fundamental problem with search procedures

is that even for moderately large s and m an exhaustive search through all

bms possible s-tuples q = (q1, . . . , qs) ∈ Gsb,m is infeasible. (Also the restric-

tion q1 = 1 from Remark 10.10 is only of minor help.) However, we show in

the following that the search domain can be restricted to what is in a sense a

one-parameter subset of Gsb,m. We take our cue from the analogy between the

polynomial lattice point sets P(q, p) and ordinary lattice point sets. In the

latter construction one often restricts the attention to lattice points whose

coordinates are successive powers of a single integer (see Exercise 3.25), and

a suitable integer for this purpose is called an “optimal coefficient” relative

to a dimension s and an integer modulus (see, for example, Korobov [122]).

In the polynomial case, we consider s-tuples q = (q1, . . . , qs) of polynomi-

als that are obtained by taking a polynomial q ∈ Gb,m and putting qi ≡ qi−1

(mod p) with deg(qi) < deg(p) for 1 ≤ i ≤ s. We use the simpler notation

vs(q) ≡ (1, q, q2, . . . , qs−1) (mod p) for such s-tuples (we say such a vector

is a Korobov vector). A polynomial q which leads to a large figure of merit

ρ(vs(q), p) is then, by analogy, called an optimal polynomial. This informal

notion depends, of course, on the dimension s and on the polynomial p.

For irreducible moduli p we can give the following existence results, which

were first given for b = 2 in [137, Theorem 1] and then generalised (and

slightly improved) in [233, Theorem 6].

Theorem 10.13 Let b be a prime power, let s,m ∈ N, s ≥ 2, and let

p ∈ Fb[x] be irreducible over Fb with deg(p) = m. For ρ ∈ Z define

∆b(s, ρ) =

s−1∑

d=0

(
s

d

)
(b− 1)s−d

ρ+d∑

γ=0

(
s− d+ γ − 1

γ

)
bγ + 1− bρ+s.

1. If ∆b(s, ρ) < bm, then there exists a q = (1, q2, . . . , qs) ∈ Gsb,m with
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ρ(q, p) ≥ s + ρ. Therefore the point set P(q, p) is a digital (t,m, s)-net

over Fb with t ≤ m− s− ρ.
2. If ∆b(s, ρ) < bm

s−1 , then there exists a q ∈ Gb,m such that vs(q) ≡
(1, q, . . . , qs−1) (mod p) satisfies ρ(vs(q), p) ≥ s+ ρ. Therefore the point

set P(vs(q), p) is a digital (t,m, s)-net over Fb with t ≤ m− s− ρ.
For the proof of these results we need the following lemma.

Lemma 10.14 For a prime power b, l ∈ N, and k ∈ Z the number Ab(l, k)

of (h1, . . . , hl) ∈ Fb[x]
l with hi 6= 0 for 1 ≤ i ≤ l and

∑l
i=1 deg(hi) ≤ k is

given by

Ab(l, k) = (b− 1)l
k∑

γ=0

(
l + γ − 1

γ

)
bγ .

Proof Let k ≥ 0 (the case k < 0 holds trivially). Then we have

Ab(l, k) =

k∑

γ=0

D(l, γ)

with D(l, γ) being the number of (h1, . . . , hl) ∈ Fb[x]
l for which hi 6= 0 for

1 ≤ i ≤ l and
∑l

i=1 deg(hi) = γ. For fixed γ ≥ 0, there are
(
l+γ−1
γ

)
tuples

(d1, . . . , dl) of nonnegative integers with
∑l

i=1 di = γ, and for each such l-

tuple (d1, . . . , dl) the number of (h1, . . . , hl) ∈ Fb[x]
l with deg(hi) = di for

1 ≤ i ≤ l is (b− 1)lbd1+···+dl = (b− 1)lbγ . Thus

D(l, γ) =

(
l + γ − 1

γ

)
(b− 1)lbγ ,

and the result follows.

Proof of Theorem 10.13 We can assume −s ≤ ρ ≤ m − s. Let M(s, ρ)

be the number of (h1, . . . , hs) ∈ Fb[x]
s with (h2, . . . , hs) 6= (0, . . . , 0) and∑s

i=1 deg(hi) ≤ ρ. Since ρ ≤ m − s, it follows from
∑s

i=1 deg(hi) ≤ ρ that

deg(hi) < m for 1 ≤ i ≤ s. Using the notation and the result of Lemma 10.14,

we get

M(s, ρ) =

s−1∑

d=0

(
s

d

)
Ab(s − d, ρ+ d) + 1− bρ+s = ∆(s, ρ).

(Recall the convention deg(0) = −1.)
1. Since p is irreducible, for a given nonzero s-tuple (h1, . . . , hs) ∈ Gsb,m the

congruence

h1 + h2q2 + · · ·+ hsqs ≡ 0 (mod p)
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has no solution if h2 = h3 = · · · = hs = 0, and it has exactly bm(s−2)

solutions q = (1, q2, . . . , qs) ∈ Gsb,m otherwise. Therefore, to all nonzero

(h1, . . . , hs) with
∑s

i=1 deg(hi) ≤ ρ there are assigned altogether at most

M(s, ρ)bm(s−2) different solutions q = (1, q2, . . . , qs) ∈ Gsb,m satisfying the

above congruence. Now the total number of q = (1, q2, . . . , qs) ∈ Gsb,m is

bm(s−1). Thus, if M(s, ρ)bm(s−2) < bm(s−1), that is, if ∆b(s, ρ) < bm, then

there exists at least one q = (1, q2, . . . , qs) ∈ Gsb,m such that

h1 + h2q2 + · · ·+ hsqs 6≡ 0 (mod p)

for all nonzero (h1, . . . , hs) with
∑s

i=1 deg(hi) ≤ ρ. For this q we have

then ρ(q, p) ≥ s + ρ. By Theorem 10.9 the point set P(q, p) is a digital

(t,m, s)-net over Fb with t ≤ m− s− ρ.
2. We proceed as above, but we note that for an irreducible p and a nonzero

(h1, . . . , hs) ∈ Gsb,m the congruence

h1 + h2q + · · ·+ hsq
s−1 ≡ 0 (mod p)

has no solution if h2 = · · · = hs = 0, and it has at most s − 1 solutions

q ∈ Gb,m otherwise.

Corollary 10.15 Let b be a prime power and let s,m ∈ N, where s ≥ 2 and

where m is sufficiently large. Let p ∈ Fb[x] be irreducible with deg(p) = m.

1. There exists a vector q = (1, q2, . . . , qs) ∈ Gsb,m with

ρ(q, p) ≥
⌊
m− (s− 1)(logbm− 1) + logb

(s− 1)!

(b− 1)s−1

⌋
.

2. There exists a polynomial q ∈ Gb,m such that vs(q) ≡ (1, q, . . . , qs−1)

(mod p) satisfies

ρ(vs(q), p) ≥
⌊
m− (s− 1)(logbm− 1) + logb

(s− 2)!

(b− 1)s−1

⌋
.

Proof 1. For ρ ≥ 1 we have

∆b(s, ρ) ≤
s−1∑

d=0

(
s

d

)
(b− 1)s−d

(
ρ+ s− 1

s− d− 1

)
bρ+d+1

b− 1

≤ bρ+1
s−1∑

d=0

(
s

d

)
(b− 1)s−d−1 (ρ+ s− 1)s−d−1

(s− d− 1)!

=
ρs−1

(s− 1)!
bρ+1(b− 1)s−1

(
1 +Os

(
1

ρ

))
,
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where Os indicates that the implied constant depends only on s. Now let

ρ =

⌊
m− (s− 1) logbm+ logb

(s − 1)!

(b− 1)s−1
− 1

⌋
,

which is in N for sufficiently large m. Then

∆b(s, ρ)

≤ bm
(
1− (s− 1)

logbm

m
+

1

m
logb

(s− 1)!

(b− 1)s−1

)s−1(
1 +Os

(
1

m

))
< bm

for sufficiently large m, and the result follows from the first part of The-

orem 10.13.

2. The second assertion is deduced in a similar way from the second part of

Theorem 10.13.

We remark that establishing similar existence results for not necessarily

irreducible polynomials involves several technical difficulties. Until now very

little is known for reducible p. There is only one singular result for p(x) =

xm ∈ Z2[x] shown in [137, Corollary 2] which states that there exists a vector

q = (1, q2, . . . , qs) ∈ Gs2,m such that

ρ(q, xm) ≥ ⌊m− (s− 1)(log2m− 1) + log2(s− 1)!⌋.

10.2 Discrepancy of polynomial lattice point sets

In this section we deal with the classical star discrepancy as well as the

weighted star discrepancy of polynomial lattice point sets P(q, p). All the
discrepancy estimates are based on Theorem 5.34 and hence we only consider

the case where b is a prime. As always in this case we identify Fb with Zb
and choose the bijection ϕ : Zb → Fb to be the identity map.

It follows from Lemma 10.6 that the quantity Rb(C1, . . . , Cs) as defined

in (5.7) can be written as

Rb(C1, . . . , Cs) =
∑

h∈D′
q,p

s∏

i=1

ρb(hi),

where we use the association of the nonnegative integers hi with their corre-

sponding polynomials in Zb[x] again, and where D′
q,p is as in Definition 10.7.

For this reason we write in the following Rb(q, p) instead of Rb(C1, . . . , Cs).

With this notation we can re-write Theorem 5.34 in the following way.

Corollary 10.16 Let b be a prime and let s,m ∈ N. Let p ∈ Zb[x] with
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deg(p) = m and let q ∈ Gsb,m. For the star discrepancy of the polynomial

lattice point set P(q, p) we have

D∗
bm(P(q, p)) ≤ 1−

(
1− 1

bm

)s
+Rb(q, p),

where

Rb(q, p) =
∑

h∈D′
q,p

ρb(h).

Here for h = (h1, . . . , hs) ∈ Gsb,m we put ρb(h) = ρb(h1) · · · ρb(hs) and for

h ∈ Gb,m we put

ρb(h) =

{
1 if h = 0,

1
br+1 sin(πκr/b)

if h = κ0 + κ1x+ · · ·+ κrx
r, κr 6= 0.

In the following we deal with a slightly weaker bound on the star discrep-

ancy. We explain the reason for this change for the worse in a moment.

Corollary 10.17 Let b be a prime and let s,m ∈ N. Let p ∈ Zb[x] with

deg(p) = m and let q ∈ Gsb,m. For the star discrepancy of the polynomial

lattice point set P(q, p) we have

D∗
bm(P(q, p)) ≤ 1−

(
1− 1

bm

)s
+R′

b(q, p),

where

R′
b(q, p) =

∑

h∈D′
q,p

rb(h). (10.3)

Here for h = (h1, . . . , hs) ∈ Gsb,m we put rb(h) = rb(h1) · · · rb(hs) and for

h ∈ Gb,m we put

rb(h) =

{
1 if h = 0,

1
br+1 sin2(πκr/b)

if h = κ0 + κ1x+ · · ·+ κrx
r, κr 6= 0.

Proof The result follows immediately from Corollary 10.16 by invoking the

fact that sin−1(x) ≤ sin−2(x) for 0 ≤ x < π.

Similar results can be given for the weighted star discrepancy. We consider

only weights of product form which are independent of the dimension s. Let

γ = (γi)i≥1 be a sequence of nonnegative real numbers. Then for ∅ 6= u ⊆ Is
the weight γu is given by γu =

∏
j∈u γj . Using (5.13), Lemma 5.42, and

Lemma 10.6 we obtain the following result.



10.2 Discrepancy of polynomial lattice point sets 333

Corollary 10.18 Let b be a prime and let s,m ∈ N. Let p ∈ Zb[x] with

deg(p) = m and let q ∈ Gsb,m. Let γ = (γi)i≥1 be a sequence of weights. For

the weighted star discrepancy of the polynomial lattice point set P(q, p) we

have

D∗
bm,γ(P(q, p)) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)
+R′

b,γ(q, p),

where

R′
b,γ(q, p) =

∑

h∈D′
q,p

rb(h,γ).

Here for h = (h1, . . . , hs) ∈ Gsb,m we put rb(h,γ) = rb(h1, γ1) · · · rb(hs, γs)
and for h ∈ Gb,m we put

rb(h, γ) =

{
1 + γ if h = 0,

γrb(h) if h 6= 0.

Remark 10.19 Of course, also the result for the weighted star discrepancy

can be stated in terms of ρb instead of rb which would be slightly better.

Now we have to explain why we deal with the slightly worse bounds on

the (weighted) star discrepancy. The reason for this is that the quantities

R′
b(q, p) and R′

b,γ(q, p) can be computed efficiently whereas this is not the

case for Rb(q, p).

Let p ∈ Zb[x], with deg(p) = m, q ∈ Gsb,m, and P(q, p) = {x0, . . . ,xbm−1}
where xn = (xn,1, . . . , xn,s). First we note that it can be shown as in

Lemma 8.8 that

R′
b(q, p) = −1 +

1

bm

bm−1∑

n=0

s∏

i=1

(
bm−1∑

k=0

rb(k) bwalk(xn,i)

)
.

We define

φb,m(x) :=

bm−1∑

h=0

rb(h) bwalh(x).

Then

R′
b(q, p) = −1 +

1

bm

bm−1∑

n=0

s∏

i=1

φb,m(xn,i). (10.4)

We further have

R′
b,γ(q, p) =

∑

∅6=u⊆Is
γuR

′
b(qu

, p)
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= −
∑

∅6=u⊆Is
γu +

1

bm

bm−1∑

n=0

∑

∅6=u⊆Is
γu
∏

i∈u
φb,m(xn,i)

= −
s∏

i=1

(1 + γi) +
1

bm

bm−1∑

n=0

s∏

i=1

(1 + γiφb,m(xn,i)). (10.5)

In the following we show that the function φb,m can be simplified. Let

h = h0 + h1b+ · · ·+ hdb
d with hd 6= 0. For 0 ≤ d < m and 1 ≤ hd < b let

Dd,hd,b,m(x) :=

hdb
d+bd−1∑

h=hdbd

bwalh(x),

then it follows that

φb,m(x) = 1 +

m−1∑

d=0

b−1∑

hd=1

rb(hdb
d)Dd,hd,b,m(x).

Let ωb = e2πi/b and x = ξ1
b + ξ2

b2 + · · · . We have

Dd,hd,b,m(x) =

hdb
d+bd−1∑

h=hdbd

bwalh(x) = ω
hdξd+1

b

b−1∑

hd−1=0

ω
hd−1ξd
b · · ·

b−1∑

h0=0

ωh0ξ1b .

As
∑b−1

hi=0 ω
hiξi+1

b = 0 if ξi+1 6= 0 and
∑b−1

hi=0 ω
hiξi+1

b = b if ξi+1 = 0 we have

Dd,hd,b,m(x) =

{
ω
hdξd+1

b bd if ξ1 = · · · = ξd = 0 or if d = 0,

0 otherwise.

We have rb(0) = 1 and for h > 0 with h = h0+h1b+ · · ·+hdbd and hd 6= 0

we have rb(h) = b−d−1 sin−2 (hdπ/b).

First let ξ1 = · · · = ξm = 0, then we have

φb,m(x) = 1 +
m−1∑

d=0

bd
b−1∑

hd=1

1

bd+1

1

sin2 (hdπ/b)

= 1 +
1

b

m−1∑

d=0

b2 − 1

3
= 1 +m

b2 − 1

3b
,

where we used Corollary A.23 in Appendix A.

Let i0 = i0(x) be such that ξ1 = · · · = ξi0−1 = 0 and ξi0 6= 0 with

1 ≤ i0 ≤ m. Then we have

φb,m(x) = 1 +

i0−2∑

d=0

b−1∑

hd=1

rb(hdb
d)bd +

b−1∑

hi0−1=1

rb(hi0−1b
i0−1)bi0−1ω

hi0−1ξi0
b .
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Now

i0−2∑

d=0

b−1∑

hd=1

rb(hdb
d)bd =

i0−2∑

d=0

b−1∑

hd=1

bd
1

bd+1

1

sin2 (hdπ/b)

=
1

b

i0−2∑

d=0

b−1∑

hd=1

1

sin2 (hdπ/b)

=
1

b

i0−2∑

d=0

b2 − 1

3
=
b2 − 1

3b
(i0 − 1),

where we used Corollary A.23 again. Further we have

b−1∑

hi0−1=1

rb(hi0−1b
i0−1)bi0−1ω

hi0−1ξi0
b =

b−1∑

k=1

bi0−1ω
kξi0
b

1

bi0
1

sin2 (kπ/b)

=
1

b

b−1∑

k=1

ω
kξi0
b

sin2 (kπ/b)

=
1

b

(
2ξi0(ξi0 − b) +

b2 − 1

3

)
,

where we used Corollary A.23. It follows that

φb,m(x) = 1 + i0
b2 − 1

3b
+

2

b
ξi0(ξi0 − b).

Thus we have

φb,m(x) =





1 + i0
b2−1
3b + 2

bξi0(ξi0 − b) if ξ1 = · · · = ξi0−1 = 0 and

ξi0 6= 0 with 1 ≤ i0 ≤ m,
1 +m b2−1

3b otherwise.

(10.6)

We summarise:

Proposition 10.20 Let b be a prime and let s,m ∈ N. Let p ∈ Zb[x],

with deg(p) = m, and q ∈ Gsb,m. Using (10.4), (10.5), and (10.6) one can

compute the quantities R′
b(q, p) and R

′
b,γ(q, p) in O(bms) operations.

Hence R′
b(q, p) andR

′
b,γ(q, p) and therefore upper bounds on the (weighted)

star discrepancy of P(q, p) can be computed with reasonable effort. We ex-

ploit this fact later for a construction of vectors q (for given p) which yields

a polynomial lattice point set with appropriate (weighted) star discrepancy.

But first let us show some existence results.
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Existence results

We show that for a given polynomial p there always exists at least one vector

q such that P(q, p) has appropriate (weighted) star discrepancy. This was

first done by Niederreiter [175, Theorem 4.43] (in the unweighted case) by

an averaging argument. Here we state a similar result which was proved in

[46, Theorem 2.3]. The bound on the average in the subsequent theorem

serves as a benchmark for constructions of polynomial lattices with low star

discrepancy.

Theorem 10.21 Let b be a prime, s,m ∈ N, and let p ∈ Zb[x] be irreducible

with deg(p) = m. Then we have

1

|G∗
b,m|s

∑

q∈(G∗
b,m)s

R′
b(q, p) =

1

bm − 1

((
1 +m

b2 − 1

3b

)s
− 1− smb2 − 1

3b

)
.

Proof First observe that |G∗
b,m| = bm − 1. We have

1

|G∗
b,m|s

∑

q∈(G∗
b,m)s

R′
b(q, p) =

1

(bm − 1)s

∑

q∈(G∗
b,m)s

∑

h∈D′
q,p

rb(h)

=
1

(bm − 1)s

∑

h∈Gs
b,m\{0}

rb(h)
∑

q∈(G∗
b,m

)s

h∈D′
q,p

1,

where we used (10.3) to substitute for R′
b(q, p) and changed the order of

summation. The last summation is extended over all q ∈ (G∗
b,m)

s for which

h ∈ D′
q,p. Hence for a fixed h ∈ Gsb,m \ {0} we have

∑

q∈(G∗
b,m

)s

h∈D′
q,p

1 = |{q ∈ (G∗
b,m)

s : h · q ≡ 0 (mod p)}|.

If h = (0, . . . , 0, hi, 0, . . . , 0), with hi 6= 0, then there is no polynomial q ∈
(G∗

b,m)
s such that h · q = hiqi ≡ 0 (mod p), as qi 6= 0 and p is irreducible.

Otherwise the number of polynomials q ∈ (G∗
b,m)

s is (bm − 1)s−1. Therefore

we have

1

|G∗
b,m|s

∑

q∈(G∗
b,m)s

R′
b(q, p)

=
1

bm − 1

∑

h∈Gs
b,m\{0}

rb(h)−
1

bm − 1

s∑

i=1

∑

hi∈Gb,m\{0}
rb(hi)

s∏

j=1
j 6=i

rb(0).

The result now follows from the subsequent Lemma 10.22.
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Lemma 10.22 For any prime number b we have

∑

h∈Gs
b,m

rb(h) =

(
1 +m

b2 − 1

3b

)s
.

Proof We have

∑

h∈Gs
b,m

rb(h) =
∑

h∈Gs
b,m

s∏

i=1

rb(hi) =
s∏

i=1

∑

hi∈Gb,m

rb(hi) =


 ∑

h∈Gb,m

rb(h)



s

.

Now for h ∈ Gb,m, with deg(h) = a−1, we write h = h0+h1x+· · ·+ha−1x
a−1,

where ha−1 6= 0. Then

∑

h∈Gb,m

rb(h) = 1 +
m∑

a=1

∑

h∈Gb,m
deg(h)=a−1

rb(h)

= 1 +

m∑

a=1

1

ba

∑

h∈Gb,m
deg(h)=a−1

1

sin2 (ha−1π/b)

= 1 +

m∑

a=1

1

ba

b−1∑

ha−1=1

ba−1 1

sin2 (ha−1π/b)

= 1 +
1

b

m∑

a=1

b−1∑

ha−1=1

1

sin2 (ha−1π/b)
.

From Corollary A.23 in Appendix A we obtain
∑b−1

h=1 sin
−2 (hπ/b) = (b2 −

1)/3 and hence the result follows.

It is possible to prove a result similar to Theorem 10.21 also for not nec-

essarily irreducible polynomials p, but one has to overcome some technical

difficulties. For a general result we refer to [175, Theorem 4.43] or to [43,

Theorem 5].

As a consequence of Theorem 10.21 we obtain the following existence

result.

Corollary 10.23 Let b be a prime, s,m ∈ N, and p ∈ Zb[x] be irreducible

with deg(p) = m. Then for 0 ≤ α < 1 there are more than α|G∗
b,m|s vectors

of polynomials q ∈ (G∗
b,m)

s such that

D∗
bm(P(q, p)) ≤

s

bm
+

1

1− α
1

bm − 1

(
1 +m

b2 − 1

3b

)s
.



338 Polynomial lattice point sets

Proof For ε > 0 we have

∑

q∈(G∗
b,m)s

R′
b(q, p) >

ε

bm − 1

(
1 +m

b2 − 1

3b

)s

×
∣∣∣∣
{
q ∈ (G∗

b,m)
s : R′

b(q, p) >
ε

bm − 1

(
1 +m

b2 − 1

3b

)s}∣∣∣∣ .

Hence with Theorem 10.21 we obtain,
∣∣∣∣
{
q ∈ (G∗

b,m)
s : R′

b(q, p) ≤
ε

bm − 1

(
1 +m

b2 − 1

3b

)s}∣∣∣∣ > |G∗
b,m|s

(
1− 1

ε

)
,

and the result follows by substituting ε = (1 − α)−1 and invoking Corol-

lary 10.17.

Hence on average we get a star discrepancy of polynomial lattice point

sets of order O((logN)s/N) where N = bm. If p is specialised to p(x) = xm,

then Larcher [132] proved that there exists a choice of q ∈ Fb[x]
s for which

the star discrepancy of the resulting point set P(q, xm) even satisfies

D∗
N (P(q, xm)) < c

(logN)s−1 log logN

N

with a constant c > 0 only depending on b and s.

We turn to the weighted star discrepancy and compute the average of

R′
b,γ(q, p) over all q ∈ (G∗

b,m)
s.

Theorem 10.24 Let b be a prime, let s,m ∈ N, and let p ∈ Zb[x] be

irreducible with deg(p) = m. Then we have

1

|G∗
b,m|s

∑

q∈(G∗
b,m)s

R′
b,γ(q, p) =

1

bm − 1

∑

u⊆Is
|u|≥2

∏

i∈u

(
γi

(
m
b2 − 1

3b

))∏

i 6∈u
(1 + γi) .

The proof of this result follows exactly along the lines of the proof of

Theorem 10.21 and is left to the reader as an exercise (see Exercise 10.8).

The corresponding result without the restriction that p has to be irreducible

can be found in [43, Theorem 1].

Corollary 10.25 Let b be a prime, let s,m ∈ N, and let p ∈ Zb[x] be

irreducible with deg(p) = m. Then for 0 ≤ α < 1 there are more than

α|G∗
b,m|s vectors of polynomials q ∈ (G∗

b,m)
s such that

D∗
bm,γ(P(q, p)) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)
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+
1

1− α
1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
.

This result can be proven in the same way as Corollary 10.23 and is

therefore left as an exercise (see Exercise 10.9).

The component-by-component construction

Now that we know that for any given irreducible polynomial p ∈ Zb[x]

there exist a sufficiently large number of good vectors q of polynomials

which yield polynomial lattice point sets with reasonably low (weighted) star

discrepancy, we want to find such vectors by computer search. Unfortunately

a full search is not possible (except maybe for small values of m, s) since we

have to check bms vectors of polynomials.

But at this point we get our cue from the analogy between polynomial

lattice point sets and ordinary lattice point sets where the component-

by-component (CBC) construction approach works very well (see Algo-

rithm 3.50). We use the same idea for the polynomial case. This was done

first in [45] for a different quality measure of polynomial lattice point sets

(see Section 12.4).

We state the algorithm for the star- and the weighted star discrepancy.

Algorithm 10.26 Given a prime b, s,m ∈ N, and a polynomial p ∈ Zb[x],

with deg(p) = m (and a sequence γ = (γi)i≥1 of weights).

1. Choose q1 = 1.

2. For d > 1, assume we have already constructed q1, . . . , qd−1 ∈ G∗
b,m. Then

find qd ∈ G∗
b,m which minimises the quantity R′

b((q1, . . . , qd−1, qd), p) (or

R′
b,γ((q1, . . . , qd−1, qd), p) in the weighted case) as a function of qd.

Remark 10.27 We have shown in Proposition 10.20 that the quantities

R′
b(q, p) and R′

b,γ(q, p) can be calculated in O(bms) operations. Hence the

cost of Algorithm 10.26 is of O(b2ms2) operations.

In the following theorem we show that Algorithm 10.26 is guaranteed to

find a good generating vector in the case that the polynomial p is irreducible.

A similar result for not necessarily irreducible polynomials is proven, but

with much more technical effort, in [43, Theorem 2 and Theorem 6].

Theorem 10.28 Let b be prime, let s,m ∈ N, let p ∈ Zb[x] be irreducible

with deg(p) = m and let γ = (γi)i≥1 be a sequence of weights. Suppose

q = (q1, . . . , qs) ∈ (G∗
b,m)

s is constructed according to Algorithm 10.26 using
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R′
b (or R

′
b,γ in the weighted case). Then for all 1 ≤ d ≤ s we have

R′
b((q1, . . . , qd), p) ≤

1

bm − 1

(
1 +m

b2 − 1

3b

)d
,

and

R′
b,γ((q1, . . . , qd), p) ≤

1

bm − 1

d∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

Proof We prove the result only for the unweighted case. The weighted case

can be shown in the same way and is left as an exercise (see Exercise 10.10).

Since p is irreducible it follows that R′
b(1, p) = 0 and the result follows for

d = 1. Suppose now that for some 2 ≤ d < s we have already constructed

q ∈ (G∗
b,m)

d and

R′
b(q, p) ≤

1

bm − 1

(
1 +m

b2 − 1

3b

)d
.

Now we consider (q, qd+1) := (q1, . . . , qd, qd+1). We have

R′
b((q, qd+1), p) =

∑

(h,hd+1)∈D′
(q,qd+1),p

rb(h)rb(hd+1)

=
∑

h∈D′
q,p

rb(h) + θ(qd+1)

= R′
b(q, p) + θ(qd+1),

where we have separated out the hd+1 = 0 terms, and

θ(qd+1) =
∑

hd+1∈G∗
b,m

rb(hd+1)
∑

h∈Gd
b,m

(h,hd+1)∈D′
(q,qd+1),p

rb(h).

Here, the last summation is over all h ∈ Gdb,m for which (h, hd+1) ∈ D′
(q,qd+1),p

.

Since qd+1 is a minimiser of R′
b((q, ·), p) and since the only dependence on

qd+1 is in θ it follows that qd+1 is also a minimiser of θ and hence we obtain

θ(qd+1) ≤
1

bm − 1

∑

z∈G∗
b,m

θ(z)

≤ 1

bm − 1

∑

z∈G∗
b,m

∑

hd+1∈G∗
b,m

rb(hd+1)
∑

h∈Gd
b,m

(h,hd+1)∈D′
(q,z),p

rb(h)
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=
1

bm − 1

∑

hd+1∈G∗
b,m

rb(hd+1)
∑

h∈Gd
b,m

rb(h)
∑

z∈G∗
b,m

(h,hd+1)∈D′
(q,z),p

1.

The condition (h, hd+1) ∈ D′
(q,z),p is equivalent to the equation

zhd+1 ≡ −h · q (mod p).

Since gcd(hd+1, p) = 1 it follows that this congruence has exactly one solu-

tion z ∈ G∗
b,m if −h · q 6≡ 0 (mod p) and no solution if −h · q ≡ 0 (mod p).

Therefore we obtain

θ(qd+1) ≤
1

bm − 1

∑

hd+1∈G∗
b,m

rb(hd+1)
∑

h∈Gd
b,m

rb(h)

=
1

bm − 1

(
1 +m

b2 − 1

3b

)d ∑

hd+1∈G∗
b,m

rb(hd+1),

where we have used Lemma 10.22. Now we obtain

R′
b((q, qd+1), p) ≤ R′

b(q, p) +
1

bm − 1

(
1 +m

b2 − 1

3b

)d ∑

hd+1∈G∗
b,m

rb(hd+1)

≤ 1

bm − 1

(
1 +m

b2 − 1

3b

)d ∑

hd+1∈Gb,m

rb(hd+1)

=
1

bm − 1

(
1 +m

b2 − 1

3b

)d+1

,

where we have used Lemma 10.22 again. The result follows by induction.

From Corollary 10.17, Corollary 10.18, and Theorem 10.28 we obtain the

following result.

Corollary 10.29 Let b be prime, s,m ∈ N, let p ∈ Zb[x] be irreducible

with deg(p) = m and let γ = (γi)i≥1 be a sequence of weights. Suppose

q = (q1, . . . , qs) ∈ (G∗
b,m)

s is constructed according to Algorithm 10.26 using

R′
b (or R

′
b,γ in the weighted case). Then we have

D∗
bm(P(q, p)) ≤

s

bm
+

1

bm − 1

(
1 +m

b2 − 1

3b

)s
,

and

D∗
bm,γ(P(q, p)) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)
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+
1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

The following result can be proven in the same way as Corollary 5.45 (see

Exercise 10.11).

Corollary 10.30 Let b be prime, let s,m ∈ N, let p ∈ Zb[x] be irreducible

with deg(p) = m and let γ = (γi)i≥1 be a sequence of weights.

If
∑∞

i=1 γi <∞, then for any δ > 0 there exists a constant c̃γ,δ > 0, inde-

pendent of s and m, such that the weighted star discrepancy of the polynomial

lattice point set P(q, p) whose generating vector q ∈ (G∗
b,m)

s is constructed

according to Algorithm 10.26 using R′
b,γ satisfies

D∗
bm,γ(P(q, p)) ≤

c̃γ,δ

bm(1−δ) . (10.7)

Remark 10.31 In the same way as in Corollary 5.46, we can use a su-

perposition of polynomial lattice point sets P(q, p) whose generating vectors

q ∈ (G∗
b,m)

s are constructed according to Algorithm 10.26 using R′
b,γ . In this

way we can obtain, for any s,N ∈ N, a point set P in [0, 1)s of cardinality N

which satisfies D∗
N,γ(P) ≤ Cγ,δN

−1+δ, where Cγ,δ is independent of s and N

whenever
∑∞

i=1 γi <∞. Hence we have a constructive version of the strong

tractability result for the weighted star discrepancy given in Corollary 5.46.

The construction of Korobov vectors

As already mentioned in Section 10.1 one can reduce the search space

for generating vectors q by considering so-called Korobov vectors. Here

one considers s-tuples q = (q1, . . . , qs) of polynomials that are obtained

by taking a polynomial q ∈ G∗
b,m and putting qi ≡ qi−1 (mod p) with

deg qi < m = deg(p), for 1 ≤ i ≤ s. As before we use the notation

vs(q) ≡ (1, q, q2, . . . , qs−1) (mod p) for such s-tuples.

Algorithm 10.32 Given a prime b, s,m ∈ N, s ≥ 2, and a polynomial

p ∈ Zb[x] with deg(p) = m (and a sequence γ = (γi)i≥1 of weights). Find

q ∈ G∗
b,m by minimising R′

b(vs(q), p) (or R
′
b,γ(vs(q), p) in the weighted case).

Remark 10.33 We have shown in Proposition 10.20 that the quantities

R′
b(q, p) and R′

b,γ(q, p) can be calculated in O(bms) operations. Hence the

cost of Algorithm 10.32 is of O(b2ms) operations. Note that compared to

Algorithm 10.26 the search cost is reduced by a factor s.
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In the following theorem we show that Algorithm 10.32 is guaranteed

to find a good generating vector in the case that the polynomial p is irre-

ducible. A similar result in the case that p is the product of different monic

irreducible polynomials is proved, but with much more technical effort, in

[43, Theorem 4 and Theorem 8].

Theorem 10.34 Let b be prime, let s,m ∈ N, let p ∈ Zb[x] be irreducible

with deg(p) = m and let γ = (γi)i≥1 be a sequence of weights. Suppose

q ∈ G∗
b,m is constructed according to Algorithm 10.32 by using R′

b (or R′
b,γ

in the weighted case). Then we have

R′
b(vs(q), p) ≤

s− 1

bm − 1

(
1 +m

b2 − 1

3b

)s
,

and

R′
b,γ(vs(q), p) ≤

s− 1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

Proof We prove the result only for the unweighted case. The weighted case

can be shown in the same way and is left as an exercise (see Exercise 10.13).

Define

Ms(p) :=
1

bm − 1

∑

z∈G∗
b,m

R′
b(vs(z), p).

It follows from Algorithm 10.32 that R′
b(vs(q), p) ≤Ms(p). Hence it suffices

to show that Ms(p) satisfies the bound. We have

Ms(p) =
1

bm − 1

∑

z∈G∗
b,m

∑

h∈D′
vs(z),p

rb(h)

=
1

bm − 1

∑

h∈Gs
b,m\{0}

rb(h)
∑

z∈G∗
b,m

h∈D′
vs(z),p

1.

The condition h ∈ D′
vs(z),p

, where h = (h1, . . . , hs) ∈ Gsb,m\{0}, is equivalent
to h1 + h2z + · · ·+ hsz

s−1 ≡ 0 (mod p).

Now we recall that for an irreducible polynomial p ∈ Zb[x], with deg(p) =

m ≥ 1, and a nonzero (h1, . . . , hs) ∈ Zb[x]
s with deg(hi) < m for 1 ≤ i ≤ s,

the congruence

h1 + h2z + · · ·+ hsz
s−1 ≡ 0 (mod p)
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has at most s− 1 solutions z ∈ G∗
b,m. Thus we have

Ms(p) ≤
s− 1

bm − 1

∑

h∈Gs
b,m

rb(h).

Hence the result follows from Lemma 10.22.

From Corollary 10.17, Corollary 10.18, and Theorem 10.34 we obtain the

following result.

Corollary 10.35 Let b be prime, let s,m ∈ N, let p ∈ Zb[x] be irreducible

with deg(p) = m and let γ = (γi)i≥1 be a sequence of weights. Suppose

q ∈ G∗
b,m is constructed according to Algorithm 10.32 by using R′

b (or R′
b,γ

in the weighted case). Then we have

D∗
bm(P(vs(q), p)) ≤

s

bm
+

s− 1

bm − 1

(
1 +m

b2 − 1

3b

)s
,

and

D∗
bm,γ(P(vs(q), p)) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)

+
s− 1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

10.3 Fast CBC-construction of polynomial lattice point sets

In the previous section we showed how to construct, for a given modulus

p, a generating vector q which yields a polynomial lattice point set P(q, p)
with small (weighted) star discrepancy using a component-by-component

algorithm. The cost of the algorithm for a polynomial lattice point set in

dimension s and of cardinality bm was at least of order O(s2b2m) operations.

Hence the CBC-algorithm can only be applied for moderately large values of

bm. However, we are interested in polynomial lattice point sets with a large

number of points. Thus we need to reduce the factor b2m in the construction

cost to get an applicable construction method also for large values of bm.

A breakthrough for this problem was first obtained by Nuyens & Cools [202]

using fast Fourier transform (FFT) methods for the construction of classical

lattice point sets. Due to the similarities between ordinary and polynomial

lattice point sets it turned out that their methods can also be carried over

to the polynomial case (see [203]). In this way it is possible to construct, for
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a given polynomial p with deg(p) = m, an s-dimensional generating vector

q in O(smbm) operations, compared to O(s2b2m) operations for the usual

CBC-algorithm.

In the following we explain this, so-called, fast component-by-component

construction by example of the construction of polynomial lattice point sets,

where we use the star discrepancy as quality measure. The same ideas also

apply to the weighted star discrepancy and other quality measures. Our in-

tention is not to give a ready-to-use algorithm. We just want to explain the

basic ideas leading to the drastic speed up of the CBC algorithm. Imple-

mentations of the fast algorithm using Matlab can be found in [201, 203].

Let b be a prime. Throughout this section we consider the polynomial

p ∈ Zb[x] with deg(p) = m to be irreducible.

Using Algorithm 10.26 we construct, component-by-component, a gener-

ating vector q = (q1, . . . , qs) ∈ (G∗
b,m)

s such that for all 1 ≤ d ≤ s the quan-

tity R′
b((q1, . . . , qd), p) is minimised with respect to qd for fixed q1, . . . , qd−1.

Assume that q1, . . . , qd−1 are already constructed. Then we have to find

q ∈ G∗
b,m which minimises

R′
b(q) := R′

b((q1, . . . , qd−1, q), p) = −1 +
1

bm

bm−1∑

n=0

d∏

i=1

φb,m (xn,i)

= −1 + 1

bm

bm−1∑

n=0

d−1∏

i=1

φb,m (xn,i)φb,m

(
υm

(
q(x)n(x)

p(x)

))
.

We now have a closer look at the last formula. First notice that φb,m (xn,i) =

φb,m

(
υm

(
qi(x)n(x)
p(x)

))
takes on at most bm different values, since xn,i ∈

{0, b−m, 2b−m, . . . , (bm − 1)b−m} for all 0 ≤ n < bm and 1 ≤ i ≤ s. These

values are used in each iteration step, hence they can be computed and

stored in a table before using Algorithm 10.26. As this table can be com-

puted in O(mbm) operations it follows that the computational cost of this

step is lower than the cost of Algorithm 10.26 (even taking into account the

speed-ups which we introduce below).

For n = 0 we have φb,m

(
υm

(
q(x)n(x)
p(x)

))
= φb,m(0), which does not depend

on q. Hence we can write

R′
b(q) = −1 +

(φb,m(0))
d

bm
+

1

bm

bm−1∑

n=1

d−1∏

i=1

φb,m (xn,i)φb,m

(
υm

(
q(x)n(x)

p(x)

))
.

Note that the product
∏d−1
i=1 φb,m (xn,i) =

∏d−1
i=1 φb,m

(
υm

(
qi(x)n(x)
p(x)

))
does

not depend on q as well and hence it remains fixed in the iteration from
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dimension d − 1 to d in Algorithm 10.26. We collect these products in

a column vector ηd−1 = (ηd−1(1), . . . , ηd−1(b
m − 1))⊤, where ηd−1(n) =∏d−1

i=1 φb,m (xn,i). This allows us to write

R′
b(q) = −1 +

(φb,m(0))
d

bm
+

1

bm

bm−1∑

n=1

ηd−1(n)φb,m

(
υm

(
q(x)n(x)

p(x)

))
.

Note that the vector ηd−1 remains fixed for fixed d.

Set η0 = (1, . . . , 1) ∈ Rb
m−1. Before the iteration step in which we find

qd, we compute ηd−1(n) = ηd−2(n)φb,m(xn,d−1) for n = 1, . . . , bm − 1. Hence

the cost of computing η1, . . . ,ηd−1 is of O(dbm) operations. Hence the cost

of calculating η1, . . . ,ηd−1 is less than the cost of Algorithm 10.26 and is

therefore not significant in the computational cost of the component-by-

component algorithm.

Let us estimate the number of operations needed Algorithm 10.26. The

main part of the computation is computing

bm−1∑

n=1

ηd−1(n)φb,m

(
υm

(
q(x)n(x)

p(x)

))
,

which needs to be computed for q = 1, . . . , bm−1. Hence we require O(sb2m)

operations for this part.

Therefore we obtain that the simple modifications introduced above al-

ready result in a reduced construction cost of Algorithm 10.26 of O(sb2m)

operations by using O(bm) memory space (this method was already applied

in [46, Section 5]).

For short we write ω := φb,m ◦ υm from now on. We define the (bm − 1)×
(bm − 1) matrix

Ωp :=

(
ω

(
q(x)n(x)

p(x)

))

q=1,...,bm−1
n=1,...,bm−1

.

Further let R′
b = (R′

b(1), . . . , R
′
b(b

m−1))⊤ be the column vector collecting

the quantities R′
b(q) and 1 be the (bm−1)-dimensional column-vector whose

components are all one. Then we have

R′
b =

(
−1 + (φb,m(0))

d

bm

)
1+

1

bm
Ωpηd−1.

As we are only interested in which q minimises R′
b(q), but not the value of

R′
b(q) itself, we only need to compute Ωpηd−1. We can now re-write Algo-

rithm 10.26 in matrix form.
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Algorithm 10.36 1. Compute the values ω
(
n(x)
p(x)

)
for n = 0, 1, . . . , bm−1

and store them in a table T .

2. Determine Ωp using table T .

3. For d = 1, . . . , s do:

i. if d = 1 set η0 = 1 = (1, . . . , 1)⊤, and if d > 1 set ηd−1(n) :=

ηd−2(n)ω
(
qd−1(x)n(x)

p(x)

)
for all 0 ≤ n < bm and store the vector ηd−1 =

(ηd−1(0), . . . , ηd−1(b
m − 1))⊤.

ii. compute A = Ωpηd−1, where A = (a(1), . . . , a(bm − 1))⊤;
iii. set qd := argmin1≤q<bma(q);
iiii. if d < s increase d by 1, otherwise exit;

In total we end up with O(sb2m) operations for the generation of the s-

dimensional vector q. However, from the formulation of Algorithm 10.36 it

is evident that the construction cost of O(sb2m) operations could be reduced

if we find an algorithm for the matrix-vector multiplication Ωpηd−1 costing

less than O(b2m) operations.

Hence let us look more closely at the matrix-vector product Ωpη. The

entries of this matrix are of the form ω
(
q(x)n(x)
p(x)

)
, where the product of

the nonzero polynomials q and n has to be evaluated in the field Zb[x]/(p),

and thus modulo p. Since the multiplicative group of every finite field is

cyclic, we can find a primitive element g which generates all elements of

(Zb[x]/(p))
∗. That is, there is a g ∈ (Zb[x]/(p))

∗ such that (Zb[x]/(p))
∗ =

{g0, g1, g2, . . . , gbm−1}. Thus, we can write the product of any nonzero poly-

nomials q, n ∈ Zb[x]/(p) as a power of the polynomial g. Nuyens & Cools [202,

203] suggest now to permute the rows of Ωp by the positive powers of the

primitive polynomial g and the columns by the negative powers of the same

primitive polynomial. This procedure is often called Rader transform, since

it goes back to an idea of Rader [222].

We describe the Rader transform now in detail. Let g(x) be a primitive

element in (Zb[x]/(p))
∗. We define a (bm − 1) × (bm − 1) matrix Π(g) =

(πk,l(g))1≤k,l<bm where

πk,l(g) =

{
1 if k(x) ≡ g(x)l (mod p(x))

0 otherwise.

Here k(x) denotes the polynomial which is associated with the integer k.

Since g is a primitive element it follows that each row and each column

of Π(g) has exactly one entry which is 1 and the remaining entries are 0.

Further, Π(g)Π(g)⊤ = I, the identity matrix. In fact, the matrix Π(g) is a

permutation matrix. That is, for any (bm − 1)× (bm − 1) matrix C, Π(g)C
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just changes the order of the rows of C and CΠ(g) only changes the order

of the columns of C.

Let C = (ck,l)1≤k,l<bm and

C = Π(g)ΩpΠ(g
−1).

Then

ck,l =

bm−1∑

u,v=1

πu,k(g)ω

(
u(x)v(x)

p(x)

)
πv,l(g

−1) = ω

(
g(x)kg(x)−l

p(x)

)
.

Let cr = ω
(
g(x)r

p(x)

)
. Note that cr = cr′ for all r, r

′ ∈ Z with r ≡ r′ (mod bm−
1), since g(x)b

m−1 = 1. Then we have ck,l = ck−l and therefore we obtain

C =




c0 c−1 . . . . . . c2 c1
c1 c0 c−1 . . . . . . c2
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

c−2 . . . . . . c1 c0 c−1

c−1 c−2 . . . . . . c1 c0




. (10.8)

Matrices of the form C are called circulant. In general, a circulant matrix

Cn = circ(c) of order n is a n × n matrix defined by the n elements of a

vector c = (c0, c1, . . . , cn−1)
⊤ as

Cn =




c0 cn−1 . . . . . . c2 c1
c1 c0 cn−1 . . . . . . c2
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

cn−2 . . . . . . c1 c0 cn−1

cn−1 cn−2 . . . . . . c1 c0




.

For such a matrix we set ck′ = ck for all k, k′ ∈ Z such that k ≡ k′ (mod n).

Note that the circulant matrix Cn is fully determined by its first column

c. Such matrices have a similarity transform which has the Fourier matrix

as its eigenvectors.

For n ∈ N let Fn := 1√
n
(fk,l)

n−1
k,l=0 be the Fourier matrix of order n given

by fk,l = ωkln , where ωn = e2πi/n. Note that Fn is symmetric and FnFn = I,

the identity matrix.

Furthermore, let diag(a1, . . . , an) be the n × n diagonal matrix A =

(Ai,j)
n
i,j=1 with Ai,i = ai for 1 ≤ i ≤ n and Ai,j = 0 for i 6= j.
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We need the subsequent lemma (see also [30, Theorem 3.2.2]).

Lemma 10.37 A circulant matrix Cn = circ(c), with first column c =

(c0, cn−1, cn−2, . . . , c1)
⊤, of order n, has a similarity transform Cn = F−1

n DFn,

where the diagonal matrix D = diag(pc(1), pc(ωn), . . . , pc(ω
n−1
n )), and where

pc(z) := c0 + c1z + · · ·+ cn−1z
n−1.

Proof Let D = (dk,l)0≤k,l<n and

D = FnCnF n.

Then we have

dk,l =
1

n

n−1∑

u,v=0

ωkun cu−vω
−lv
n =

1

n

n−1∑

u=0

ωu(k−l)n

n−1∑

v=0

cu−vω
l(u−v)
n .

We have
∑n−1

v=0 cu−vω
l(u−v)
n = pc(ω

l
n) and therefore

dk,l = pc(ω
l
n)

1

n

n−1∑

u=0

ωu(l−k)n .

The result now follows by noting that 1
n

∑n−1
u=0 ω

u(l−k)
n = 1 if l = k and 0

otherwise.

Hence we have shown that

Ωp = Π(g)⊤F bm−1DFbm−1Π(g
−1)⊤,

where Π(g)⊤,Π(g−1)⊤ are permutation matrices, Fbm−1 is a Fourier matrix,

F bm−1 its complex conjugate, and D is a diagonal matrix.

For any vector x = (x1, . . . , xbm−1)
⊤ ∈ (Cn)⊤ the matrix-vector mul-

tiplications Π(g)⊤x, Dx, and Π(g−1)⊤x can be done in O(n) operations.

Hence it only remains to show that Fbm−1x and F bm−1x can be computed

in O(n log n) operations. Since F bm−1x = Fbm−1x, it is enough to show that

Fbm−1x can be computed in O(n log n) operations. This can be done using

the fast Fourier transform, see for instance [25, 81].

We illustrate this procedure for b = 2, the general case is given as exercise

(Exercise 10.16). Note that the matrix C given in (10.8) is a (2m−1)×(2m−1)
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matrix. We extend this matrix by one row and one column to obtain

T =




c0 c−1 . . . . . . c2 c1 0

c1 c0 c−1 . . . . . . c2 c1
...

. . .
. . .

. . .
... c2

...
. . .

. . .
. . .

...
...

c−2 . . . . . . c1 c0 c−1
...

c−1 c−2 . . . . . . c1 c0 c−1

0 c−1 c−2 . . . . . . c1 c0




.

The 2m × 2m matrix T is not a circulant matrix anymore, but it is still a

Toeplitz matrix. To obtain a circulant matrix again, let

R =




0 0 c−1 . . . . . . c2 c1
0 0 0 c−1 . . . . . . c2

c1
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . . c−1

...
... . . . c1 0 0 0 c−1

c−2 . . . . . . c1 0 0 0

c−1 c−2 . . . . . . c1 0 0




.

Then the matrix

C ′ =
(
T R

R T

)

is a circulant matrix of size 2m+1 × 2m+1.

Let x = (x0, . . . , x2m−1)
⊤ ∈ (C2m−1)⊤ be a column vector and assume we

want to multiply the matrix C, given by (10.8), by x. Then we can do so by

multiplying the matrix C ′ by the vector x′ = (x0, . . . , x2m−1, 0, . . . , 0)
⊤ ∈

(C2m+1
)⊤. Let y′ = (y0, . . . , y2m+1)⊤ = C ′x′. Then y = (y0, . . . , y2m−1)

⊤ =

Cx. Hence we can use Lemma 10.37 with n = 2m+1 (rather than n = 2m−1).
This simplifies the FFT algorithm. The following result was shown by Cooley

& Tukey [25].

Theorem 10.38 Let F2m+1 = 2−(m+1)/2(ωkl2m+1)0≤k,l<2m+1 be a Fourier

matrix. Let u = (u0, . . . , u2m+1−1)
⊤ ∈ (C2m+1

)⊤ be given. Then the matrix-

vector product F2m+1u can be computed in O((m+ 1)2m+1) operations.

Proof Let z = (z0, . . . , z2m+1−1)
⊤ = F2m+1u, where u = (u0, . . . , u2m+1−1)

⊤ ∈
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(C2m+1
)⊤. Then

2(m+1)/2zk =

2m+1−1∑

l=0

ωkl2m+1ul for 0 ≤ k < 2m+1.

Let k = κ0 + κ12 + · · · + κm2
m and l = λ0 + λ12 + · · · + λm2

m, where

0 ≤ κ0, . . . , κm, λ0, . . . , λm ≤ 1. Further, let

G0(λ0, . . . , λm−1, κ0) =

1∑

λm=0

ωκ0λm2 uλ0+λ12+···+λm2m , (10.9)

and for 0 < r ≤ m, let

Gr(λ0, . . . , λm−r−1, κ0, . . . , κr) (10.10)

=

1∑

λm−r=0

ω
(κ0+···+κr2r)(λm−r+···+λm2r)
2r+1 Gr−1(λ0, . . . , λm−r, κ0, . . . , κr+1).

Then we have

Gr(λ0, . . . , λm−r−1, κ0, . . . , κr)

=

1∑

λm−r=0

· · ·
1∑

λm=0

ωkl2m+1uλ0+···+λm2m

and hence

zk = 2−(m+1)/2Gm(κ0, . . . , κm),

for all 0 ≤ k = κ0 + · · ·+ κm2
m < 2m+1.

We compute now Gr recursively.

• For r = 0, . . . ,m compute Gr(λ0, . . . , λm−r−1, κ0, . . . , κr) for all 0 ≤
λ0, . . . , λm−r−1, κ0, . . . , κr ≤ 1 using (10.10). For each r this requires also

O(2m+1) operations.

Hence, overall we require O((m+1)2m+1) operations to compute Gm. Hence

we can compute z in O((m+ 1)2m+1) operations.

Thus we obtain the following result.

Corollary 10.39 Let Ωp be defined as above and let x ∈ (Cn)⊤ be a column

vector. Then the matrix-vector product Ωpx can be computed in O(mbm)

operations.

Therefore Algorithm 10.36 requires only O(smbm) operations by using

O(bm) memory space (compared to O(sb2m) operations). This is a significant
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speedup compared to a straightforward implementation of Algorithm 10.36.

Only through this reduction of the construction cost does the CBC algorithm

become applicable for the generation of polynomial lattice point sets with

reasonably large cardinality.

10.4 Extensible polynomial lattice point sets

A disadvantage of polynomial lattice rules used to be that the number of

quadrature points has to be fixed in advance. The same problem also appears

for ordinary lattice rules. Hickernell & Hong [102] introduced a way out by

a modifying lattice rules in a way such that they can be extended arbitrarily

in the number of quadrature points. Such lattice rules are called extensible

lattice rules. The existence of such rules of good quality has been shown

by Hickernell & Niederreiter [104]. Extensible polynomial lattice rules on

the other hand have been first mentioned in [151] and the existence of good

extensible polynomial lattice rules was shown by Niederreiter [180].

To define extensible polynomial lattices we follow [180]. We call a sequence

P = (pk)k≥1 of polynomials from Zb[x], b a prime, a divisibility chain in Zb[x]

if pk divides pk+1 and 1 ≤ deg(pk) < deg(pk+1) for all k ∈ N.

With a given divisibility chain P we now associate the set YP of all P -adic

polynomials. That is, YP is the set of all formal sums

A =
∞∑

k=0

akpk

with p0 = 1, ak ∈ Zb[x], and deg(ak) < deg(pk+1/pk) for all k ∈ N0. Note

that if ak = 0 for all sufficiently large k then A is just a polynomial in

Zb[x] and thus Zb[x] ⊆ YP . Subsequently we call the polynomials ak the

coefficients of A or simply coefficients.

Note that by taking the residue class ring of all elements of YP taken

modulo pk for k ∈ N we obtain all polynomials in Zb[x] with degree smaller

than deg(pk). We use the following notation. Let Q = (Q1, . . . , Qs) ∈ Y s
P

then by qk we denote the vector obtained by qk ≡ Q (mod pk) for k ∈ N, i.e.,

qk = (q1,k, . . . , qs,k) with qi,k ≡ Qi (mod pk) and where deg(qi,k) < deg(pk)

for all 1 ≤ i ≤ s and all k ∈ N.

Thus for a given divisibility chain P and a generating vector Q ∈ Y s
P we

obtain for each k ∈ N a polynomial lattice P(qk, pk) such that

P(qk, pk) ⊆ P(qk+1, pk+1) for all k ∈ N.

Finally, we can give the following definition.
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Definition 10.40 The set

P(Q, P ) :=
∞⋃

k=1

P(qk, pk)

is called an extensible polynomial lattice point set. A sequence of quadra-

ture rules that uses P(qk, pk) as quadrature points is called an extensible

polynomial lattice rule.

As quality measure for an extensible polynomial lattice we use in the

following the quantity R′
b,γ (but of course we could also use R′

b) where the

weights should be of product form. First we extend the definition of R′
b,γ by

setting

R′
b,γ(Q, pk) := R′

b,γ(qk, pk).

For A = (A1, A2, . . .) ∈ Y∞
P and s ∈ N we define the projection

A(s) := (A1, . . . , As) ∈ Y s
P .

Though Niederreiter’s existence result as well as the construction algo-

rithm below would also work in the more general setting, we in the follow-

ing assume that pk = pk, where p is an irreducible polynomial in Zb[x] (for

example p(x) = x would be a possible choice). This simplifies the nota-

tion somewhat. The number of points in P(qk, pk) is in this case given by

bk deg(p). Before we state Niederreiter’s existence result for extensible poly-

nomial lattices, we need to introduce some probability measures. Let YP
be the set of P -adic polynomials and let Y ∗

P be the subset of all nonzero

polynomials which are not divisible by p. Let VP,k denote the subset of Y ∗
P

of all P -adic polynomials A =
∑∞

k=0 akp
k for which the first k coefficients

a0, . . . , ak−1 are prescribed, or equivalently with A (mod pk) specified. Then

we set µP (VP,k) = (bdeg(p) − 1)−1b−(k−1) deg(p). For s ∈ N∪ {∞} let now µ
(s)
P

denote the complete product measure on (Y ∗
P )

s induced by µP .

The subsequent theorem guarantees that there exist extensible polynomial

lattice point sets P(Q, P ) of good quality with respect to the quality measure

R′
b,γ . It was first proved by Niederreiter [180] in a much more general setting.

Theorem 10.41 Let b be a prime, let m ∈ N, let p ∈ Zb[x] be an irreducible

polynomial with deg(p) = m and let P = (pk)k≥1. Then for any given ε > 0

there exists a µ
(∞)
P -measurable set E ⊆ (Y ∗

P )
∞ such that for all A ∈ (Y ∗

P )
∞ \

E we have

R′
b,γ(A

(s), pk) ≤ cεs(log(s+ 1))1+εk(log(k + 1))1+ε

bkm
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×
s∏

i=1

(
1 + γi

(
1 +m(k + 1)

b2 − 1

3b

))

for all k ∈ N and s ∈ N, where cε > 0 depends only on ε. Furthermore, we

can make µ
(∞)
P (E) arbitrarily close to zero by choosing cε large enough.

For the proof of Theorem 10.41 we need an extension of results derived in

Section 10.2. We omit the very technical and tedious proof of the subsequent

lemma and refer the reader to [43, Theorem 2], of which the result serves as

a special case.

Lemma 10.42 Let b be a prime, let s,m, k ∈ N, and let p ∈ Zb[x] be an

irreducible polynomial with deg(p) = m. Then we have

1

(bm − 1)sbs(k−1)m

∑

q∈Gs
b,km

gcd(qi,p)=1 ∀1≤i≤s

R′
b,γ(q, p

k)

≤ 1

bkm

s∏

i=1

(
1 + γi

(
1 +m(k + 1)

b2 − 1

3b

))
.

Remark 10.43 If we compare the bound from Theorem 10.41 with that

from Lemma 10.42, which only holds for fixed s and k, then we see that the

price of having an A ∈ (Y ∗
P )

∞ \E which works well simultaneously for all k

and s in N is an extra factor of s(log(s+ 1))1+εk(log(k + 1))1+ε.

Proof of Theorem 10.41 We want to show the existence of polynomial lat-

tice rules which work well for all k, s ∈ N. The argument below is based on an

extension of the following simple principle. Let A,B ⊆ {1, . . . ,K}. Let |A|
denote the number of elements of A and analogously for B. If |A|, |B| > K/2,

then |A ∩B| > 0.

Let p ∈ Zb[x], b a prime, be irreducible with deg(p) = m and let P =

(pk)k≥1. For Q ∈ (Y ∗
P )

∞ let Qs be the projection of Q onto the first s

coordinates.

For k, s ∈ N we define the set

Q(∞)

s,bkm
(c)

=

{
Q ∈ (Y ∗

P )
∞ : R′

b,γ(Qs, p
k) ≤ c

bkm

s∏

i=1

(
1 + γi

(
1 + km

b2 − 1

3b

))}
.

Note that the set Q(∞)

s,bkm
(c) is µ

(∞)
P -measurable since we only impose a con-

dition on the first s coordinates. From Lemma 10.42 and an application of
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Markov’s inequality we obtain

µ
(∞)
P

(
Q(∞)

s,bkm
(c)
)
> 1− 1

c
. (10.11)

In order to obtain a generating vector which works well for all choices of

k, s ∈ N we need to show that the intersection
⋂∞
s=1

⋂∞
k=1Q

(∞)

s,bkm
(c) is not

empty, or equivalently, has measure greater than zero (note that a countable

intersection of measurable sets is itself measurable). To this end choose for

each k ∈ N a 0 < ck < 1. Then we have

µ
(∞)
P

( ∞⋂

s=1

∞⋂

k=1

Q(∞)

s,bkm
(csck)

)
≥ 1− µ(∞)

P

( ∞⋃

s=1

∞⋃

k=1

Q(∞)

s,bkm(csck)

)

≥ 1−
∞∑

s=1

∞∑

k=1

µ
(∞)
P (Q(∞)

s,bkm(csck))

> 1−
∞∑

s=1

∞∑

k=1

1

csck

= 1−
( ∞∑

k=1

1

ck

)2

,

where Q(∞)

s,bkm(c) stands for the complement of Q(∞)

s,bkm
(c), i.e., Q(∞)

s,bkm(c) =

(Y ∗
P )

∞ \ Q(∞)

s,bkm
(c) and where we used inequality (10.11). Thus by choosing

ck, k ∈ N, such that
∑

k∈N

1

ck
≤ 1

it follows that the measure of
⋂∞
s=1

⋂∞
k=1Q

(∞)

s,bkm
(csck) is greater than zero

and hence this set is not empty. This implies that there is a generating vector

which works well for all k, s ∈ N.

The particular bound in Theorem 10.41 can be obtained by choosing, for

a given ε > 0, ck := cεk(log(k + 1))1+ε for k ∈ N where cε is chosen such

that

cε >

∞∑

k=1

1

k(log(k + 1))1+ε
.

Set now E = (Y ∗
P )

∞ \⋂∞
s=1

⋂∞
k=1Q

(∞)

s,bkm
(csck). Then we also see that we

can make µ
(∞)
P (E) arbitrarily close to zero by choosing cε large enough. This

completes the proof.
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From Theorem 10.41 we obtain a bound on the weighted star discrepancy

of extensible lattice point sets.

Corollary 10.44 Let b be a prime, let m ∈ N, let p ∈ Zb[x] be an irre-

ducible polynomial of deg(p) = m and let P = (pk)k≥1. For ε > 0 let E be the

set from Theorem 10.41. For A ∈ (Y ∗
P )

∞\E let q
(s)
k ≡ A(s) (mod pk). Then

the point set P(q(s)
k , pk) of cardinality bkm has weighted star discrepancy

D∗
bkm,γ(P(q

(s)
k , pk)

≤ c′ε
s(log(s+ 1))1+εk(log(k + 1))1+ε

bkm

s∏

i=1

(
1 + γi

(
1 +m(k + 1)

b2 − 1

3b

))
,

where c′ε > 0 depends only on ε.

Proof From Corollary 10.18 we have

D∗
bkm,γ(P(q

(s)
k , pk)) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bkm

))|u|
+R′

b,γ(P(q
(s)
k , pk)).

For product weights we have

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bkm

))|u|
≤

∑

∅6=u⊆Is
γu
|u|
bkm
≤ s

bkm

s∏

j=1

(1 + γj).

Now the result follows by invoking Theorem 10.41.

Observe that under the assumption
∑∞

i=1 γi <∞, we can obtain an upper

bound on the weighted star discrepancy which depends only polynomially

on the dimension s from Corollary 10.44 (see Exercise 10.15).

We now turn the proof of Theorem 10.41 into an algorithm for finding

extensible polynomial lattices. Since we can only calculate with finite di-

mensional vectors we define, for k, s ∈ N, the set

Qs,bkm(c)

=

{
Qs ∈ (Y ∗

P )
s : R′

b,γ(Qs, p
k) ≤ c

bkm

s∏

i=1

(
1 + γi

(
1 + km

b2 − 1

3b

))}

= {Qs ∈ (Y ∗
P )

s : Q ∈ Q(∞)

s,bkm
(c)}.

For short we write Q instead of Qs for elements in Qs,bkm(c) in the following.

A straightforward algorithm would now find sets Qs,bkm(ck) for all u <

k ≤ v and then search for a vector which lies in all of those sets. Note that for

a vector Q in a set Qs,bkm(c) only the first k coefficients in each coordinate



10.4 Extensible polynomial lattice point sets 357

matter, i.e., for any other vector L ∈ (Y ∗
P )

s with L ≡ Q (mod pk) we

have R′
b,γ(L, p

k) = R′
b,γ(Q, p

k). Hence there is only a finite set of relevant

coefficients for each vector in Qs,bkm(c) and the remaining coefficients can

be chosen arbitrarily. On the other hand the number of vectors in Qs,bkm(c)
is of course infinite.

Our method here uses a sieve, where the generating vectors are extended

by one coefficient in each component at each step and where one keeps a

certain number of good ones and discards the rest.

Let us start with k = u + 1. Then we use a computer search to find

(1− c−1
u+1)b

s(u+1)m vectors which satisfy the desired bound. Next we want to

find vectors which are in the intersection Qs,b(u+1)m(cu+1)∩Qs,b(u+2)m(cu+2).

As the vectors now also need to lie in Qs,b(u+1)m(cu+1) we only need to

extend the vectors from the previous search by one new coefficient in each

coordinate. Out of those newly obtained vectors we keep at least ⌊(1−c−1
u+1−

c−1
u+2)b

s(u+1)m +1⌋ new vectors which satisfy the desired bound and discard

the rest of them. The existence of a sufficient number of good generating

vectors is secured by the above arguments.

We continue in this way, always adding coefficients to the remaining set

of vectors which are left over from the previous step until we finally obtain

a vector which lies in the set
⋂v
k=u+1Qs,bkm(ck). We call this procedure the

sieve algorithm. The sieve algorithm was first introduced for ordinary lattice

point sets in [53] and for polynomial lattice point sets in [35].

The following theorem is now implied by the observations above.

Theorem 10.45 Let u < v ∈ N. Let q∗ ∈ (Y ∗
P )

s be constructed by the

sieve algorithm. Then for all u < k ≤ v we have

R′
b,γ(q

∗, pk) ≤ ck
bkm

s∏

i=1

(
1 + γi

(
1 +m(k + 1)

b2 − 1

3b

))
.

Using the sieve algorithm based on R′
b,γ we can now obtain polynomial

lattice point sets with small weighted star discrepancy as implied by Corol-

lary 10.18 and Theorem 10.45. Note that here (in contrast to the result in

Corollary 10.44) we can even obtain an upper bound on the weighted star

discrepancy which is independent of the dimension s whenever
∑∞

i=1 γi <∞
(see Exercise 10.18).

The sieve algorithm has the drawback that the search spaces involved

might be very large which makes it inapplicable. Hence we show now that it

can be combined with the component-by-component construction as intro-

duced in Section 10.2. We call this algorithm the component-by-component

sieve algorithm.
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Before we can introduce this algorithm we need some further details. In

the following we write R′
b,γ,d instead of R′

b,γ to stress its dependence on the

dimension d.

First note that for given d ∈ N andQ1, . . . , Qd ∈ Y ∗
P with qk = (q1,k, . . . , qd,k)

where qi,k ≡ Qi (mod pk) for 1 ≤ i ≤ d we can write

R′
b,γ,d(qk, p

k) = (1 + γd)R
′
b,γ,d−1((q1,k, . . . , qd−1,k), p

k)

+Sb,γ,d((q1,k, . . . , qd−1,k, qd,k), p
k), (10.12)

where

Sb,γ,d((q1,k, . . . , qd−1,k, qd,k), p
k) =

∑

(h,hd)∈Gd−1
b,km

×G∗
b,km

(h,hd)·qk≡0 (mod pk)

rb(h,γ)rb(hd, γd).

We need a further extension of results derived in Section 10.2 and again we

omit the very technical and tedious proof. From the proof of [43, Theorem 2]

we obtain that for any k, d ∈ N, d ≥ 2, and fixed Q ∈ (Y ∗
P )

d−1 with qk ≡ Q

(mod pk) we have

1

(bm − 1)b(k−1)m

∑

q∈G∗
b,km

gcd(q,p)=1

Sb,γ,d((qk, q), p
k)

≤ 1

bkm
γdm(k + 1)

b2 − 1

3b

d−1∏

i=1

(
1 + γi

(
1 + km

b2 − 1

3b

))
.

For d ≥ 2 and given Q ∈ (Y ∗
P )

d−1 let now Qd,bkm(Q, c) denote the set

consisting of all Qd ∈ Y ∗
P for which we have

Sb,γ,d((qk, qd,k), p
k) ≤ c

bkm
γdm(k + 1)

b2 − 1

3b

d−1∏

i=1

(
1 + γi

(
1 + km

b2 − 1

3b

))
,

where qk ≡ Q (mod pk) and qd,k ≡ Qd (mod pk).

The component-by-component sieve algorithm now works in the following

way. Choose again u and v as for the sieve algorithm. We start with di-

mension s = 1. As we assumed that p is irreducible we may without loss of

generality choose Q∗
1 = 1. This is because in dimension s = 1 any polynomial

Q1 which is not divisible by p yields the same polynomial lattice. Note that in

this case it follows that R′
b,γ,1((q

∗
1,k), p

k) = 0. Now with Q∗
1 = 1 fixed we seek

the next coordinate Q2, but here we can just employ the sieve algorithm from

the previous section where Q∗
1 is fixed and the sets Q2,bkm(ck) are replaced

by Q2,bkm((Q
∗
1), c) and the quality measure R′

b,γ,2(qk, p
k) is replaced by
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Sb,γ,2((q
∗
1,k), p

k). Note that the latter can be computed using identity (10.12).

This way we obtain a Q∗
2 which lies in the set

⋂v
k=u+1Q2,bkm((Q

∗
1), ck). Now

with Q∗
1, Q

∗
2 fixed, using the sieve algorithm again, we can now obtain a Q∗

3

which lies in the set
⋂v
k=u+1Q3,bkm((Q∗

1, Q
∗
2), ck). In general, for 2 ≤ d ≤ s

we can use the sieve algorithm to obtain polynomials Q∗
d which lie in the

intersection of the sets Qd−1,bkm((Q∗
1, . . . , Q

∗
d−1), ck). The construction cost

is now much reduced because the size of the set Qd−1,bkm((Q∗
1, . . . , Q

∗
d−1), ck)

is much smaller compared to the size of Qs,bkm(ck).
The following theorem is now implied by the construction of the vector

Q∗ = (Q∗
1, . . . , Q

∗
s).

Theorem 10.46 Let u < v ∈ N. Let Q∗ ∈ (Y ∗
P )

s be constructed by the

component-by-component sieve algorithm. Then for all u < k ≤ v we have

R′
b,γ,s(Q

∗, pk) ≤ ck
bmk

s∏

i=1

(
1 + γi

(
1 +m(k + 1)

b2 − 1

3b

))
.

Using the component-by-component sieve algorithm based on R′
b,γ we can

now obtain polynomial lattice point sets with small weighted star discrep-

ancy as implied by Corollary 10.18 and Theorem 10.46. Again we can obtain

an upper bound on the weighted star discrepancy which is independent of

the dimension as long as
∑∞

i=1 γi <∞ (see Exercise 10.18).

Note that if we choose the ck’s such that
∑v

k=u+1 c
−1
k < 1, then one can

continue the (component-by-component) sieve algorithm at a later stage if

necessary. Further it is clear from the (component-by-component) sieve al-

gorithm that one does not necessarily have to increase the number of points

by a factor of bdeg(p) in each step. Because of the probabilistic arguments

involved one can actually choose arbitrary powers of bdeg(p). (Note that the

smallest possible value of bdeg(p) is 2 which is for example obtained by choos-

ing b = 2 and p(x) = x.) Hence we do not need to let k run from u + 1 to

v, but we could choose a finite subset K ⊂ N and construct a generating

vector which works well for all choices k in K.

A simple way of choosing the values of ck would be ck = v − u for all

u < k ≤ v. On the other hand this might give a suboptimal bound for

small k. Hence one strategy of choosing ck would be to obtain a balance

of the bound in Theorem 10.45 across all choices of k. Further note that

the (component-by-component) sieve algorithm does not necessarily have to

start with the smallest value of k, but can start at any value k ∈ K. In order

to speed up the algorithm it would of course be advantageous to order the

values of k ∈ K such that the number of vectors which one needs to consider

in the (component-by-component) sieve algorithm is minimised.
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Using the fact that there are different generating vectors which yield

the same polynomial lattice rule the number of generating vectors in the

(component-by-component) sieve algorithm can be reduced even further

which makes the construction faster. A further speedup can be achieved

by using the fast component-by-component algorithm introduced in Sec-

tion 10.3. See [26, 53] for such an algorithm. We also remark that in the

sieve algorithm the set K does not have to be finite, in which case one ob-

tains polynomial lattice rules with an arbitrarily high number of quadrature

points. A major drawback is that it it not known how the component-by-

component can be used in this case, see [53]. Hence if K is an infinite set,

this method is only feasible for very small s.

Alternatively we present an algorithm due to Niederreiter & Pillichsham-

mer [186] which yields polynomial lattices which are arbitrarily extensible.

The disadvantage of this result is that one obtains weaker bounds on the

star discrepancy as anticipated by Theorem 10.41. The algorithm is based

on the quantity R′
b as quality criterion.

Algorithm 10.47 Let p ∈ Zb[x] with deg(p) = m be monic and irreducible.

1. Find q1 := q by minimising R′
b(q, p) over all q ∈ Gsb,m.

2. For n = 2, 3, . . . find qn := qn−1 + pn−1q by minimising R′
b(qn−1 +

pn−1q, pn) over all q ∈ Gsb,m.

Theorem 10.48 Let s, n ∈ N, b be a prime, and p ∈ Zb[x] monic and irre-

ducible with deg(p) = m. Assume that qn ∈ Gsb,nm is constructed according

to Algorithm 10.47. Then we have

R′
b(qn, p

n) = O

(
b−mn

((
1 +m

b2 − 1

3b

)s
+ 1

)n)

with an implied constant depending only on s, b, and p.

From Corollary 10.17 and Theorem 10.48 we immediately obtain a bound

on the star discrepancy of P(qn, pn). This bound is good only for small b

and polynomials p of large degree.

Corollary 10.49 Let s, n ∈ N, b be a prime, and p ∈ Zb[x] monic and ir-

reducible with deg(p) = m. Assume that qn ∈ Gsb,nm is constructed according

to Algorithm 10.47. Then we have

D∗
bdeg(p)n

(P(qn, pn)) = O

(
b−mn

((
1 +m

b2 − 1

3b

)s
+ 1

)n)

with an implied constant depending only on s, b, and p.
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Proof of Theorem 10.48 For the sake of convenience we use the abbrevia-

tion νb,m := m b2−1
3b .

First we show the result for n = 1. We have

R′
b(q1, p) ≤

1

bsm

∑

q∈Gs
b,m

R′
b(q, p) =

1

bsm

∑

h∈Gs
b,m\{0}

rb(h)
∑

q∈Gs
b,m

h∈D′
q,p

1

=
1

bm

∑

h∈Gs
b,m\{0}

rb(h) =
1

bm
((1 + νb,m)

s − 1) ,

where we used Lemma 10.22 for the last equality.

Now let n ≥ 2. Then we have

R′
b(qn, p

n) ≤ 1

bsm

∑

q∈Gs
b,m

R′
b(qn−1 + pn−1q, pn)

=
1

bsm

∑

h∈Gs
b,nm\{0}

rb(h)
∑

q∈Gs
b,m

h∈D′
qn−1+pn−1q,pn

1.

The inner sum is equal to the number of q ∈ Gsb,m with pn−1h ·q ≡ −h·qn−1

(mod pn). For this we must have h · qn−1 ≡ 0 (mod pn−1), and then h · q ≡
− 1
pn−1h · qn−1 (mod p). Thus,

R′
b(qn, p

n) ≤ 1

bsm

∑

h∈Gs
b,nm

\{0}

h·qn−1≡0 (mod pn−1)

rb(h)
∑

q∈Gs
b,m

h·q≡− 1
pn−1 h·qn−1 (mod p)

1.

Consider the inner sum. If h 6≡ 0 (mod p), then the inner sum is equal to

b(s−1)m. If h ≡ 0 (mod p), then the inner sum is equal to 0 if h · qn−1 6≡ 0

(mod pn) and equal to bsm if h · qn−1 ≡ 0 (mod pn). Thus,

R′
b(qn, p

n) ≤ 1

bm

∑

h∈Gs
b,nm

\{0},h 6≡0 (mod p)

h·qn−1≡0 (mod pn−1)

rb(h) +
∑

h∈Gs
b,nm

\{0},h≡0 (mod p)

h·qn−1≡0 (mod pn)

rb(h)

≤ 1

bm

∑

h∈Gs
b,nm

\{0}

h·qn−1≡0 (mod pn−1)

rb(h) +
∑

h∈Gs
b,(n−1)m

\{0}

h·qn−1≡0 (mod pn−1)

rb(h).

Since p is monic we find that rb(h) ≤ b−mrb(h) for h ∈ Zb[x]
s with h 6= 0.

Hence we obtain

R′
b(qn, p

n) ≤ 2

bm
R′
b(qn−1, p

n−1) +
1

bm
Σ (10.13)
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with

Σ :=
∑

h∈Gs
b,nm

\Gs
b,(n−1)m

h·qn−1≡0 (mod pn−1)

rb(h).

Any h ∈ Gsb,nm \Gsb,(n−1)m can be represented uniquely in the form

h = h̃+ pn−1c with h̃ ∈ Gsb,(n−1)m and c ∈ Gsb,m \ {0}.

Therefore

Σ =
∑

h∈Gs
b,(n−1)m

h·qn−1≡0 (mod pn−1)

∑

c∈Gs
b,m\{0}

rb(h+ pn−1c)

=
∑

c∈Gs
b,m\{0}

rb(p
n−1c) +

∑

h∈D′
qn−1,p

n−1

∑

c∈Gs
b,m\{0}

rb(h+ pn−1c)

=: Σ1 +Σ2.

First we deal with Σ1. We have

Σ1 =


 ∑

c∈Gb,m

rb(p
n−1c)



s

− 1 =


1 +

1

bdeg(pn−1)

∑

c∈Gb,m\{0}
rb(c)



s

− 1

=
(
1 +

νb,m

bdeg(pn−1)

)s
− 1 ≤ sνb,m

bdeg(pn−1)

(
1 +

νb,m

bdeg(pn−1)

)s−1
.

Now we turn to Σ2. For h ∈ D′
qn−1,p

n−1 of the form h = (h1, . . . , hs) we have

Σ3 :=
∑

c∈Gs
b,m\{0}

rb(h+ pn−1c)

=
∑

c∈Gs
b,m

rb(h + pn−1c)− rb(h)

=

s∏

i=1


 ∑

c∈Gb,m

rb(hi + pn−1c)


 − rb(h).

If hi = 0, then by Lemma 10.22 and since p is monic,
∑

c∈Gb,m

rb(hi + pn−1c) =
∑

c∈Gb,m

rb(p
n−1c)

= 1 +
νb,m

bdeg(pn−1)
= rb(hi) +

νb,m

bdeg(pn−1)
.
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If hi 6= 0, then 0 ≤ deg(hi) < deg(pn−1) and
∑

c∈Gb,m

rb(hi + pn−1c) = rb(hi) +
∑

c∈Gb,m\{0}
rb(hi + pn−1c)

= rb(hi) +
∑

c∈Gb,m\{0}
rb(p

n−1c)

= rb(hi) +
νb,m

bdeg(pn−1)
,

where we again used Lemma 10.22 and the assumption that p is monic.

Now we obtain

Σ3 ≤
s∏

i=1

(
rb(hi) +

νb,m

bdeg(pn−1)

)
− rb(h).

Since rb(hi) ≥ 1
bdeg(hi)+1 ≥ 1

bdeg(p
n−1)

it follows now that

Σ3 ≤
s∏

i=1

rb(hi) (1 + νb,m)− rb(h) = rb(h) ((1 + νb,m)
s − 1)

and hence

Σ2 ≤ ((1 + νb,m)
s − 1)R′

b(qn−1, p
n−1).

Altogether we find that

Σ = Σ1 +Σ2

≤ sνb,m

bdeg(pn−1)

(
1 +

νb,m

bdeg(pn−1)

)s−1
+ ((1 + νb,m)

s − 1)R′
b(qn−1, p

n−1)

and hence

R′
b(qn, p

n)

≤ 1

bm
((1 + νb,m)

s + 1)R′
b(qn−1, p

n−1) +
sνb,m

bdeg(p
n)

(
1 +

νb,m

bdeg(pn−1)

)s−1
.

Iterating this inequality we get for all n ≥ 2,

R′
b(qn, p

n) ≤ 1

bm(n−1)
((1 + νb,m)

s + 1)n−1R′
b(q1, p)

+ sνb,m

n−2∑

j=0

(
((1 + νb,m)

s + 1)

bm

)j
1

bm(n−j)

(
1 +

νb,m

bm(n−1−j)

)s−1

≤ 1

bmn
((1 + νb,m)

s + 1)n

+
sνb,m
bmn

(
1 +

νb,m
bm

)s−1
n−2∑

j=0

((1 + νb,m)
s + 1)j .
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Hence

R′
b(qn, p

n) = O

(
((1 + νb,m)

s + 1)n

bmn

)

with an implied constant depending only on s, b, and p.

Exercises

10.1 For m ∈ N give the m × m matrix over Zb defined by (10.1) for the

special polynomials p, q ∈ Zb[x], where p(x) = xm and q(x) = q1x
m−1+

· · ·+ qm−1x+ qm.

10.2 Let b be a prime and let s ∈ N, s ≥ 2. Let p ∈ Zb[x] and q ∈ Zb[x]
s.

Show that for the polynomial lattice point set P(q, p) we have

∑

x∈P(q,p)

bwalk(x) =

{
bm if k · q ≡ 0 (mod p),

0 otherwise.

10.3 Let ∅ 6= u ⊆ Is. Determine the quality parameter tu of the projection

of P(q, p) to the coordinates given by ∅ 6= u ⊆ Is.
10.4 Prove Lemma 10.6. Hint: See [175, Lemma 4.40].

10.5 Give a detailed proof of the second part of Theorem 10.13.

10.6 Give a detailed proof of the second part of Corollary 10.15.

10.7 Prove Corollary 10.18. Hint: Use (5.13), Lemma 5.42 and Lemma 10.6

.

10.8 Prove Theorem 10.24.

10.9 Prove Corollary 10.25.

10.10 Prove Theorem 10.28 for the weighted case.

10.11 Prove Corollary 10.30. Hint: Compare with the proof of Corollary 5.45.

10.12 Let
∑∞

i=1 γi < ∞. Show that for any δ > 0 there exists a Cγ,δ such

that for every N, s ∈ N there exists a superposition P of polynomial

lattice point sets (which can be constructed with Algorithm 10.26) of

cardinality N such that

D∗
N,γ(P) ≤ Cγ,δN

δ−1.

10.13 Prove Theorem 10.34 for the weighted case.

10.14 Let b be prime, s,m ∈ N, p ∈ Zb[x] be irreducible, with deg(p) = m

and γ = (γi)i≥1 be a sequence of weights. Show that for given 0 ≤ α < 1

there are more than α|G∗
b,m| polynomials q ∈ G∗

b,m such that

D∗
bm(P(vs(q), p)) ≤

s

bm
+

1

1− α
s− 1

bm − 1

(
1 +m

b2 − 1

3b

)s
,
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and

D∗
bm,γ(P(vs(q), p)) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)

+
1

1− α
s− 1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

10.15 Let p ∈ Zb[x], b a prime, be an irreducible polynomial of degree

deg(p) = m and let P = (pk)k≥1. For ε > 0 let E be the set from

Theorem 10.41. For A ∈ (Y ∗
P )

∞ \ E let q
(s)
k ≡ A(s) (mod pk). Assume

that the weights γ = (γi)i≥1 satisfy
∑∞

i=1 γi < ∞. Show that for any

δ1 > 0 and δ2 > 0 there is a Cε,b,γ,δ1,δ2 > 0 such that the weighted star

discrepancy of the point set P(q(s)
k , pk) of cardinality bkm satisfies

D∗
bkm,γ(P(q

(s)
k , pk)) ≤ Cε,b,γ,δ1,δ2s1+δ1bkm(δ2−1).

10.16 For arbitrary base b ≥ 2, embed the matrix C given in (10.8) into

a circulant matrix of size bm+1 × bm+1. Use the procedure given in

Section 10.3 for the case b = 2.

10.17 Generalise Theorem 10.38 to arbitrary base b ≥ 2.

10.18 Let p ∈ Zb[x], b a prime, be an irreducible polynomial of degree

deg(p) = m and let P = (pk)k≥1. Let u < v ∈ N and let Q∗ ∈ (Y ∗
P )

s

be constructed by the (component-by-component) sieve algorithm. As-

sume that the weights γ = (γi)i≥1 satisfy
∑∞

i=1 γi <∞. Show that for

any δ > 0 there is a Cb,γ,δ > 0 such that the weighted star discrepancy

of the point set P(Q∗, pk) of cardinality bkm for u < k ≤ v satisfies

D∗
bkm,γ(P(Q∗, pk)) ≤ Cb,γ,δckbkm(δ−1).
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Cyclic digital nets and hyperplane nets

Many constructions of digital nets are inspired by a close connection between

coding theory and the theory of digital nets (see Section 7.3). Examples for

such constructions are the so-called (u, u+v)-construction (see Section 9.1),

its generalisation, the matrix-product construction (see Section 9.2) and

the Kronecker-product construction (see [14, 188]). Here we deal in more

detail with a construction of digital nets which is an analogue to a special

construction of codes, namely so-called cyclic codes. These codes are well

known in coding theory. This construction of digital nets has been introduced

by Niederreiter [181], who adopted the viewpoint that cyclic codes can be

defined by prescribing roots of polynomials. Later, in [219], this construction

has been generalised to so-called hyperplane nets.

11.1 Cyclic nets, hyperplane nets and their generating matrices

We start with the definition of cyclic nets as given by Niederreiter [181].

Definition 11.1 Let b be a prime power and let s,m ∈ N be given. Let

Fbm be a finite field of bm elements and fix an element α ∈ Fbm . Let F :=

{f ∈ Fbm [x] : deg(f) < s} and consider the subset of polynomials

Fα := {f ∈ F : f(α) = 0}.

For each 1 ≤ i ≤ s choose an ordered basis Bi of Fbm over Fb and define the

mapping φ : F → (Fmsb )⊤ by

f(x) =

s∑

i=1

γix
i−1 7→ (γ1,1, . . . , γ1,m, . . . , γs,1, . . . , γs,m)

⊤,

where (γi,1, . . . , γi,m) ∈ Fmb is the coordinate vector of γi ∈ Fbm with respect

to the chosen basis Bi for all 1 ≤ i ≤ s.
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Denote by Cα the orthogonal subspace in (Fmsb )⊤ of the image Nα :=

φ(Fα) and let

Cα = (C⊤
1 . . . C

⊤
s ) ∈ Fm×sm

b

be a matrix whose row space is the transpose of Cα. Then them×m matrices

C1, . . . , Cs are the generating matrices of a cyclic net over Fb with respect to

B1, . . . ,Bs and Cα is its overall generating matrix. This cyclic net is denoted

by Pα and we say Pα is the cyclic net associated with α. We shall assume

that the choice of bases B1, . . . ,Bs is made before the choice of α.

In the following we employ linear representations. To be more precise,

let Fbm = Fb[ω], such that {1, ω, ω2, . . . , ωm−1} forms a basis of Fbm as a

vector space over Fb. Let ω
m have the basis representation ωm = β0 + · · ·+

βm−1ω
m−1 with β0, . . . , βm−1 ∈ Fb and let P be the matrix

P :=




0 . . . . . . 0 β0
1 0 . . . 0 β1

0
. . .

. . .
...

...
...

. . .
. . . 0

...

0 . . . 0 1 βm−1



∈ Fm×m

b . (11.1)

Now we define ψ : Fbm → (Fmb )
⊤ and Ψ : Fbm → Fm×m

b . If the representa-

tion of α in Fbm is given by α =
∑m−1

l=0 alω
l, where a0, . . . , am−1 ∈ Fb, then

we define

ψ(α) := (a0, . . . , am−1)
⊤ ∈ (Fmb )

⊤ and Ψ(α) :=
m−1∑

l=0

alP
l ∈ Fm×m

b .

Then for any α, x ∈ Fbm we have

Ψ(α)ψ(x) = ψ(αx).

This can be seen by showing the identity first for α and x which are powers

of ω and then using linearity. The details are left as an exercise (see Exer-

cise 11.1). Note that for any α, x ∈ Fbm \ {0} =: F∗
bm we have αx 6= 0 ∈ Fbm

and hence Ψ(α)ψ(x) = ψ(αx) 6= 0 ∈ Fmb . Therefore it follows that for any

α ∈ F∗
bm we have that the matrix Ψ(α) is nonsingular.

Furthermore, let the definition of ψ be extended to vectors over Fbm,

i.e., such that for arbitrary r ∈ N, vectors in Frbm get mapped to vectors

in (Frmb )⊤. By linearity we can also extend the mapping Ψ to matrices by

applying it to the matrix entries and letting the matrices run together, i.e.,
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with some abuse of notation

Ψ(A) := (Ψ(ai,j)) i=1,...,r1
j=1,...,r2

∈ Fr1m×r2m
b

for A = (ai,j) i=1,...,r1
j=1,...,r2

∈ Fr1×r2bm . Again by linearity we obtain

Ψ(A)ψ(x) = ψ(Ax)

for A ∈ Fr1×r2bm and x ∈ (Fr2bm)
⊤ where r1, r2 ∈ N.

Now we can express the generating matrices of a cyclic net in terms of α.

The following theorem was first proved in [219, Theorem 2.7].

Theorem 11.2 Let b be a prime-power, let s,m ∈ N, and let α ∈ Fbm =

Fb[ω], α 6= 0, be given. Define the m×m matrices Bi = (ψ(bi,1), . . . , ψ(bi,m)),

where bi,1, . . . , bi,m constitute the chosen basis Bi for 1 ≤ i ≤ s. Then the

matrices

Ci = (Ψ(αi−1)Bi)
⊤ = (Ψ(α)i−1Bi)

⊤,

1 ≤ i ≤ s, can be chosen as generating matrices of the cyclic net Pα over

Fb. Furthermore it follows that Ci is nonsingular for 1 ≤ i ≤ s.

Proof Let φ1 be the (additive) isomorphism between F ⊆ Fbm [x] and

(Fsbm)
⊤, i.e., φ1(f) = (γ1, . . . , γs)

⊤ ∈ (Fsbm)
⊤ whenever f(x) =

∑s
i=1 γix

i−1.

To obtain the mapping φ of Definition 11.1, we have to account for the

choice of arbitrary bases B1, . . . ,Bs. We do this by multiplying by the trans-

formation matrix B−1, where B is a square, block diagonal matrix with

the matrices B1, . . . , Bs of the statement of the theorem in its diagonal.

This can be verified as follows. Fix 1 ≤ i ≤ s and let γi ∈ Fbm with

γi =
∑m

r=1 γi,rbi,r, where bi,1, . . . , bi,m constitute the chosen basis Bi. Hence
γi =

∑m−1
l=0 (

∑m
r=1 γi,rβi,r,l)ω

l whenever bi,r =
∑m−1

l=0 βi,r,lω
l for 1 ≤ r ≤ m.

Therefore we have

ψ(γi) =




βi,1,0 . . . βi,m,0
...

...

βi,1,m−1 . . . βi,m,m−1







γi,1
...

γi,m




= (ψ(bi,1), . . . , ψ(bi,m))




γi,1
...

γi,m


 .

Together we have φ(f) = B−1ψ(φ1(f)) for f ∈ F . We summarise these
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relations in the following diagrams.

F φ1
//

φ
��

(Fsbm)
⊤

ψ,Ψ
��

(Fmsb )⊤ (Fmsb )⊤
B−1

oo

Fα
φ1

//

φ

��

φ1(Fα)
ψ

��

Nα N ◦
α

B−1
oo

Our first goal is to describe N ◦
α := ψ(φ1(Fα)). Clearly, φ1(Fα) is the space

of all column vectors orthogonal to (1, α, . . . , αs−1)⊤. Hence x ∈ φ1(Fα) if

and only if 0 = (1, α, . . . , αs−1)x, which is equivalent to

0 = ψ((1, α, . . . , αs−1)x) = Ψ((1, α, . . . , αs−1))ψ(x).

Hence N ◦
α is the orthogonal space to C◦α, the transpose of the row space of

the matrix

C◦
α := Ψ((1, α, . . . , αs−1)) = (Ψ(1),Ψ(α), . . . ,Ψ(αs−1)) ∈ Fm×sm

b .

If the bases B1, . . . ,Bs are again taken into account, we have that Nα is

the image ofN ◦
α under the automorphism x 7→ B−1x, accordingly its orthog-

onal space is the image under x 7→ B⊤x, since Cα = N⊥
α = (B−1N ◦

α)
⊥ =

B⊤(N ◦
α)

⊥ = B⊤C◦α (see Exercise 11.3). Thus C⊤
α := B⊤(C◦

α)
⊤ is the trans-

pose of the overall generating matrix of the cyclic digital net and Ci :=

(Ψ(αi−1)Bi)
⊤, for 1 ≤ i ≤ s, are its generating matrices by the duality

theory of digital nets (see Chapter 7). As the mapping Ψ is a ring homo-

morphism we also have Ψ(αi) = Ψ(α)i (see Exercise 11.2).

In order to show that the matrices C1, . . . , Cs are nonsingular, recall that

for any α ∈ F∗
bm the matrix Ψ(α) is nonsingular and the matrices B1, . . . , Bs

are nonsingular as well, hence it follows that C1, . . . , Cs have to be nonsin-

gular.

Remark 11.3 Note that every digital net with nonsingular generating

matrices C1, . . . , Cs is cyclic with respect to some choice of bases B1, . . . ,Bs.
This is clear since any given nonsingular matrices C1, . . . , Cs can be con-

sidered as cyclic net generating matrices by choosing Bi such that B−1
i =

Ψ(α)−i+1C⊤
i for 1 ≤ i ≤ s. However, the bases B1, . . . ,Bs are to be under-

stood as parameters that are chosen before α and completely independent

of it.

On the other hand, in many cases it is preferable to consider a restricted

version of the original definition of cyclic nets where only a constant fixed

basis Bi = B, 1 ≤ i ≤ s, is allowed. This was proposed by Niederreiter [182].
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A generalisation of the cyclic net construction is the concept of hyperplane

nets which has been introduced in [219].

Definition 11.4 Let b be a prime power and let s,m ∈ N. Let Fbm be a

finite field of bm elements and fix an element α = (α1, . . . , αs) ∈ Fsbm . Let F
be the space of polynomials (which are understood as linear forms)

F := {f(x1, . . . , xs) = x1γ1+· · ·+xsγs : γ1, . . . , γs ∈ Fqm} ⊆ Fqm [x1, . . . , xs]

and consider the subset

Fα = {f ∈ F : f(α1, . . . , αs) = 0}.
For each 1 ≤ i ≤ s choose an ordered basis Bi of Fbm over Fb and define

the mapping φ : F → (Fmsb )⊤ by

f(x1, . . . , xs) =

s∑

i=1

γixi 7→ (γ1,1, . . . , γ1,m, . . . , γs,1, . . . , γs,m)
⊤,

where (γi,1, . . . , γi,m) ∈ Fmb is the coordinate vector of γi ∈ Fbm with respect

to the chosen basis Bi for all 1 ≤ i ≤ s.
Denote by Cα the orthogonal subspace in (Fmsb )⊤ of the image Nα :=

φ(Fα). Let

Cα = (C⊤
1 . . . C

⊤
s ) ∈ Fm×sm

b

be a matrix whose row space is the transpose of Cα. Then C1, . . . , Cs are the

generating matrices of a hyperplane net over Fb with respect to B1, . . . ,Bs
and Cα is its overall generating matrix. This hyperplane net is denoted by

Pα and we say Pα is the hyperplane net associated with α. We shall assume

that the choice of bases B1, . . . ,Bs is made before the choice of α.

The definition of hyperplane nets implies that cyclic nets are hyperplane

nets with α of the form α = (1, α, . . . , αs−1) where α ∈ Fbm .

Similarly as for cyclic nets we can express the generating matrices of a

hyperplane net in terms of α = (α1, . . . , αs) ∈ Fsbm .

Theorem 11.5 Let b be a prime power, let s,m ∈ N, and assume that

Fbm = Fb[ω]. Let α ∈ Fbm, α = (α1, . . . , αs), be given. Define the m ×
m matrices Bi = (ψ(bi,1), . . . , ψ(bi,m)), where bi,1, . . . , bi,m constitute the

chosen basis Bi for 1 ≤ i ≤ s. Then the matrices

Ci = (Ψ(αi)Bi)
⊤,

for all 1 ≤ i ≤ s can be chosen as the generating matrices of the hyperplane

net Pα over Fb. Furthermore it follows that Ci is nonsingular whenever

αi 6= 0.
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The proof of this result is similar to that of Theorem 11.2 and is therefore

left as an exercise (see Exercise 11.4).

Remark 11.6 Note that for αi = 0 we obtain that Ci = 0 ∈ Fm×m
b ,

the matrix consisting only of 0 ∈ Fb. As a consequence, by Remark 11.3 a

hyperplane net with nonsingular generating matrices can also be considered

as a cyclic net for some choice of bases B1, . . . ,Bs. It is therefore really

meaningful to consider hyperplane nets as a generalisation of cyclic nets

when the same choice of bases B1, . . . ,Bs is made for both.

We show now that hyperplane nets can be viewed as a generalisation of

polynomial lattice point sets as introduced in Definition 10.1. This was first

shown by Pirsic [218, Theorem 2].

For m ∈ N, p ∈ Fb[x] with deg(p) = m and q = (q1, . . . , qs) ∈ Fb[x]
s with

deg(qi) < m for all 1 ≤ i ≤ s the polynomial lattice P(q, p) is a digital net

whose generating matrices are given by

Ci =




u
(i)
1 u

(i)
2 . . . u

(i)
m

u
(i)
2 u

(i)
3 . . . u

(i)
m+1

...
...

...

u
(i)
m u

(i)
m+1 . . . u

(i)
2m−1



∈ Fm×m

b ,

where qi(x)/p(x) =
∑∞

l=1 u
(i)
l x

−l ∈ Fb((x
−1)) is the Laurent series expansion

in 1/x. Note that P(aq, ap) = P(q, p) for any a ∈ F∗
b . Hence we assume that

the polynomial p is monic.

For a Laurent series L =
∑∞

l=w tlx
−l, let ιm(L) denote the truncation map

of the series to the vector of the first m positively indexed coefficients, i.e.,

ιm(L) = (t1, . . . , tm)
⊤ ∈ (Fmb )

⊤, where we set t1 = · · · = tw−1 = 0 if w > 1.

Hence the jth column vector of the matrix Ci, 1 ≤ j ≤ m, 1 ≤ i ≤ s, is

given by ιm
(
xj−1qi(x)/p(x)

)
, i.e.,

Ci =

(
ιm

(
qi(x)

p(x)

)
, ιm

(
xqi(x)

p(x)

)
, . . . , ιm

(
xm−1qi(x)

p(x)

))
.

Let Mp ∈ Fm×m
b be the Hankel matrix associated with 1/p(x) = x−m +∑

j>m pj−mx
−j, i.e.,

Mp =

(
ιm

(
1

p(x)

)
, ιm

(
x

p(x)

)
, . . . , ιm

(
xm−1

p(x)

))
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=




0 0 . . . 0 1

0 . .
.

1 p1
... . .

.
. .
.

. .
. ...

0 1 . .
.

pm−2

1 p1 . . . pm−2 pm−1



∈ Fm×m

b .

Assume that qi(x) =
∑m−1

j=0 qi,jx
j for 1 ≤ i ≤ s. Then we have (see

Exercise 11.5)

ιm

(
qi(x)

p(x)

)
= ιm

(
qi,0 + qi,1x+ · · ·+ qi,m−1x

m−1

p(x)

)

=
m−1∑

j=0

qi,jιm

(
xj

p(x)

)

=Mp (qi,0, qi,1, . . . , qi,m−1)
⊤

=Mp ϑm(qi(x) mod p(x)),

where ϑm maps a polynomial a(x) = a0 + a1x + · · · + am−1x
m−1 of degree

at most m− 1 to the m-dimensional vector of its coefficients, i.e., ϑm(a) =

(a0, . . . , am−1)
⊤.

As ιm also cuts off the polynomial part of a Laurent series we obtain for

all j ∈ N0 that

ιm

(
xjqi(x)

p(x)

)
=Mp ϑm(x

jqi(x) mod p(x)).

Assume that Fbm = Fb[ω], where ω is the residue class of x in Fb[x]/(p)

and write the polynomial p as p(x) = xm−βm−1x
m−1−· · ·−β1x−β0. Hence

we have ωm = β0 + · · ·+βm−1ω
m−1. Define the matrix P as in (11.1). Then

we have qi(ω) ∈ Fbm and

Ψ(qi(ω)) =
m−1∑

j=0

qi,jP
j

=
(
ϑm(qi(x) mod p(x)), . . . , ϑm(x

m−1qi(x) mod p(x))
)
.

Hence, for all 1 ≤ i ≤ s, we have

Ci =MpΨ(qi(ω)) = Ψ(qi(ω))
⊤M⊤

p = Ψ(qi(ω))
⊤Mp,

since Ci and Mp are both symmetric with respect to their first diagonals.

However, Mp is a nonsingular matrix and hence by Lemma 4.61 its effect is

only a reordering of the point set associated with the generating matrices

Ψ(qi(ω))
⊤, 1 ≤ i ≤ s.
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We summarise these considerations in the following theorem.

Theorem 11.7 Let b be a prime power, let m ∈ N, let p ∈ Fb[x] be a

(not necessarily irreducible) monic polynomial with deg(p) = m. Let ω be

the residue class of x in Fb[x]/(p) and let Fbm = Fb[ω]. Then the polynomial

lattice point set P(q, p), where q = (q1, . . . , qs) ∈ Fb[x]
s with deg(qi) < m

for all 1 ≤ i ≤ s, is generated by the matrices Ψ(qi(ω))
⊤, 1 ≤ i ≤ s.

Hence P(q, p) is the same as the hyperplane net associated with the vector

α := (q1(ω), . . . , qs(ω)) ∈ Fsbm and with the powers of ω as the choice for

the ordered bases B1 = · · · = Bs (hence B1 = · · · = Bs are all equal to the

identity matrix).

For hyperplane nets we can express the dual net (see Definition 4.76) in

terms of α = (α1, . . . , αs). The subsequent Lemma 11.8 should be compared

with Lemma 10.6, where we expressed the dual net of a polynomial lattice

P(q, p) in terms of its generating vector q and its modulus p.

Let ϕ : Zb → Fb be a bijection with ϕ(0) = 0 ∈ Fb as used in the

construction of a digital net (see Definition 4.47). Assuming again that

Fbm = Fb[ω], for 0 ≤ k < bm with b-adic expansion k =
∑m−1

l=0 κlb
l where

κ0, . . . , κm−1 ∈ Zb, define

ϕ′(k) :=
m−1∑

l=0

ϕ(κl)ω
l ∈ Fbm

and

ψ′(k) := ψ(ϕ′(k)) = (ϕ(κ0), . . . , ϕ(κm−1))
⊤ =: k ∈ (Fmb )

⊤

and define all extensions to vectors and matrices. We have the following

commutative diagram:

Zbm
ϕ′

//

ψ′
##G

G

G

G

G

G

G

G

Fbm

ψ,Ψ
��

(Fmb )
⊤

Lemma 11.8 Let b be a prime power and let s,m ∈ N. Assume that the

m×m matrices C1, . . . , Cs as given in Theorem 11.5 are generating matrices

of a hyperplane net Pα over Fb, where α = (α1, . . . , αs) ∈ Fsbm . Then for any

integers k1, . . . , ks ∈ {0, . . . , bm − 1} with corresponding b-adic digit vectors

k1, . . . ,ks ∈ (Fmb )
⊤ we have

C⊤
1 k1 + · · ·+ C⊤

s ks = 0 ∈ (Fmb )
⊤
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if and only if

α1ϕ
′(τ1(k1)) + · · ·+ αsϕ

′(τs(ks)) = 0 ∈ Fbm

with permutations τi(k) = ψ′−1(Biψ
′(k)), and Bi as in Theorem 11.2, for

all 1 ≤ i ≤ s.

Proof By Theorem 11.5 we have

s∑

i=1

C⊤
i ki =

s∑

i=1

C⊤
i ψ

′(ki) =
s∑

i=1

Ψ(αi)Biψ
′(ki)

=
s∑

i=1

Ψ(αi)ψ
′(τi(ki)) =

s∑

i=1

ψ(αiϕ
′(τi(ki)))

= ψ

(
s∑

i=1

αiϕ
′(τi(ki))

)
.

Hence
∑s

i=1C
⊤
i ki = 0 if and only if

∑s
i=1 αiϕ

′(τi(ki)) = 0.

Lemma 11.8 motivates the following definition.

Definition 11.9 The dual net of a hyperplane net Pα over Fb is given by

Dα :=

{
k ∈ {0, . . . , bm − 1}s :

s∑

i=1

αiϕ
′(τi(ki)) = 0

}
,

where k = (k1, . . . , ks) and where τi for 1 ≤ i ≤ s is as in Lemma 11.8.

Furthermore, let D′
α = Dα \ {0}.

11.2 The quality parameter of hyperplane nets

For polynomial lattice point sets we introduced in Definition 10.8 a so-

called figure of merit which was based on the associated dual net. With

Lemma 11.8 we can define in the same way a figure of merit for the more

general concept of hyperplane nets. The following definition was first given

in [213, Definition 5].

Definition 11.10 For α = (α1, . . . , αs) ∈ Fsbm the figure of merit ρ(α) is

defined as

ρ(α) = s− 1 + min
k∈D′

α

s∑

i=1

⌊logb(ki)⌋,

where k = (k1, . . . , ks), where logb is the logarithm in base b, and where we

use the convention ⌊logb(0)⌋ := −1.
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With this figure of merit at hand we may now give a formula for the

quality parameter of a hyperplane net.

Theorem 11.11 Let b be a prime power and let s,m ∈ N. Then the

hyperplane net Pα associated with α ∈ Fsbm is a strict digital (t,m, s)-net

over Fb with t = m− ρ(α).

Proof Let C1, . . . , Cs be the generating matrices of the hyperplane net Pα
and let ϕ : Zb → Fb with ϕ(0) = 0 be the bijection used in the construction.

It is enough to show that ρ(α) = ρ(C1, . . . , Cs), where the later quantity

is the linear independence parameter of the matrices C1, . . . , Cs as defined

in Definition 4.50. The result then follows from Lemma 4.52. To show this

equality we follow the proof of Theorem 10.9.

According to the definition of ρ(C1, . . . , Cs) there are d1, . . . , ds ∈ N0 with

d1+· · ·+ds = ρ(C1, . . . , Cs)+1 such that the system consisting of the first di

row vectors c
(i)
1 , . . . , c

(i)
di

of the matrix Ci for 1 ≤ i ≤ s, is linearly dependent

over Fb. That is, there exist κi,j ∈ Zb for 0 ≤ j < di and 1 ≤ i ≤ s, not all

zero, such that
s∑

i=1

di−1∑

j=0

ϕ(κi,j)c
(i)
j+1 = 0 ∈ Fmb .

Putting κi,j = 0 for di ≤ j < m and 1 ≤ i ≤ s and ki = κi,0 + κi,1b + · · · +
κi,m−1b

m−1 and correspondingly ki = (ϕ(κi,0), . . . , ϕ(κi,m−1))
⊤ for 1 ≤ i ≤ s

we obtain

C⊤
1 k1 + · · · + C⊤

s ks = 0 ∈ (Fmb )
⊤.

Hence, from Lemma 11.8 we obtain α1ϕ
′(τ1(k1)) + · · · + αsϕ

′(τs(ks)) = 0

and therefore

ρ(α) ≤ s− 1 +

s∑

i=1

⌊logb(ki)⌋ ≤ s− 1 +

s∑

i=1

(di − 1) = ρ(C1, . . . , Cs).

On the other hand, there exist k1, . . . , ks ∈ {0, . . . , bm − 1}, not all zero,
satisfying α1ϕ

′(τ1(k1)) + · · · + αsϕ
′(τs(ks)) = 0 such that ρ(α) = s − 1 +∑s

i=1⌊logb(ki)⌋. Hence, by Lemma 11.8 we obtain C⊤
1 k1+ · · ·+C⊤

s ks = 0 ∈
(Fmb )

⊤ or equivalently,
∑s

i=1

∑m
j=1 ϕ(κi,j−1)c

(i)
j = 0 ∈ Fmb , where ki = κi,0+

κi,1b+ · · · + κi,m−1b
m−1 for 1 ≤ i ≤ s. For 1 ≤ i ≤ s let di = ⌊logb(ki)⌋ + 1.

Then the system consisting of the first di row vectors of the matrix Ci for

1 ≤ i ≤ s, is linearly dependent over Fb and hence

ρ(C1, . . . , Cs) ≤ −1 +
s∑

i=1

di = s− 1 +

s∑

i=1

⌊logb(ki)⌋ = ρ(α).
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From the definition of the figure of merit ρ(α) and from Theorem 11.11

we see that it is enough to consider vectors α of the form α = (1, α2, . . . , αs)

only. The following existence result given in [213, Theorem 2] is the analogue

of Theorem 10.13 for hyperplane nets.

Theorem 11.12 Let b be a prime power and let s,m ∈ N, s ≥ 2. Choose

ordered bases B1, . . . ,Bs of Fbm over Fb. For ρ ∈ Z define

∆b(s, ρ) =
s−1∑

d=0

(
s

d

)
(b− 1)s−d

ρ+d∑

γ=0

(
s− d+ γ − 1

γ

)
bγ + 1− bρ+s.

1. If ∆b(s, ρ) < bm, then there exists an element α ∈ Fsbm of the form

α = (1, α2, . . . , αs) with ρ(α) ≥ s + ρ. Therefore the hyperplane net Pα
is a digital (t,m, s)-net over Fb with t ≤ m− s− ρ.

2. If ∆b(s, ρ) <
bm

s−1 , then there exists an element α ∈ Fbm such that α =

(1, α, . . . , αs−1) satisfies ρ(α) ≥ s + ρ. Therefore the cyclic net Pα is a

digital (t,m, s)-net over Fb with t ≤ m− s− ρ.

We obtain the following corollary whose proof is identical to that of Corol-

lary 10.15.

Corollary 11.13 Let b be a prime power and let s,m ∈ N where s ≥ 2

and where m is sufficiently large.

1. There exists a vector α ∈ Fsbm with

ρ(α) ≥ ⌊m− (s − 1)(logbm− 1) + logb(s− 1)!⌋.

2. There exists an element α ∈ Fbm such that α = (1, α, . . . , αs−1) satisfies

ρ(α) ≥ ⌊m− (s − 1)(logbm− 1) + logb(s− 2)!⌋.

The proof of Theorem 11.12 is nearly the same as that of Theorem 10.13.

However, to see the differences we present the proof of its first assertion. To

this end we need the following result.

Lemma 11.14 Let b be a prime power and let l ∈ N and k ∈ N0. Then the

number Ab(l, k) of (h1, . . . , hl) ∈ {1, . . . , bm−1}l such that
∑l

i=1⌊logb(hi)⌋ ≤
k is given by

Ab(l, k) = (b− 1)l
k∑

γ=0

(
l + γ − 1

γ

)
bγ .

Proof The proof of this result is identical to that of Lemma 10.14.
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Proof of Theorem 11.12 Let Mb(s, ρ) be the number of (k1, . . . , ks) ∈ Zsbm
with (k2, . . . , ks) 6= (0, . . . , 0) and

∑s
i=1⌊logb(ki)⌋ ≤ ρ. Using the notation

and the result of Lemma 11.14, we get

Mb(s, ρ) =
s−1∑

d=0

(
s

d

)
Ab(s− d, ρ+ d) + 1− bρ+s = ∆b(s, ρ).

(Recall the convention that ⌊logb(0)⌋ = −1.)
For a given nonzero element (k1, . . . , ks) ∈ {0, . . . , bm − 1}s the equa-

tion ϕ′(τ1(k1)) + α2ϕ
′(τ2(k2)) + · · · + αsϕ

′(τs(ks)) = 0 has no solution if

k2 = · · · = ks = 0 (note that ϕ′(τi(0)) = 0 for all 1 ≤ i ≤ s), and it

has exactly bm(s−2) solutions α = (1, α2, . . . , αs) ∈ Fsbm otherwise (note

that ϕ′ ◦ τi are bijections for all 1 ≤ i ≤ s). Therefore, to all nonzero

(k1, . . . , ks) with
∑s

i=1⌊logb(ki)⌋ ≤ ρ there are assigned altogether at most

Mb(s, ρ)b
m(s−2) different solutions α = (1, α2, . . . , αs) ∈ Fsbm of the above

equation. Now the total number of α = (1, α2, . . . , αs) ∈ Fsbm is bm(s−1).

Thus, ifMb(s, ρ)b
m(s−2) < bm(s−1), that is, if ∆b(s, ρ) < bm, then there exists

at least one α = (1, α2, . . . , αs) ∈ Fsbm such that ϕ′(τ1(k1)) +α2ϕ
′(τ2(k2)) +

· · · + αsϕ
′(τs(ks)) = 0 for all nonzero (k1, . . . , ks) ∈ {0, . . . , bm − 1}s with∑s

i=1⌊logb(ki)⌋ ≤ ρ. For this α we have then ρ(α) ≥ s+ρ. By Theorem 11.11

the hyperplane net Pα is a digital (t,m, s)-net over Fb with t ≤ m−s−ρ.

11.3 Discrepancy of hyperplane nets

Now let us turn to the (weighted) star discrepancy of hyperplane nets. In

Section 10.2 we used the representation of the dual net of a polynomial lattice

P(q, p) in terms of q and p to give bounds for the (weighted) star discrepancy

of polynomial lattices. With these bounds we were able to give an upper

bound on the average (weighted) star discrepancy of polynomial lattices with

fixed modulus p and we were even able to give a component-by-component

construction and a construction of a Korobov vector for reasonably good

polynomial lattice point sets. Based on Lemma 11.8 one can obtain similar

results for hyperplane nets and cyclic nets. This was first done in [212].

In most cases we skip the proofs since they are identical to those for the

analogous results concerning polynomial lattices.

In the following we only consider the case where b is a prime number.

Thus we can identify Fb with Zb and choose the bijection ϕ : Zb → Fb to

be the identity map. For the general prime power b case we refer to [212].

First we apply Lemma 11.8 to re-write the bound for the star discrepancy

of digital nets given in Theorem 5.34.
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Corollary 11.15 Let b be a prime and let s,m ∈ N. For the star discrep-

ancy of the hyperplane net Pα over Zb, where α = (α1, . . . , αs) ∈ Fsbm, we

have

D∗
bm(P) ≤ 1−

(
1− 1

bm

)s
+R′

b(α),

where

R′
b(α) =

∑

k∈D′
α

rb(k),

where for k = (k1, . . . , ks) ∈ {0, . . . , bm−1}s we put rb(k) = rb(k1) · · · rb(ks)
and where for k ∈ {0, . . . , bm − 1} we put

rb(k) =

{
1 if k = 0,

1
br+1 sin2(πκr/b)

if k = κ0 + κ1b+ · · ·+ κrb
r, κr 6= 0.

An analogous result holds for the weighted star discrepancy where the

weights are of product form.

Corollary 11.16 Let b be a prime, let s,m ∈ N, and let γ = (γi)i≥1 be a

sequence of weights. For the weighted star discrepancy of the hyperplane net

Pα over Zb, where α = (α1, . . . , αs) ∈ Fsbm , we have

D∗
bm,γ(Pα) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)
+R′

b,γ(α),

where

R′
b,γ(α) =

∑

k∈D′
α

rb(k,γ),

where for k = (k1, . . . , ks) ∈ {0, . . . , bm− 1}s we put rb(k,γ) = rb(k1, γ1) · · ·
· · · rb(ks, γs) and where for k ∈ {0, . . . , bm − 1} we put

rb(k, γ) =

{
1 + γ if k = 0,

γrb(k) if k 6= 0.

It can be shown that for α ∈ Fsbm one can compute R′
b(α) and R′

b,γ(α),

respectively, at a cost of O(sbm) operations (see Exercises 11.7 and 11.8).

Now we can determine the average value of R′
b(α) and R′

b,γ(α) over all

possible α ∈ (F∗
bm)

s.

Theorem 11.17 Let s be a prime and let s,m ∈ N. Then we have

1

|F∗
bm|s

∑

α∈(F∗
bm

)s

R′
b(α) =

1

bm − 1

((
1 +m

b2 − 1

3b

)s
− 1− smb2 − 1

3b

)
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and

1

|F∗
bm |s

∑

α∈(F∗
bm

)s

R′
b,γ(α) =

1

bm − 1

∑

u⊆Is
|u|≥2

∏

i∈u

(
γi

(
m
b2 − 1

3b

))∏

i 6∈u
(1 + γi) .

Proof We provide the proof only for the unweighted case. First observe

that |F∗
bm | = bm − 1. We have

1

|F∗
bm |s

∑

α∈(F∗
bm

)s

R′
b(α) =

1

(bm − 1)s

∑

α∈(F∗
bm

)s

∑

k∈Dα

rb(k)

=
1

(bm − 1)s

∑

k∈Zs
bm

\{0}
rb(k)

∑

α∈(F∗
bm

)s

k∈Dα

1,

where we inserted for R′
b(α) and changed the order of summation. Note that

τi is a permutation and that τi(k) = 0 if and only if k = 0 for all 1 ≤ i ≤ s.
If k ∈ {0, . . . , bm − 1}s, k 6= 0, is of the form k = (0, . . . , 0, ki, 0, . . . , 0)

with ki 6= 0, then there is no α ∈ (F∗
bm)

s such that α1ϕ
′(τ1(k1)) + · · · +

αsϕ
′(τs(ks)) = αiϕ(τi(ki)) = 0, since Fbm is an integral domain. Otherwise,

the number of α ∈ (F∗
bm)

s which satisfy α1ϕ
′(τ1(k1))+ · · ·+αsϕ′(τs(ks)) = 0

is exactly (bm − 1)s−1. Therefore we have

1

|F∗
bm|s

∑

α∈(F∗
bm )s

R′
b(α) =

1

bm − 1

∑

k∈Zs
bm\{0}

rb(k)

− 1

bm − 1

s∑

i=1

∑

ki∈Z∗
bm

rb(ki)

s∏

j=1
j 6=i

rb(0).

Now the result follows from Lemma 10.22.

We obtain the following corollary to Theorem 11.17. The proof of this

result is exactly the same as that of Corollary 10.23.

Corollary 11.18 Let b be a prime and let s,m ∈ N. Then for 0 ≤ δ < 1

there are more than δ|F∗
bm |s vectors α ∈ (F∗

bm)
s such that

D∗
bm(Pα) ≤

s

bm
+

1

1− δ
1

bm − 1

(
1 +m

b2 − 1

3b

)s
,

and

D∗
bm,γ(Pα) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)
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+
1

1− δ
1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

From the previous results it follows that there exist a sufficiently large

number of vectors α ∈ (F∗
bm)

s that yield hyperplane nets of good quality with

respect to the (weighted) star discrepancy. As for polynomial lattices, such

vectors can be found by computer search using a component-by-component

construction. We state the algorithm for the star- and the weighted star

discrepancy.

Algorithm 11.19 Given s,m ∈ N, a prime b, a sequence of ordered bases

(Bi)i≥1 of Fbm over Zb and a sequence γ = (γi)i≥1 of weights.

1. Choose α1 = 1.

2. For d > 1, assume, we have already constructed α1, . . . , αd−1 ∈ F∗
bm.

Then find αd ∈ F∗
bm which minimises the quantity R′

b((α1, . . . , αd−1, αd))

(or R′
b,γ((α1, . . . , αd−1, αd)) in the weighted case) as a function of αd.

Since R′
b(α) and R′

b,γ(α) can be computed at a cost of O(sbm) operations

it follows that the cost of Algorithm 11.19 is of O(s2b2m) operations.

In the following theorem we show that Algorithm 11.19 is guaranteed to

find a good vector α ∈ (F∗
bm)

s.

Theorem 11.20 Let b be prime, let s,m ∈ N, and let γ = (γi)i≥1 be

a sequence of weights. Suppose α = (α1, . . . , αs) ∈ (F∗
bm)

s is constructed

according to Algorithm 11.19 using R′
b (or R

′
b,γ in the weighted case). Then

for all 1 ≤ d ≤ s we have

R′
b((α1, . . . , αd)) ≤

1

bm − 1

(
1 +m

b2 − 1

3b

)d
,

and

R′
b,γ((α1, . . . , αd)) ≤

1

bm − 1

d∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

The proof of Theorem 11.20 is identical to that of Theorem 10.28 and is

therefore left as an exercise (see Exercise 11.11).

The subsequent bound for the (weighted) star discrepancy of hyperplane

nets, which are constructed according to Algorithm 11.19, follows from

Corollary 11.15 by invoking Theorem 11.20.
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Corollary 11.21 Let b be prime, let s,m ∈ N, and let γ = (γi)i≥1 be

a sequence of weights. Suppose α = (α1, . . . , αs) ∈ (F∗
bm)

s is constructed

according to Algorithm 11.19 using R′
b (or R

′
b,γ in the weighted case). Then

for the (weighted) star discrepancy of the hyperplane net Pα we have

D∗
bm(Pα) ≤

s

bm
+

1

bm − 1

(
1 +m

b2 − 1

3b

)s
,

and

D∗
bm,γ(Pα) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)

+
1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

The following result can be proved in the same way as Corollary 5.45.

Corollary 11.22 Let b be prime, let s,m ∈ N, and let γ = (γi)i≥1 be a se-

quence of weights. If
∑∞

i=1 γi <∞, then for any δ > 0 there exists a constant

c̃γ,δ > 0, independent of s and m, such that the weighted star discrepancy

of the hyperplane net Pα, where α ∈ (F∗
bm)

s is constructed according to

Algorithm 11.19 using R′
b,γ , satisfies

D∗
bm,γ(Pα) ≤

c̃γ,δ

bm(1−δ) . (11.2)

Remark 11.23 In the same way as in Corollary 5.46 we can use a super-

position of hyperplane nets Pα, where α ∈ (F∗
bm)

s is constructed according

to Algorithm 11.19 using R′
b,γ , such that we obtain for any N, s ∈ N a

point set P in [0, 1)s of cardinality N and with weighted star discrepancy

D∗
N,γ(P) ≤ cγ,δN

−1+δ, where cγ,δ > 0 is independent of s and N whenever∑∞
i=1 γi < ∞. Hence we again have a constructive version of the strong

tractability result for the weighted star discrepancy given in Corollary 5.46.

Obviously we can restrict the search space for α ∈ (F∗
bm)

s when we search

for cyclic nets only. In the following we write R′
b(α) (and R′

b,γ(α)) instead

of R′
b((1, α, . . . , α

s−1)) (and R′
b,γ((1, α, . . . , α

s−1)).

Algorithm 11.24 Given s,m ∈ N, a prime b, a sequence of ordered bases

(Bi)i≥1 of Fbm over Zb and a sequence γ = (γi)i≥1 of weights. Find α ∈ F∗
bm

by minimising the quantity R′
b(α) (or R′

b,γ(α) in the weighted case).
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The cost of the algorithm is of O(sb2m) operations.

We show that Algorithm 11.24 is guaranteed to find a good α ∈ F∗
bm .

Theorem 11.25 Let b be prime, let s,m ∈ N, and let γ = (γi)i≥1 be

a sequence of weights. Suppose α ∈ F∗
bm is constructed according to Algo-

rithm 11.24 by using R′
b (or R

′
b,γ in the weighted case). Then we have

R′
b(α) ≤

s− 1

bm − 1

(
1 +m

b2 − 1

3b

)s
,

and

R′
b,γ(α) ≤

s− 1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

The proof of this result follows exactly along the lines of the proof of

Theorem 10.34 and is therefore left as an exercise (Exercise 11.12).

From Corollary 11.15 and Theorem 11.25 we obtain the following bound

on the (weighted) star discrepancy.

Corollary 11.26 Let b be a prime, let s,m ∈ N, and let γ = (γi)i≥1

be a sequence of weights. Suppose α ∈ F∗
bm is constructed according to Al-

gorithm 11.24 by using R′
b (or R′

b,γ in the weighted case). Then for the

(weighted) star discrepancy of the cyclic net Pα we have

D∗
bm(Pα) ≤

s

bm
+

s− 1

bm − 1

(
1 +m

b2 − 1

3b

)s
,

and

D∗
bm,γ(Pα) ≤

∑

∅6=u⊆Is
γu

(
1−

(
1− 1

bm

)|u|)

+
s− 1

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
,

respectively.

Exercises

11.1 Show that for any α, x ∈ Fbm we have Ψ(α)ψ(x) = ψ(αx).

11.2 Show that for any α ∈ Fbm and any j ∈ N0 we have Ψ(αj) = Ψ(α)j .



Exercises 383

11.3 Let b be a prime power, r ∈ N and let A be a nonsingular r × r

matrix over Fb. Let X ⊆ Frb be a linear subspace of Frb. Show that

(AX )⊥ = (A−1)⊤X⊥.
11.4 Give a proof of Theorem 11.5. Hint: This is just an adaption of the

proof of Theorem 11.2.

11.5 For a Laurent series L ∈ Fb((x
−1)), and m ∈ N let ιm(L) be defined as

in Section 11.1. Let p ∈ Fb[x] and u, v ∈ Fb and 0 ≤ l < k be integers.

Show that we have

ιm

(
uxl + vxk

p(x)

)
= uιm

(
xl

p(x)

)
+ vιm

(
xk

p(x)

)
.

11.6 Let b be a prime power and let p ∈ Fb[x] be an irreducible polyno-

mial. Let ω be the residue class of x in Fb[x]/(p) and let Fbm = Fb[ω].

Show that the polynomial lattice point set whose generating vector

is of Korobov form vs(q) with q ∈ Fb[x] and deg(q) < deg(p) (see

Chapter 10, Section 10.1) is the same as the cyclic net associated with

α = q(ω) ∈ Fbm with the powers of ω as choice for the ordered bases

B1 = · · · = Bs.
11.7 For α ∈ Fsbm , b a prime, let Pα = {x0, . . . ,xbm−1} be the corresponding

hyperplane net over Zb. Show that we have

R′
b(α) = −1 +

bm−1∑

n=0

s∏

i=1

φb,m(xn,i),

where xn,i is the ith component of xn for 1 ≤ i ≤ s and 0 ≤ i < bm

and where φb,m is as in (10.6). Hence Rb(α) can be computed at a cost

of O(sbm) operations.

11.8 With the notation of Exercise 11.7, show that we have

R′
b,γ(α) = −

s∏

i=1

(1 + γi) +

bm−1∑

n=0

s∏

i=1

(1 + γiφb,m(xn,i)).

11.9 Give a proof of the second assertion in Theorem 11.12.

11.10 Give a proof of Theorem 11.17 for the weighted case.

11.11 Give a proof of Theorem 11.20.

11.12 Give a proof of Theorem 11.25.

11.13 Let b be a prime, let m ∈ N, and let (Bi)i≥1 be a sequence of ordered

bases of Fbm over Zb. Show that for c >
∑∞

s=1(s(log(1 + s))2)−1 there

exists an element α ∈ F∗
bm such that for all s ∈ N we have

R′
b(α) ≤

cs(s − 1)(log(s+ 1))2

bm − 1

(
1 +m

b2 − 1

3b

)
.
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Hint: Show that

Es :=

{
α ∈ F∗

bm : R′
b(α) >

cs(s− 1)(log(s+ 1))2

bm − 1

(
1 +m

b2 − 1

3b

)}

has no more than bm−1
cs(log(s+1))2

elements and deduce that E :=
⋃
s∈NEs

does not contain all elements from F∗
bm .

11.14 With the notation of Exercise 11.13 and with a sequence of weights

γ = (γi)i≥1, show that for c >
∑∞

s=1(s(log(1 + s))2)−1 there exists an

element α ∈ F∗
bm such that for all s ∈ N we have

R′
b(α,γ) ≤

cs(s− 1)(log(s+ 1))2

bm − 1

s∏

i=1

(
1 + γi

(
1 +m

b2 − 1

3b

))
.
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Multivariate integration in weighted Sobolev spaces

In this chapter we consider the integration problem in weighted Sobolev

spaces consisting of functions whose mixed partial derivatives of order up to

one are square integrable. We use digitally shifted digital nets over Zb as un-

derlying point sets for the QMC algorithms. The analysis of the mean square

worst-case error over all possible digital shifts for this integration problem

leads to existence results for digital nets yielding a reasonably small mean

square worst-case error. Examples of such digital nets are polynomial lat-

tices, which can be constructed with a component-by-component algorithm,

or Korobov-type polynomial lattices. The main tool for the error analysis

is a so-called digital shift invariant kernel associated with the reproducing

kernel of the given weighted Sobolev space. This digital shift invariant ker-

nel can be represented in terms of Walsh functions, which gives the link

to digital nets. The idea of using Walsh functions for the analysis of QMC

algorithms based on digital nets stems from Larcher [131], see also Larcher

& Traunfellner [146] or the survey [145].

12.1 Digital shift invariant kernels

In this section we introduce “digital b-adic shift invariant kernels” associated

with a given reproducing kernel K. Throughout this section we assume that

b is a prime number.

For x,σ ∈ [0, 1)s the digital b-adic shifted point x ⊕ σ is defined as in

Definition 4.65. Although we only write ⊕ instead of ⊕b,ϕ we remark again

that a digital shift depends on the chosen base b (as we consider the case of

prime bases b only we use the identity for the bijection ϕ in Definition 4.65).

A reproducing kernelK with the property thatK(x⊕σ,y⊕σ) = K(x,y),

for all x,y, and all σ, is called a digital b-adic shift invariant reproducing

kernel or short a digital shift invariant kernel.
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For an arbitrary reproducing kernel K we associate a digital shift invari-

ant kernel with K in the following definition, which was first given in [50,

Section 6.1].

Definition 12.1 For an arbitrary reproducing kernel K we define the

associated digital shift invariant kernel Kds by

Kds(x,y) :=

∫

[0,1]s
K(x⊕ σ,y ⊕ σ) dσ.

Notice that the kernel Kds is indeed digital shift invariant as

Kds(x⊕ σ,y ⊕ σ) =

∫

[0,1]s
K(x⊕ σ ⊕∆,y ⊕ σ ⊕∆) d∆

=

∫

[0,1]s
K(x⊕∆,y ⊕∆) d∆

= Kds(x,y).

Recall that for a reproducing kernel K : [0, 1]s × [0, 1]s → C we have

K(x,y) = K(y,x); see Remark 2.7. Therefore, in order to obtain a simple

notation, we define, for a reproducing kernel K ∈ L2([0, 1]
2s) and for k,k′ ∈

Ns0,

K̂(k,k′) =
∫

[0,1]s

∫

[0,1]s
K(x,y) bwalk(x) bwalk′(y) dxdy.

From K(x,y) = K(y,x) then follows that K̂(k,k′) = K̂(k,k′) and there-

fore K̂(k,k′) ∈ R. In the following lemma we show how the digital shift

invariant kernel can expressed in terms of K̂(k,k).

Lemma 12.2 Let the reproducing kernel K ∈ L2([0, 1]
2s) be continuous

and for k ∈ Ns0 let

K̂(k,k) =

∫

[0,1]s

∫

[0,1]s
K(x,y) bwalk(x) bwalk(y) dxdy.

If
∑

k∈Ns
0

|K̂(k,k)| <∞,

then the digital shift invariant kernel Kds is given by

Kds(x,y) =
∑

k∈Ns
0

K̂(k,k) bwalk(x) bwalk(y).



12.1 Digital shift invariant kernels 387

Proof Using the definition of the digital shift invariant kernel we have for

any k,k′ ∈ Ns0 that

K̂ds(k,k
′)

:=

∫

[0,1]2s
Kds(x,y) bwalk(x) bwalk′(y) dx dy

=

∫

[0,1]2s

∫

[0,1]s
K(x⊕ σ,y ⊕ σ) dσ bwalk(x) bwalk′(y) dxdy

=

∫

[0,1]s

∫

[0,1]2s
K(x⊕ σ,y ⊕ σ) bwalk(x) bwalk′(y) dxdy dσ

=

∫

[0,1]s

∫

[0,1]2s
K(x,y) bwalk(x⊕ σ) bwalk′(y ⊕ σ) dxdy dσ

=

∫

[0,1]s

∫

[0,1]2s
K(x,y) bwalk(x) bwalk′(y) bwalk(σ) bwalk′(σ) dxdy dσ

=

∫

[0,1]2s
K(x,y) bwalk(x) bwalk(y) dx dy

∫

[0,1]s
bwalk(σ) bwalk′(σ) dσ,

where we used Corollary A.5 and Corollary A.13.

Using Proposition A.10 we obtain for all k,k′ ∈ Ns0 that

K̂ds(k,k
′) =

{
K̂(k,k) if k = k′,
0 if k 6= k′.

Under the assumption that
∑

k∈Ns
0
|K̂(k,k)| <∞ we have that

∑

k∈Ns
0

K̂ds(k,k) bwalk(x)

converges for every x ∈ [0, 1)s.

We show now that Kds is continuous. Let x,y,σ ∈ [0, 1)s with x =

(x1, . . . , xs), y = (y1, . . . , ys), σ = (σ1, . . . , σs), xi = ξi,1b
−1 + ξi,2b

−2 + · · · ,
yi = ηi,1b

−1+ηi,2b
−2, and σi = σi,1b

−1+σi,2b
−2+· · · . Assume that |x−y|∞ <

δ for some 0 < δ ≤ b−1, where |x|∞ = max1≤i≤s |xi|. Let a ∈ N be such

that b−a−1 < δ ≤ b−a. Then it follows that ξi,k = ηi,k for all 1 ≤ i ≤ s and

1 ≤ k ≤ a. Hence ξi,k ⊕ σi,k = ηi,k ⊕ σi,k for all 1 ≤ i ≤ s and 1 ≤ k ≤ a and

therefore |(x⊕ σ)− (y ⊕ σ)|∞ ≤ b−a < bδ.

Hence the continuity of K(x,y) implies that also K(x ⊕ σ,y ⊕ σ) is

continuous as a function of x,y for each fixed σ ∈ [0, 1)s and subsequently

also the continuity of Kds. Indeed, for given x,y ∈ [0, 1)s and ε > 0 let

δ > 0 be such that |K(x,y)−K(x′,y′)| < ε for all x′,y′ ∈ [0, 1)s such that

|(x,y)− (x′,y′)|∞ < δ. Then |K(x⊕σ,y⊕σ)−K(x′⊕σ,y′⊕σ)| < ε for
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all x′,y′ ∈ [0, 1)s such that |(x,y)− (x′,y′)|∞ < δb−1. Hence

|Kds(x,y)−Kds(x
′,y′)| ≤

∫

[0,1]s
|K(x⊕ σ,y ⊕ σ)−K(x′ ⊕ σ,y′ ⊕ σ)|dσ

<

∫

[0,1]s
εdσ = ε,

for all x′,y′ ∈ [0, 1)s such that |(x,y)− (x′,y′)|∞ < δb−1. Therefore Kds is

continuous.

Hence we obtain from Section A.3 that

Kds(x,y) =
∑

k∈Ns
0

K̂(k,k) bwalk(x) bwalk(y).

Remark 12.3 Notice that we do not require that the reproducing kernel

K can be represented by its Walsh series, i.e., we do not require that

K(x,y) =
∑

k,k′∈Ns
0

K̂(k,k′) bwalk(x) bwalk′(y).

Let b be a prime. For a point set P in [0, 1)s and σ ∈ [0, 1)s let Pσ =

{x0⊕σ, . . . ,xN−1⊕σ} be the digitally b-adic shifted version of P as defined

in Definition 4.66. We recall that if we use a digital shift in conjunction with

a digital net, then the shift and the net are always considered to be in the

same base b. Therefore, if it is clear with respect to which base b a point is

shifted we may omit the phrase “b-adic”.

According to Definition 2.10, for a reproducing kernel Hilbert space H

with reproducing kernel K, the worst-case error for a QMC rule based on

the quadrature points P = {x0, . . . ,xN−1} is defined as

e(H ,P) := sup
f∈H ,||f ||≤1

|I(f)−QN (f)|.

The initial error is defined as e(H , 0) := supf∈H ,||f ||≤1 |I(f)| = ‖I‖.
We further define the mean square worst-case error ê2ds(H ,P) over all

digitally shifted versions of P by

ê2ds(H ,P) := E[e2(H ,Pσ)] =
∫

[0,1]s
e2(H ,Pσ) dσ.

In the following theorem we show that the mean square worst-case error for

integration in a reproducing kernel Hilbert space with kernel K is the same

as the worst-case error for integration in the reproducing kernel Hilbert space

with kernel Kds, the associated digital shift invariant kernel. To stress the

dependence on the reproducing kernel K we write in the following e(K,P)
and ê2ds(K,P) instead of e(H ,P) and ê2ds(H ,P).
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Theorem 12.4 For any reproducing kernel K ∈ L2([0, 1]
2s) and point set

P we have

E[e2(K,Pσ)] = e2(Kds,P).

Proof According to (2.11) we have

e2(K,P) =
∫

[0,1]2s
K(x,y) dxdy − 2

N

N−1∑

n=0

∫

[0,1]s
K(xn,y) dy

+
1

N2

N−1∑

n,m=0

K(xn,xm).

Therefore we have

∫

[0,1]s
e2(K,Pσ) dσ

=

∫

[0,1]2s
K(x,y) dxdy − 2

N

N−1∑

n=0

∫

[0,1]s

∫

[0,1]s
K(xn ⊕ σ,y) dy dσ

+
1

N2

N−1∑

n,m=0

∫

[0,1]s
K(xn ⊕ σ,xm ⊕ σ) dσ

=

∫

[0,1]s

∫

[0,1]2s
K(x⊕ σ,y ⊕ σ) dx dy dσ

− 2

N

N−1∑

n=0

∫

[0,1]s

∫

[0,1]s
K(xn ⊕ σ,y ⊕ σ) dy dσ

+
1

N2

N−1∑

n,m=0

∫

[0,1]s
K(xn ⊕ σ,xm ⊕ σ) dσ

=

∫

[0,1]2s

∫

[0,1]s
K(x⊕ σ,y ⊕ σ) dσ dxdy

− 2

N

N−1∑

n=0

∫

[0,1]s

∫

[0,1]s
K(xn ⊕ σ,y ⊕ σ) dσ dy

+
1

N2

N−1∑

n,m=0

∫

[0,1]s
K(xn ⊕ σ,xm ⊕ σ) dσ

and hence the result follows from
∫
[0,1]s K(x⊕σ,y⊕σ) dσ = Kds(x,y).
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12.2 Weighted Sobolev spaces

In this section we introduce the weighted version of the unanchored Sobolev

space from Section 2.5. This variant of the standard Sobolev space of func-

tions defined over the s-dimensional unit cube [0, 1]s is presented also in

[198, Appendix A.2.3]. We consider product weights that are independent

of the dimension s, i.e., γu,s = γu =
∏
i∈u γi for u ⊆ Is and for a se-

quence γ = (γi)i≥1 of nonnegative real numbers. We denote the function

space under consideration by Hsob,s,γ. Its reproducing kernel is given by

(see [54, 198, 249])

K(x,y) =
s∏

j=1

Kj(xj , yj) =
s∏

j=1

(1 + γj(
1
2B2({xj − yj}) + (xj − 1

2)(yj − 1
2)),

(12.1)

where B2(x) = x2 − x + 1
6 is the second Bernoulli polynomial and {x} =

x− ⌊x⌋. The inner product in Hsob,s,γ is given by

〈f, g〉 :=
∑

u⊆Is

∏

j∈u
γ−1
j

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂|u|f
∂xu

(x) dxIs\u

)

×
(∫

[0,1]s−|u|

∂|u|g
∂xu

(x) dxIs\u

)
dxu.

The weighted Sobolev space Hsob,s,γ contains all functions on [0, 1]s where

the first mixed partial derivatives are square integrable. It is easy to check

that the initial error for the space Hsob,s,γ is e(Hsob,s,γ, 0) = 1; see Exer-

cise 12.1.

In the following theorem we determine the digital shift invariant kernel in

base b ≥ 2.

Proposition 12.5 Let K be the reproducing kernel given by (12.1). Then

the corresponding digital shift invariant kernel in prime base b ≥ 2 is given

by

Kds(x,y) =
∑

k∈Ns
0

rsob,b(k,γ) bwalk(x) bwalk(y), (12.2)

where for k = (k1, . . . , ks) we put rsob,b(k,γ) =
∏s
i=1 rsob,b(ki, γj), and for

k = κa−1b
a−1 + · · ·+ κ1b+ κ0 with κa−1 6= 0, we put

rsob,b(k, γ) =

{
1 if k = 0,
γ

2b2a

(
1

sin2(κa−1π/b)
− 1

3

)
if k > 0.



12.2 Weighted Sobolev spaces 391

Proof Note that the reproducing kernel (12.1) is in L2([0, 1]
s). We use

Lemma 12.2 to calculate the digital shift invariant kernel.

As the Sobolev space Hsob,s,γ is a tensor product of one-dimensional

Hilbert spaces and the reproducing kernel is the product of the kernels Kj ,

we only need to find the digital shift invariant kernels Kds,j associated with

Kj. The digital shift invariant kernel in higher dimension s > 1 is then just

the product of the Kds,j.

Omitting the index j we have to determine

Kds(x, y) (12.3)

=

∫ 1

0
K(x⊕ σ, y ⊕ σ) dσ

=

∫ 1

0
(1 + γ(12B2({(x⊕ σ)− (y ⊕ σ)}) + ((x⊕ σ)− 1

2 )((y ⊕ σ)− 1
2)) dσ,

where the digital shift is in base b.

It is convenient for our analysis to represent the kernel K in terms of

Walsh functions in base b. Hence we need to find the Walsh coefficients

K̂(k, k) of K.

From Lemma A.22 we know that the Walsh representation of the function

x 7→ x− 1/2 for x ∈ [0, 1) is given by

x− 1

2
=

∞∑

a=1

b−1∑

κ=1

1

ba(ω−κ
b − 1)

bwalκba−1(x)

=

∞∑

a=1

b−1∑

κ=1

1

ba(ωκb − 1)
bwalκba−1(x), (12.4)

as x− 1/2 = x− 1/2, where ωb = e2πi/b.

Using these equalities we get for all x, y ∈ [0, 1) that

(x− 1
2)(y − 1

2)

=
∞∑

a=1

b−1∑

κ=1

∞∑

a′=1

b−1∑

κ′=1

1

ba+a′(ω−κ
b − 1)(ωκ

′

b − 1)
bwalκba−1(x) bwalκ′ba′−1(y).

Note that Lemma 12.2 is true for any function in L2([0, 1]
2s) which can be

represented by its Walsh series. Hence
∫ 1

0
((x⊕ σ)− 1

2 )((y ⊕ σ)− 1
2) dσ

=
∞∑

a=1

b−1∑

κ=1

1

b2a|ωκb − 1|2 bwalκba−1(x) bwalκba−1(y). (12.5)
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We have B2(x) = x2− x+ 1
6 and it can be shown that B2({x}) = B2(|x|)

for all x ∈ (−1, 1). For our investigations here we use B2(|x− y|) instead of

B2({x− y}). By using (12.4) we obtain

|x− y|2 (12.6)

=

( ∞∑

a=1

b−1∑

κ=1

1

ba(ω−κ
b − 1)

bwalκba−1(x)−
∞∑

a=1

b−1∑

κ=1

1

ba(ω−κ
b − 1)

bwalκba−1(y)

)2

=
∞∑

a=1

b−1∑

κ=1

∞∑

a′=1

b−1∑

κ′=1

1

ba+a
′
(ω−κ
b − 1)(ωκ

′

b − 1)
bwalκba−1(x) bwalκ′ba′−1(x)

+

∞∑

a=1

b−1∑

κ=1

∞∑

a′=1

b−1∑

κ′=1

1

ba+a′(ω−κ
b − 1)(ωκ

′

b − 1)
bwalκba−1(y) bwalκ′ba′−1(y)

− 2

∞∑

a=1

b−1∑

κ=1

∞∑

a′=1

b−1∑

κ′=1

1

ba+a′(ω−κ
b − 1)(ωκ

′

b − 1)
bwalκba−1(x) bwalκ′ba′−1(y).

By using Lemma 12.2 again we obtain
∫ 1

0
|(x⊕ σ)− (y ⊕ σ)|2 dσ

= 2
∞∑

a=1

b−1∑

κ=1

1

b2a|ωκb − 1|2 − 2
∞∑

a=1

b−1∑

κ=1

1

b2a|ωκb − 1|2 bwalκba−1(x) bwalκba−1(y)

=
1

6
− 2

∞∑

a=1

b−1∑

κ=1

1

b2a|ωκb − 1|2 bwalκba−1(x) bwalκba−1(y), (12.7)

where the last equality follows from

2

∞∑

a=1

b−1∑

κ=1

1

b2a|ωκb − 1|2 =

∫ 1

0

∫ 1

0
|x− y|2 dxdy =

1

6
, (12.8)

which in turn follows from (12.6) in combination with the orthogonality

properties of the Walsh functions (see Proposition A.10).

For the last part, namely
∫ 1
0 |(x ⊕ σ) − (y ⊕ σ)|dσ, we cannot use the

argument above. Instead, by Lemma 12.2, there are τb(k) such that

∫ 1

0
|(x⊕ σ)− (y ⊕ σ)|dσ =

∞∑

k=0

τb(k) bwalk(x) bwalk(y). (12.9)

For k ∈ N0 we have

τb(k) =

∫ 1

0

∫ 1

0

∫ 1

0
|(x⊕ σ)− (y ⊕ σ)| bwalk(x) bwalk(y) dσ dxdy
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=

∫ 1

0

∫ 1

0

∫ 1

0
|x− y| bwalk(x⊖ σ) bwalk(y ⊖ σ) dσ dxdy

=

∫ 1

0

∫ 1

0
|x− y| bwalk(x) bwalk(y) dxdy.

First, one can show that
∫ 1
0

∫ 1
0 |x − y|dxdy = 1

3 and therefore τb(0) = 1
3 .

For k ∈ N let k = κa−1b
a−1 + · · ·+ κ1b+ κ0, where a is such that κa−1 6= 0,

u = ua−1b
a−1 + · · ·+ u1b+ u0 and v = va−1b

a−1 + · · ·+ v1b+ v0. Then

τb(k) =

∫ 1

0

∫ 1

0
|x− y| bwalk(x) bwalk(y) dxdy

=

ba−1∑

u=0

ba−1∑

v=0

ω
κ0(ua−1−va−1)+···+κa−1(u0−v0)
b

×
∫ (u+1)/ba

u/ba

∫ (v+1)/ba

v/ba
|x− y|dxdy.

We have the following equalities: let 0 ≤ u < ba, then

∫ (u+1)/ba

u/ba

∫ (u+1)/ba

u/ba
|x− y|dxdy =

1

3b3a

and for 0 ≤ u, v < ba, u 6= v, we have

∫ (u+1)/ba

u/ba

∫ (v+1)/ba

v/ba
|x− y|dxdy =

|u− v|
b3a

.

Thus

τb(k) =

ba−1∑

u=0

1

3b3a
+

ba−1∑

u=0

ba−1∑

v=0
u 6=v

ω
κ0(ua−1−va−1)+···+κa−1(u0−v0)
b

|u− v|
b3a

=
1

3b2a
+

2

b3a

ba−2∑

u=0

ba−1∑

v=u+1

(v − u)ωκ0(ua−1−va−1)+···+κa−1(u0−v0)
b . (12.10)

In the following we determine the values of τb(k) for any k ∈ N. Let

θ(u, v) = (v − u)ωκ0(ua−1−va−1)+···+κa−1(u0−v0)
b .

In order to find the value of the double sum in the expression for τb(k) let

u = ua−1b
a−1 + · · · + u1b and let v = va−1b

a−1 + · · · + v1b, where v > u.

Observe that u and v are divisible by b, that is u0 = v0 = 0, and that
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k = κa−1b
a−1 + · · ·+ κ1b+ κ0, where a is such that κa−1 6= 0. We have

∣∣∣∣∣
b−1∑

u0=0

b−1∑

v0=0

θ(u+ u0, v + v0)

∣∣∣∣∣ =
∣∣∣∣∣
b−1∑

u0=0

b−1∑

v0=0

(v0 − u0)ωκa−1(u0−v0)
b

∣∣∣∣∣ , (12.11)

as |ωκ0(ua−1−va−1)+···+κa−2(u1−v1)
b | = 1 and

∑b−1
u0=0

∑b−1
v0=0(v−u)ω

κa−1(u0−v0)
b =

0. We show that the sum (12.11) is indeed 0. This can be seen by the fol-

lowing:

b−1∑

u0=0

b−1∑

v0=0

(v0 − u0)ωκa−1(u0−v0)
b

=
b−1∑

u0=0

b−1∑

v0=0
v0 6=u0

(v0 − u0)ωκa−1(u0−v0)
b

=
b−2∑

u0=0

b−1∑

v0=u0+1

(v0 − u0)ωκa−1(u0−v0)
b +

b−2∑

v0=0

b−1∑

u0=v0+1

(v0 − u0)ωκa−1(u0−v0)
b

=

b−2∑

u0=0

b−1∑

v0=u0+1

(v0 − u0)(ωκa−1(u0−v0)
b − ω−κa−1(u0−v0)

b )

= 2i

b−2∑

u0=0

b−1∑

v0=u0+1

(v0 − u0) sin(2πκa−1(u0 − v0)/b).

Let M = {(u0, v0) : 0 ≤ u0 < v0 ≤ b − 1}. For c ∈ {1, . . . , b − 1} consider

the sets Jc = {(u0, v0) ∈ M : v0 − u0 = c}. Let |Jc| be the number of

elements in the set Jc, then |Jc| = b− c. Further we have sin(2πκa−1c/b) =

− sin(−2πκa−1c/b) = − sin(2πκa−1(b − c)/b). If c = b − c, that is b = 2c

we have sin(2πκa−1c/b) = sin(πκa−1) = 0 and for c ∈ {1, . . . , b − 1} with

c 6= b− c we have
∑

(u0,v0)∈Jc
(v0 − u0)−

∑

(u0,v0)∈Jb−c

(v0 − u0) = |Jc|c− |Jb−c|(b− c)

= (b− c)c − c(b− c) = 0.

Thus it follows that

b−1∑

u0=0

b−1∑

v0=0

θ(u+ u0, v + v0) = 0 (12.12)

for any 0 ≤ u < v ≤ ba − 1 which are divisible by b.

Therefore most terms in the double sum in (12.10) cancel out. We are left
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with the following terms: θ(u+ u0, u + v0) for u = 0, . . . , ba − b, where b|u,
and 0 ≤ u0 < v0 ≤ b− 1. We have

θ(u+ u0, u+ v0)

= (u+ v0 − u− u0)ωκ0(ua−1−ua−1)+···+κa−2(u1−u1)+κa−1(u0−v0)
b

= (v0 − u0)ωκa−1(u0−v0)
b

= θ(u0, v0). (12.13)

The sum over all remaining θ(u0, v0) can be calculated using geometric series.

By doing that we obtain

b−2∑

u0=0

b−1∑

v0=u0+1

θ(u0, v0) =
2bω

κa−1

b

(ω
κa−1

b − 1)2
= − b

2 sin2(κa−1π/b)
. (12.14)

Combining (12.10), (12.12), (12.13), and (12.14) we obtain for k ∈ N that

τb(k) =
1

3b2a
− 2

b3a
ba

2 sin2(κa−1π/b)
=

1

b2a

(
1

3
− 1

sin2(κa−1π/b)

)
, (12.15)

where k = κa−1b
a−1 + · · ·+ κ1b+ κ0, with κa−1 6= 0. Further we repeat that

τb(0) =
1
3 .

Therefore we obtain from (12.3), (12.5), (12.7), (12.9), and (12.15) that

K̂(k, k) = rsob,b(k, γ), where rsob,b(k, γ) is as stated in the assertion. It can

be checked that
∑∞

k=0 rsob,b(k, γ) <∞ (this is Exercise 12.2). Further, K is

also continuous. Hence it follows from Section A.3 and Lemma 12.2 that the

digital shift invariant kernel Kds associated with K is given by

Kds(x, y) = 1 + γ

( ∞∑

k=1

−τb(k)
2

bwalk(x) bwalk(y)

)

=

∞∑

k=0

rsob,b(k, γ) bwalk(x) bwalk(y). (12.16)

For the multivariate case we have

Kds(x,y) =

s∏

i=1

( ∞∑

k=0

rsob,b(k, γi) bwalk(xi) bwalk(yi)

)

=
∑

k∈Ns
0

rsob,b(k,γ) bwalk(x) bwalk(y).

In the next proposition we show how the digital shift invariant kernel can
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be simplified. For x = ξ1/b+ξ2/b
2+ · · · and y = η1/b+η2/b

2+ · · · we define

φds(x, y) =





1
6 if x = y,
1
6 −

|ξi0−ηi0 |(b−|ξi0−ηi0 |)
bi0+1 if ξi0 6= ηi0

and ξi = ηi for i = 1, . . . , i0 − 1.

(12.17)

Proposition 12.6 Let K be the reproducing kernel given by (12.1). Then

the associated digital shift invariant kernel in prime base b ≥ 2 is given by

Kds(x,y) =
s∏

i=1

(1 + γiφds(xi, yi)) , (12.18)

where x = (x1, . . . , xs) and y = (y1, . . . , ys).

Proof Again it is enough to consider the one-dimensional case.

For a ≥ 1 and 1 ≤ κ ≤ b− 1 we define

Da,κ(x, y) :=

(κ+1)ba−1−1∑

k=κba−1

bwalk(x) bwalk(y).

Let now x = ξ1/b+ ξ2/b
2 + · · · , y = η1/b+ η2/b

2 + · · · and k = κa−1b
a−1 +

· · ·+ κ1b+ κ0 with κa−1 6= 0. Then for 1 ≤ κa−1 ≤ b− 1 we have

Da,κa−1(x, y) =

(κa−1+1)ba−1−1∑

k=κa−1ba−1

bwalk(x) bwalk(y)

=

(κa−1+1)ba−1−1∑

k=κa−1ba−1

ω
κ0(ξ1−η1)+···+κa−1(ξa−ηa)
b

= ω
κa−1(ξa−ηa)
b

b−1∑

κ0=0

ω
κ0(ξ1−η1)
b · · ·

b−1∑

κa−2=0

ω
κa−2(ξa−1−ηa−1)
b

=

{
ba−1ω

κa−1(ξa−ηa)
b if ξi = ηi for all i ∈ {1, . . . , a− 1},

0 otherwise.

For x = y we obtain Da,κa−1(x, x) = ba−1 for all a and κa−1. Therefore, by

using the identity
∑b−1

κ=1 sin
−2(κπ/b) = (b2 − 1)/3 given in Corollary A.23,

we obtain

∞∑

k=1

−τb(k)
2

bwalk(x) bwalk(x) =
∞∑

a=1

b−1∑

κ=1

1

b2a

(
1

2 sin2(κπ/b)
− 1

6

)
Da,κ(x, x)

=
∞∑

a=1

b2 − b
6b2a

ba−1 =
1

6
.
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Now let x 6= y, more precisely, let ξi = ηi for i = 1, . . . , i0 − 1 and ξi0 6= ηi0 .

Then we have

∞∑

k=1

−τb(k)
2

bwalk(x) bwalk(y) =

∞∑

a=1

b−1∑

κ=1

1

b2a

(
1

2 sin2(κπ/b)
− 1

6

)
Da,κ(x, y)

=

i0−1∑

a=1

b−1∑

κ=1

1

b2a

(
1

2 sin2(κπ/b)
− 1

6

)
Da,κ(x, y)

+
b−1∑

κ=1

1

b2i0

(
1

2 sin2(κπ/b)
− 1

6

)
Di0,κ(x, y)

=

i0−1∑

a=1

1

ba+1

b−1∑

κ=1

(
1

2 sin2(κπ/b)
− 1

6

)

+
1

bi0+1

b−1∑

κ=1

(
ω
κ(ξi0−ηi0 )
b

2 sin2(κπ/b)
− ω

κ(ξi0−ηi0 )
b

6

)
.

It follows from Corollary A.23 that

b−1∑

κ=1

ω
κ(ξi0−ηi0 )
b

sin2(κπ/b)
= 2|ξi0 − ηi0 |(|ξi0 − ηi0 | − b) +

b2 − 1

3

and
∑b−1

κ=1 sin
−2(κa−1π/b) = (b2 − 1)/3. Further, as ξi0 6= ηi0 , we have

∑b−1
κ=1 ω

κ(ξi0−ηi0 )
b = −1. Therefore we obtain

∞∑

k=1

−τb(k)
2

bwalk(x) bwalk(y)

=

i0−1∑

a=1

b2 − b
6ba+1

+
1

bi0+1

(
|ξi0 − ηi0 |(|ξi0 − ηi0 | − b) +

b2

6

)

=
1

6
− |ξi0 − ηi0 |(b− |ξi0 − ηi0 |)

bi0+1
.

Thus

∞∑

k=1

−τb(k)
2

bwalk(x) bwalk(y) = φds(x, y)

as defined in (12.17) and hence the result follows with (12.16).
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12.3 A formula for the mean square worst-case error and

existence results for good nets

Using Theorem 12.4 and the representation of the digital shift invariant

kernel we can now give a formula for the mean square worst-case error of a

QMC rule using a digitally shifted point set in the weighted Sobolev space

Hsob,s,γ.

Theorem 12.7 The mean square worst-case error ê2ds(Hsob,s,γ ,P) of a

QMC rule in the weighted Sobolev space Hsob,s,γ by using a random digital

shift in prime base b ≥ 2 on the point set P = {x0, . . . ,xN−1}, with xn =

(xn,1, . . . , xn,s), is given by

ê2ds(Hsob,s,γ ,P) = −1 +
1

N2

N−1∑

n,m=0

∑

k∈Ns
0

rsob,b(k,γ) bwalk(xn) bwalk(xm)

= −1 + 1

N2

N−1∑

n,m=0

s∏

j=1

(1 + γjφds(xn,j, xm,j)) ,

where the function φds is given by (12.17).

Proof From Theorem 12.4 and from Proposition 2.11 we obtain that

ê2ds(Hsob,s,γ,P) = e2(Kds,P)

=

∫

[0,1]2s
Kds(x,y) dxdy − 2

N

N−1∑

n=0

∫

[0,1]s
Kds(xn,y) dy

+
1

N2

N−1∑

n,m=0

Kds(xn,xm)

= −1 + 1

N2

N−1∑

n,m=0

Kds(xn,xm),

as
∫
[0,1]s Kds(x,y) dx =

∫
[0,1]s Kds(x,y) dy = 1 which follows from Proposi-

tion 12.5 together with the orthogonality properties of the Walsh functions

(see Proposition A.10). Now the desired result follows from Proposition 12.5

and Proposition 12.6.

The formula from Theorem 12.7 can be simplified further when we assume

that the underlying point set P is a digital (t,m, s)-net over Zb. We recall

here that when we use a digital shift in conjunction with a digital net, then

both are in the same base b.
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Before we state the result we need to introduce some notation. For a

nonnegative integer k with base b representation k =
∑∞

i=0 κib
i we write

trm(k) := κ0 + κ1b+ · · ·+ κm−1b
m−1

and

trm(k) := (κ0, . . . , κm−1)
⊤ ∈ (Zmb )

⊤.

Note that for k ∈ N0 we have trm(k) ∈ {0, . . . , bm − 1}. For a vector

k = (k1, . . . , ks) ∈ Ns0 we write trm(k) := (trm(k1), . . . , trm(ks)) and hence

trm(k) ∈ {0, . . . , bm − 1}s.

Theorem 12.8 Let b be a prime and let P = {x0, . . . ,xbm−1} be a digital

(t,m, s)-net over Zb generated by the m×m matrices C1, . . . , Cs over Zb.

1. The mean square worst-case error of a QMC rule in the weighted Sobolev

space Hsob,s,γ using the randomly b-adic digitally shifted point set P is

given by

ê2ds(Hsob,s,γ,P) =
∑

k∈D′
∞(C1,...,Cs)

rsob,b(k,γ),

where D′
∞(C1, . . . , Cs) is the dual net without the zero-vector as given in

Remark 4.77, i.e., D′
∞(C1, . . . , Cs) = D∞(C1, . . . , Cs) \ {0} and

D∞(C1, . . . , Cs) = {k ∈ Ns0 : C⊤
1 trm(k1) + · · · +C⊤

s trm(ks) = 0.}

2. Let xn = (xn,1, . . . , xn,s) for 0 ≤ n < bm, then we have

ê2ds(Hsob,s,γ,P) = −1 +
1

bm

bm−1∑

n=0

s∏

i=1

(1 + γjφds(xn,i, 0)) ,

where φds given by (12.17). In particular, ê2ds(Hsob,s,γ,P) can be calcu-

lated in O(sbm) operations.

Proof From the first part of Theorem 12.7 we have

ê2ds(Hsob,s,γ,P) = −1 +
1

b2m

bm−1∑

n,h=0

∑

k∈Ns
0

rsob,b(k,γ) bwalk(xn) bwalk(xh)

= −1 + 1

b2m

bm−1∑

h=0



bm−1∑

n=0

∑

k∈Ns
0

rsob,b(k,γ) bwalk(xn ⊖ xh)


 .

Due to the group structure of digital nets, see Lemma 4.72, each term in the
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sum over h has the same value. Therefore

ê2ds(Hsob,s,γ,P) = −1 +
1

bm

bm−1∑

n=0

∑

k∈Ns
0

rsob,b(k,γ) bwalk(xn)

= −1 +
∑

k∈Ns
0

rsob,b(k,γ)
1

bm

bm−1∑

n=0

bwalk(xn).

Now apply Lemma 4.75 and the first part of the result follows.

The second part follows from the second part of Theorem 12.7, from the

fact that φds(xn,j, xh,j) = φds(xn,j⊖xh,j, 0) and the group structure of digital

nets (see Lemma 4.72 again).

The formula from part two of Theorem 12.8 guarantees that the mean

square worst-case error ê2ds(Hsob,s,γ,P) can be computed with reasonable

effort. We exploit this fact later for explicit constructions of good point sets

P. But first let us use the formula from part one of Theorem 12.8 to show

the existence of digital nets which yield a reasonably small mean square

worst-case error.

Before we do so, we have to determine upper bounds on the sum of

rsob,b(k, γ)
λ over all k ∈ N. For any b ≥ 2 we have

∞∑

k=1

rsob,b(k, γ) =
∞∑

a=1

ba−1∑

k=ba−1

rsob,b(k, γ)

=

∞∑

a=1

γba−1

2b2a

b−1∑

κa−1=1

(
1

sin2(κa−1π/b)
− 1

3

)
.

We have
∑∞

a=1 b
−a = 1/(b−1) and

∑b−1
κa−1=1 sin

−2(κa−1π/b) = (b2−1)/3 by

Corollary A.23. Thus we obtain

∞∑

k=1

rsob,b(k, γ) =
γ

2b(b− 1)

(
b2 − 1

3
− b− 1

3

)
=
γ

6
.

Further we have rsob,2(k, γ) =
γ

3·22a for k ∈ N and therefore

∞∑

k=1

rsob,2(k, γ)
λ =

∞∑

a=1

2a−1∑

k=2a−1

rsob,2(k, γ)
λ

=

∞∑

a=1

γλ2a−1

3λ22aλ
=

γλ

2 · 3λ
∞∑

a=1

1

2a(2λ−1)
=

γλ

3λ(22λ − 2)
,

for any 1/2 < λ ≤ 1. For b > 2 we estimate sin(κa−1π/b) ≥ sin(π/b) ≥ 3
√
3

2b
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and therefore
1

sin2(κa−1π/b)
− 1

3
≤ 4b2 − 9

27
.

Using this estimation we get

∞∑

k=1

rsob,b(k, γ)
λ =

∞∑

a=1

ba−1∑

k=ba−1

rsob,b(k, γ)
λ

≤
∞∑

a=1

γλba−1(b− 1)(4b2 − 9)λ

2λb2λa27λ
=
γλ(b− 1)(4b2 − 9)λ

54λ(b2λ − b) ,

for any 1/2 < λ ≤ 1. We note that the inequality becomes an equality for

b = 3.

In the following let µb(1) := 1/6 and for 1/2 < λ < 1 we define

µb(λ) :=

{ 1
3λ(22λ−2)

if b = 2,
(b−1)(4b2−9)λ

54λ(b2λ−b) if b 6= 2.
(12.19)

Using this notation, we have shown that for all b ≥ 2 and all 1/2 < λ ≤ 1

we have
∞∑

k=1

rsob,b(k, γ)
λ ≤ γλµb(λ). (12.20)

For the following we define the quantity

ĉs,b,γ,λ := 21/λ
s∏

j=1

(1 + γλj µb(λ))
1/λ, (12.21)

where µb is defined as in (12.19).

We are ready to give upper bounds on the mean square worst-case error.

Theorem 12.9 Let b be a prime and let s,m ∈ N.

1. There exist generating matrices C1, . . . , Cs of size m × m over Zb of a

digital net P over Zb such that the mean square worst-case error of QMC

integration in the weighted Sobolev space Hsob,s,γ is for any 1/2 < λ ≤ 1

bounded by

ê2ds(Hsob,s,γ,P) ≤ ĉs,b,γ,λb−m/λ,
where ĉs,b,γ,λ is defined as in (12.21).

2. For some λ ∈ (1/2, 1] assume

∞∑

i=1

γλi <∞. (12.22)
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Then ĉs,b,γ,λ ≤ ĉ∞,b,γ,λ <∞ and we have

ê2ds(Hsob,s,γ,P) ≤ ĉ∞,b,γ,λb
−m/λ for all s ≥ 1.

Thus, assuming (12.22), for any s,m ∈ N there exists a digital net over

Zb such that the mean square worst-case error is bounded independently

of the dimension s.

3. Under the assumption

A := lim sup
s→∞

∑s
i=1 γi
log s

<∞ (12.23)

we obtain ĉs,b,γ,1 ≤ c̃δsµb(1)(A+δ) and therefore

ê2ds(Hsob,s,γ) ≤ c̃δsµb(1)(A+δ)b−m

for any δ > 0, where the constant c̃δ depends only on δ. Thus, assuming

(12.23), for any m, s ∈ N there exists a digital net over Zb such that

the mean square worst-case error satisfies a bound which depends only

polynomially on the dimension s.

Proof Let 1/2 < λ ≤ 1. From Theorem 12.8 and by applying Jensen’s

inequality, which states that for a sequence (ak) of nonnegative real numbers

we have (
∑
ak)

λ ≤∑ aλk , for any 0 < λ ≤ 1, we get

ê2ds(Hsob,s,γ,P) ≤


 ∑

k∈D′
∞(C1,...,Cs)

rsob,b(k,γ)
λ




1/λ

. (12.24)

Let C be the set of all s-tuples (C1, . . . , Cs) of m ×m matrices over Zb.

We average the above sum over all possible choices (C1, . . . , Cs) ∈ C, that
is,

1

bm
2s

∑

(C1,...,Cs)∈C

∑

k∈D′
∞(C1,...,Cs)

rsob,b(k,γ)
λ

=
1

bm
2s

∑

k∈Ns
0\{0}

rsob,b(k,γ)
λ

∑

(C1,...,Cs)∈C

k∈D′
∞(C1,...,Cs)

1.

The condition k ∈ D′
∞(C1, . . . , Cs) is equivalent to the equation

C⊤
1 trm(k1) + · · ·+ C⊤

s trm(ks) = 0 ∈ (Zmb )
⊤.

For k ∈ Ns0 \ {0} we have to consider two cases:
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1. Assume k = bml with l ∈ Ns0 \ {0}. In this case we have trm(kj) = 0 for

1 ≤ j ≤ s and the condition

C⊤
1 trm(k1) + · · ·+ C⊤

s trm(ks) = 0

is trivially fulfilled for any choice of (C1, . . . , Cs) ∈ C.
2. Assume k = k∗ + bml with l ∈ Ns0, k

∗ = (k∗1 , . . . , k
∗
s) 6= 0, and 0 ≤ k∗i ≤

bm−1 for all 1 ≤ i ≤ s. In this case we have trm(ki) = k∗
i for all 1 ≤ i ≤ s

and our condition becomes

C⊤
1 k∗

1 + · · · +C⊤
s k

∗
s = 0 ∈ (Zmb )

⊤. (12.25)

Let c
(i)
j denote the jth row vector, 1 ≤ j ≤ m, of the matrix Ci, 1 ≤ i ≤ s.

Then condition (12.25) becomes

s∑

i=1

m−1∑

j=0

κ∗i,jc
(i)
j+1 = 0 ∈ Zmb , (12.26)

where k∗i has the b-adic representation k
∗
i = κ∗i,0+κ

∗
i,1b+· · ·+κ∗i,m−1b

m−1.

Since at least one k∗i 6= 0 it follows that there is a κ∗i,j 6= 0. First assume

that κ∗1,0 6= 0. Then for any choice of

c
(1)
2 , . . . , c(1)m , c

(2)
1 , . . . , c(2)m , . . . , c

(s)
1 , . . . , c(s)m ∈ Zmb

we can find exactly one vector c
(1)
1 ∈ Zmb such that condition (12.26) is

fulfilled. The same argument holds with κ∗1,0 replaced by κ∗j,i and c
(1)
1

replaced by c
(j)
i+1.

Now we have

1

bm2s

∑

(C1,...,Cs)∈C

∑

k∈D′
∞(C1,...,Cs)

rsob,b(k,γ)
λ

≤ 1

bm2s

∑

l∈Ns
0\{0}

rsob,b(b
ml,γ)λbm

2s

+
1

bm2s

∑

l∈Ns
0

∑

k∗∈Ns
0
\{0}

‖k∗‖∞<bm

rsob,b(k
∗ + bml,γ)λbm

2s−m

= −1 +
∑

l∈Ns
0

rsob,b(b
ml,γ)λ +

1

bm

∑

l∈Ns
0

∑

k∗∈Ns
0
\{0}

|k∗|∞<bm

rsob,b(k
∗ + bml,γ)λ

= −1 +
(
1− 1

bm

)∑

l∈Ns
0

rsob,b(b
ml,γ)λ +

1

bm

∑

l∈Ns
0

rsob,b(l,γ)
λ
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≤ −1 +
(
1− 1

bm

) s∏

i=1

(
1 +

1

b2λm
γλi µb(λ)

)
+

1

bm

s∏

i=1

(
1 + γλi µb(λ)

)

≤ 2

bm

s∏

i=1

(
1 + γλi µb(λ)

)
, (12.27)

where we used the fact that rsob,b(0,γ) = 1.

As the average over all choices (C1, . . . , Cs) ∈ C satisfies the bound (12.27)

it is clear that there must exist (C1, . . . , Cs) ∈ C such that

∑

k∈D′
∞(C1,...,Cs)

rsob,b(k,γ)
λ ≤ 2

bm

s∏

i=1

(
1 + γλi µb(λ)

)

and for these matrices we obtain from (12.24) that

ê2ds(Hsob,s,γ,P) ≤
21/λ

bm/λ

s∏

i=1

(
1 + γλi µb(λ)

)1/λ
=
ĉs,b,γ,λ

bm/λ
.

For the second part of the theorem we have

ĉ∞,b,γ,λ = 21/λ
∞∏

i=1

(
1 + γλi µb(λ)

)1/λ

= 21/λ exp

(
1

λ

∞∑

i=1

log
(
1 + γλi µb(λ)

))

≤ 21/λ exp

(
µb(λ)

λ

∞∑

i=1

γλi

)
<∞,

provided that
∑∞

i=1 γ
λ
i <∞.

For the third part of the theorem observe that A <∞ and therefore, for

any positive δ, there exists a positive sδ such that

s∑

i=1

γj ≤ (A+ δ) log s for all s ≥ sδ.

Hence

ĉs,b,γ,1 = 2
s∏

i=1

(1 + γiµb(1)) = 2s
∑s

i=1
log(1+γiµb(1))

log s

≤ 2sµb(1)
∑s

i=1 γi/ log s ≤ 2sµb(1)(A+δ),

for any δ > 0 and all s ≥ sδ. Thus there is a constant c̃δ > 0 such that

cs,b,γ,1 ≤ c̃δs(A+δ)µb(1).
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From this the result follows.

In part one of the theorem above we showed that the average over all

possible shifts satisfies a certain error bound. From this result we can also

deduce that there exists a shift σ ∈ [0, 1)s such that this error bound is

satisfied. We have the following corollary.

Corollary 12.10 Let b be a prime and let s,m ∈ N. Then there exists a

digital shift σ ∈ [0, 1)s and m×m matrices C1, . . . , Cs over Zb, such that the

worst-case error for QMC integration in the weighted Sobolev space Hsob,s,γ

using the digitally shifted digital net Pσ generated by C1, . . . , Cs is for any

1/2 < λ ≤ 1 bounded by

e2(Hsob,s,γ,Pσ) ≤ ĉs,b,γ,λb−m/λ,

where ĉs,b,γ,λ is defined as in (12.21).

Corollary 12.11 Let s,N ∈ N. For some λ ∈ (1/2, 1] assume that (12.22)

holds. Then there exists a point set P consisting of N points in [0, 1)s such

that

e2(Hsob,s,γ,P) ≤ ĉ∞,b,γ,λN
−1/λ.

The proof of this result is given as Exercise 12.9.

From Corollary 12.11 we find that the minimal number Nsob(s, ε) of func-

tion evaluations needed to obtain a worst-case error smaller or equal to ε

for 0 < ε < 1 (recall that the initial error for the space Hsob,s,γ is equal

to one) is bounded by Nsob(s, ε) ≤ ⌈ĉλ∞,b,γ,λε
−2λ⌉. Hence a sufficient con-

dition for strong tractability of the integration problem in Hsob,s,γ is that∑∞
i=1 γi <∞. (The notion of strong tractability here is defined in the same

way as for the weighted star discrepancy in Definition 3.63 but with N∗
γ(s, ε)

replaced by Nsob(s, ε).) In a similar way one can give a sufficient condition

for polynomial tractability; see Exercise 12.10.

12.4 Constructions of polynomial lattices

So far we only provided existence results for digital nets which yield a rea-

sonably small mean square worst-case error for integration in the weighted

Sobolev Hsob,s,γ. Now we are going to give explicit constructions of such

nets, where we restrict ourselves to the subclass of polynomial lattices. To

this end we re-write the worst-case error formula from Theorem 12.8. As

usual, we often associate a nonnegative integer k = κ0 + κ1b + · · · + κab
a

with the polynomial k(x) = κ0 + κ1x+ · · ·+ κax
a ∈ Zb[x] and vice versa.
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Lemma 12.12 Let b be a prime, let s,m ∈ N, let p ∈ Zb[x] with deg(p) =

m and let q ∈ Zb[x]
s.

Then the mean square worst-case error ê2ds(Hsob,s,γ,P(q, p)) of QMC in-

tegration in the Sobolev space Hsob,s,γ using the point set P(q, p) is given

by

ê2ds(Hsob,s,γ,P(q, p)) =
∑

k∈Ns0\{0}

trm(k)∈Dq,p

rsob,b(k,γ),

where Dq,p is the set from Definition 10.7, i.e.,

Dq,p = {k ∈ Gsb,m : k · q ≡ 0 (mod p)}.

Proof The result follows from Theorem 12.8 together with Lemma 10.6.

We use the following component-by-component construction for the search

of suitable polynomial lattices with reasonably small mean square worst-case

error.

Algorithm 12.13 Given a prime b, and s,m ∈ N, a polynomial p ∈ Zb[x]

with deg(p) = m and weights γ = (γi)i≥1.

1. Set q1 = 1.

2. For d = 2, 3, . . . , s, find qd ∈ G∗
b,m by minimising the square worst-case

error ê2ds(Hsob,d,γ ,P((q1, . . . , qd), p)) as a function of qd.

In the following theorem we show that Algorithm 12.13 is guaranteed to

find a good generating vector provided that the polynomial p is irreducible.

A similar result for not necessarily irreducible polynomials p can be shown

using the method from [127].

Theorem 12.14 Let b be a prime, let s,m ∈ N, and let p ∈ Zb[x] be

irreducible with deg(p) = m. Suppose (q∗1 , . . . , q
∗
s) ∈ (G∗

b,m)
s is constructed

by Algorithm 12.13. Then for all 1 ≤ d ≤ s and for all 1/2 < λ ≤ 1 we have

ê2ds(Hsob,d,γ ,P((q∗1 , . . . , q∗d), p)) ≤ ĉd,b,γ,λb−m/λ,

where ĉd,b,γ,λ is defined as in (12.21).

Proof For d = 1 we have q∗1 = 1 and hence

ê2ds(Hsob,1,γ ,P((1), p)) =
∞∑

k=1
trm(k)≡0 (mod p)

rsob,b(k).

Since p is irreducible with deg(p) = m, the only solutions of trm(k) ≡ 0
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(mod p) are those k for which trm(k) = 0, i.e., k of the form k = lbm.

Together with Jensen’s inequality and with (12.20) we therefore obtain

ê2ds(Hsob,1,γ,P((1), p)) ≤
( ∞∑

l=1

rsob,b(lb
m)λ

)1/λ

≤
(

1

b2λm
γλµb(λ)

)1/λ

,

and hence the result follows for d = 1.

Suppose, for some 1 ≤ d < s, we have q∗ ∈ (G∗
b,m)

d and

e2(Hsob,d,γ ,P(q∗, p)) ≤ ĉd,b,γ,λb−m/λ, (12.28)

for all 1/2 < λ ≤ 1. Now we consider (q∗, qd+1) := (q∗1 , . . . , q
∗
d, qd+1). It

follows from Lemma 12.12 that

e2(Hsob,d+1,γ ,P((q∗, qd+1), p))

=
∑

(k,kd+1)∈Nd+1
0 \{0}

trm(k,kd+1)∈D(q∗,qd+1),p

rsob,b(k,γ)rsob,b(kd+1, γd+1)

= e2(Hsob,d,γ,P(q∗, p)) + θ(qd+1), (12.29)

where we have separated out the kd+1 = 0 terms, and where

θ(qd+1) =
∞∑

kd+1=1

rsob,b(kd+1, γd+1)
∑

k∈Nd
0

trm(k,kd+1)∈D(q∗,qd+1),p

rsob,b(k,γ).

According to the algorithm, q∗d+1 is chosen such that the mean square worst-

case error e2(Hsob,d+1,γ ,P((q∗, qd+1), p)) is minimised. Since the only depen-

dency on qd+1 is in θ(qd+1), we have θ(q∗d+1) ≤ θ(qd+1) for all qd+1 ∈ G∗
b,m,

which implies that for any λ ≤ 1 we have θ(q∗d+1)
λ ≤ θ(qd+1)

λ for all

qd+1 ∈ G∗
b,m. This leads to

θ(q∗d+1) ≤


 1

bm − 1

∑

qd+1∈G∗
b,m

θ(qd+1)
λ




1/λ

. (12.30)

We obtain a bound on θ(q∗d+1) through this last inequality.

For λ satisfying 1/2 < λ ≤ 1 it follows from Jensen’s inequality that

θ(qd+1)
λ ≤

∞∑

kd+1=1

rsob,b(kd+1, γd+1)
λ

∑

k∈Nd
0

trm(k,kd+1)∈D(q∗,qd+1),p

rsob,b(k,γ)
λ.
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The condition trm(k, kd+1) ∈ D(q∗,qd+1),p is equivalent to the equation

trm(k1)q
∗
1 + · · ·+ trm(kd)q

∗
d ≡ −trm(kd+1)qd+1 (mod p).

If kd+1 is a multiple of bm, then trm(kd+1) = 0 and the corresponding term in

the sum is independent of qd+1. If kd+1 is not a multiple of bm, then trm(kd+1)

can have any value between 1 and bm − 1. Moreover, since qd+1 6= 0 and p

is irreducible, trm(kd+1)qd+1 is never a multiple of p.

By averaging over all qd+1 ∈ G∗
b,m, with the above discussion in mind, we

obtain

1

bm − 1

∑

qd+1∈G∗
b,m

θ(qd+1)
λ

≤
∞∑

kd+1=1
bm|kd+1

rsob,b(kd+1, γd+1)
λ

∑

k∈Nd
0

trm(k)·q≡0 (mod p)

rsob,b(k,γ)
λ

+
1

bm − 1

∞∑

kd+1=1
bm∤kd+1

rsob,b(kd+1, γd+1)
λ

∑

k∈Nd
0

trm(k)·q 6≡0 (mod p)

rsob,b(k,γ)
λ

≤ γλd+1µb(λ)

bm − 1

d∏

j=1

(
1 + γλj µb(λ)

)
, (12.31)

where the first inequality follows from the fact that if kd+1 is not a multiple

of bm then
∑

qd+1∈G∗
b,m

∑

k∈Nd
0

trm(k)·q≡−trm(kd+1)qd+1 (mod p)

rsob,b(k,γ)
λ

=
∑

k∈Nd
0

trm(k)·q 6≡0 (mod p)

rsob,b(k,γ)
λ,

and the second inequality is obtained using

∞∑

kd+1=1
bm|kd+1

rsob,b(kd+1, γd+1)
λ ≤ γλd+1µb(λ)

b2λm
,

∞∑

kd+1=1
bm∤kd+1

rsob,b(kd+1, γd+1)
λ ≤

∞∑

kd+1=1

rsob,b(kd+1, γd+1)
λ ≤ γλd+1µb(λ)



12.4 Constructions of polynomial lattices 409

and

∑

k∈Nd
0

trm(k)·q 6≡0 (mod p)

rsob,b(k,γ)
λ ≤

d∏

j=1

(
1 + γλj µb(λ)

)

−
∑

k∈Nd
0

trm(k)·q≡0 (mod p)

rsob,b(k,γ)
λ.

Thus, from (12.30), (12.31), and since bm − 1 ≥ bm/2, we obtain

θ(q∗d+1) ≤
γd+1µb(λ)

1/λ

(bm − 1)1/λ

d∏

j=1

(
1 + γλj µb(λ)

)1/λ

≤ γd+1µb(λ)
1/λĉd,b,γ,λb

−m/λ,

which, together with (12.28) and (12.29), yields

e2(Hsob,d+1,γ ,P((q∗, q∗d+1), p)) = e2(Hsob,d,γ ,P(q∗, p)) + θ(q∗d+1)

≤
(
1 + γd+1µb(λ)

1/λ
)
ĉd,b,γ,λb

−m/λ

≤
(
1 + γλd+1µb(λ)

)1/λ
ĉd,b,γ,λb

−m/λ

= ĉd+1,b,γ,λb
−m/λ.

Hence the result follows for all 1 ≤ d ≤ s by induction.

Remark 12.15 Theorem 12.14 shows that a vector q∗ ∈ (G∗
b,m)

s, which

is constructed by Algorithm 12.13, leads to an error bound as stated in part

one of Theorem 12.9. Part two and three of Theorem 12.9 apply accordingly.

We can also obtain results for Korobov vectors. As before we use the no-

tation vs(q) ≡ (1, q, q2, . . . , qs−1) (mod p). We have the following algorithm.

Algorithm 12.16 Given a prime b and s,m ∈ N, a polynomial p ∈ Zb[x]

with deg(p) = m and weights γ = (γi)i≥1. Find q
∗ ∈ G∗

b,m by minimising

ê2ds(Hsob,s,γ,P(vs(q), p)) over all q ∈ G∗
b,m.

In the following theorem we show that Algorithm 12.13 is guaranteed to

find a good generating vector provided that the polynomial p is irreducible.

Theorem 12.17 Let b be prime, let s,m ∈ N, and let p ∈ Zb[x] be

irreducible with deg(p) = m. Suppose q∗ ∈ G∗
b,m is constructed by Algo-

rithm 12.16. Then for all 1/2 < λ ≤ 1 we have

ê2ds(Hsob,s,γ,P(vs(q∗), p)) ≤ ĉs,b,γ,λ (s/bm)1/λ ,
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where ĉs,b,γ,λ is defined as in (12.21).

Proof Let q∗ be a minimiser of ê2ds(Hsob,s,γ,P(vs(q), p)). We are interested

in how small ê2ds(Hsob,s,γ,P(vs(q∗), p)) is. To this end, for 1/2 < λ ≤ 1, we

define

Ms,λ(p) :=
1

bm − 1

∑

q∈G∗
b,m

ê2λds (Hsob,s,γ ,P(vs(q), p)).

From Lemma 12.12 and Jensen’s inequality we obtain

Ms,λ(p) ≤
1

bm − 1

∑

q∈G∗
b,m

∑

k∈Ns0\{0}

trm(k)∈Dvs(q),p

rsob,b(k,γ)
λ

=
1

bm − 1

∑

k∈Ns
0\{0}

rsob,b(k,γ)
λ

∑

q∈G∗
b,m

trm(k)∈Dvs(q),p

1.

The condition trm(k) ∈ Dvs(q),p is equivalent to the equation

trm(k1) + trm(k2)q + · · ·+ trm(ks)q
s−1 ≡ 0 (mod p).

Now we recall that for an irreducible polynomial p ∈ Zb[x] with deg(p) =

m, and a nonzero (k1, . . . , ks) ∈ Zb[x]
s with deg(ki) < m for 1 ≤ i ≤ s, the

congruence

k1 + k2q + · · · + ksq
s−1 ≡ 0 (mod p)

has no solution if k2 = · · · = ks = 0, and it has at most s − 1 solutions

q ∈ G∗
b,m otherwise.

For k = (k1, . . . , ks) ∈ Ns0 \ {0} we consider two cases:

1. For 2 ≤ i ≤ s let ki = lib
m for some li ∈ N0. In this case we have

trm(ki) = 0 for 2 ≤ i ≤ s and therefore

∑

q∈G∗
b,m

trm(k)∈Dvs(q),p

1 = 0.

2. For 2 ≤ i ≤ s let ki = k∗i + lib
m for some li ∈ N0, 0 ≤ k∗i ≤ bm − 1, and

(k∗2 , . . . , k
∗
s) 6= (0, . . . , 0). Then we obtain

∑

q∈G∗
b,m

trm(k)∈Dvs(q),p

1 ≤ s− 1.
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Now we have

Ms,λ(p) ≤
∑

k∈Ns
0\{0}

rsob,b(b
mk,γ)λ +

s− 1

bm − 1

∞∑

k1=0

rsob,b(k1, γ1)
λ

×
∞∑

l2,...,ls=0

bm−1∑

k∗2 ,...,k
∗
s=0

(k∗
2
,...,k∗s ) 6=(0,...,0)

s∏

j=2

rsob,b(k
∗
j + ljb

m, γj)
λ

≤
s∏

j=1

(
1 + γλj

µb(λ)

b2λm

)
− 1 +

s− 1

bm − 1
(1 + γλ1µb(λ))

×




∞∑

k2,...,ks=0

s∏

j=2

rsob,b(kj , γj)
λ −

∞∑

l2,...,ls=0

s∏

j=2

rsob,b(ljb
m, γj)

λ




≤ 1

b2λm

s∏

j=1

(1 + γλj µb(λ))

+
s− 1

bm − 1
(1 + γλ1µb(λ))

s∏

j=2

(1 + γλj µb(λ)),

and therefore

Ms,λ(p) ≤
s

bm − 1

s∏

j=1

(1 + γλj µb(λ)).

Hence there exists a q∗ ∈ G∗
b,m for which

ê2λds (Hsob,s,γ,P(vs(q∗), p)) ≤
s

bm − 1

s∏

j=1

(1 + γλj µb(λ)) ≤ ĉλs,b,γ,λ
s

bm
.

Using the same argument as in the proof of the third part of Theorem 12.9

we obtain the following corollary.

Corollary 12.18 Let b be prime, let s,m ∈ N, and let p ∈ Zb[x] be

irreducible with deg(p) = m. Suppose q∗ ∈ G∗
b,m is constructed by Algo-

rithm 12.16. Assume that

A := lim sup
s→∞

∑s
j=1 γj

log s
<∞. (12.32)

Then for any δ > 0 there exists a c̃δ > 0, which depends only on δ, such that

ê2ds(Hsob,s,γ,P(vs(q∗), p)) ≤ c̃δs1+µb(1)(A+δ)b−m.
Thus, assuming (12.32), the bound on the mean square worst-case error

ê2ds(Hsob,s,γ,P(vs(q∗), p)) depends only polynomially on the dimension s.
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Exercises

12.1 Show that the initial error for the space Hsob,s,γ is e(Hsob,s,γ, 0) = 1.

12.2 Show that
∑∞

k=0 rsob,b(k, γ) <∞, where rsob,b(k, γ) is defined in Propo-

sition 12.5.

12.3 Consider the weighted anchored Sobolev space H ′
sob,s,w,γ with repro-

ducing kernel given by

K ′(x,y) =
s∏

j=1

(1 + γjνwj(xj , yj)),

where wj ∈ [0, 1] for j = 1, . . . , s and

νw(x, y) =
|x− w|+ |y − w| − |x− y|

2

=

{
min(|x− w|, |y − w|) if (x− w)(y − w) ≥ 0,

0 otherwise.

This weighted Sobolev spaces has been considered in several papers,

see for instance [34, 129, 244, 245]. The inner product in H ′
sob,s,w,γ is

given by

〈f, g〉H ′
sob,s,w,γ

:=
∑

u⊆Is
γ−1
u

∫

[0,1]|u|

∂|u|f
∂xu

(xu,wIs\u)
∂|u|g
∂xu

(xu,wIs\u) dxu,

where for x = (x1, . . . , xs) we use the notation (xu,wIs\u) for the s-

dimensional vector whose ith component is xi if i ∈ u and wi if i 6∈ u.

Show that the digital shift invariant kernel associated with the re-

producing kernel of K ′ is given by

K ′
ds(x,y) =

∑

k∈Ns
0

r′sob,b(k,γ,w) bwalk(x) bwalk(y), (12.33)

where for w = (w1, . . . , ws) ∈ [0, 1]s and k = (k1, . . . , ks) we put

r′sob,b(k,γ,w) =
∏s
j=1 r

′
sob,b(kj , γj , wj), and where for k = κa−1b

a−1 +

· · ·+ κ1b+ κ0 with κa−1 6= 0, we put

r′sob,b(k, γ, w) =

{
1 + γ(w2 − w + 1

3) if k = 0,
γ

2b2a

(
1

sin2(κa−1π/b)
− 1

3

)
if k > 0.

12.4 For x = ξ1/b+ ξ2/b
2 + · · · and y = η1/b+ η2/b

2 + · · · define

φds,w(x, y)
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=





w2 − w + 1
2 if x = y,

w2 − w + 1
2 −

|ξi0−ηi0 |(b−|ξi0−ηi0 |)
bi0+1 if ξ1 = η1, . . . , ξi0−1 = ηi0−1

and ξi0 6= ηi0 .

Show that the digital shift invariant kernel (12.33) can be simplified to

K ′
ds(x,y) =

s∏

i=1

(1 + γiφds,wi
(xi, yi)) , (12.34)

where x = (x1, . . . , xs) and y = (y1, . . . , ys).

12.5 Show that the mean square worst-case error ê2ds(H
′
sob,s,w,γ ,P) for a

QMC rule in the weighted anchored Sobolev space H ′
sob,s,w,γ by us-

ing a random digital shift in prime base b ≥ 2 on the point set P =

{x0, . . . ,xN−1}, with xn = (xn,1, . . . , xn,s), is given by

ê2ds(H
′
sob,s,w,γ ,P)

= −1 + 1

N2

N−1∑

n,m=0

∑

k∈Ns
0

rsob,b(k,γ,w) bwalk(xn) bwalk(xm)

= −1 + 1

N2

N−1∑

n,m=0

s∏

i=1

(1 + γiφds,wi
(xn,i, xm,i)) ,

where w = (w1, . . . , ws) and where the function φds,w is given as in

Exercise 12.4.

12.6 Let b be a prime and let s,m ∈ N. Let C be the set of all s-tuples

(C1, . . . , Cs) of m×m matrices over Zb. Define

Âbm,s :=
1

bm
2s

∑

(C1,...,Cs)∈C
ê2ds(Hsob,s,γ,P(C1, . . . , Cs)).

Show that we have

Âbm,s = −1 +
1

bm

s∏

j=1

(
1 +

γj
6

)
+

(
1− 1

bm

) s∏

j=1

(
1 +

γj
6b2m

)

≤ 2

bm

s∏

j=1

(
1 +

γj
6

)
.

12.7 Let b be a prime and let s,m ∈ N. Show that for 0 ≤ α < 1 and

1/2 < λ ≤ 1 there are more than α|C| tuples (C1, . . . , Cs) ∈ C such

that

ê2ds(Hsob,s,γ,P(C1, . . . , Cs)) ≤
ĉs,b,γ,λ

(1− α)1/λ b
−m/λ.
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12.8 Consider the integration problem in H ′
sob,s,w,γ withw = (w1, . . . , ws) ∈

[0, 1]s. Let b be prime and p ∈ Zb[x] be irreducible, with deg(p) = m ≥
1. Suppose (q∗1, . . . , q

∗
s) ∈ (G∗

b,m)
s is constructed with Algorithm 12.13

but with respect to ê2ds(H
′
sob,s,w,γ,P). Then for all 1 ≤ d ≤ s and for

all 1/2 < λ ≤ 1 we have

ê2ds(H
′
sob,s,w,γ ,P((q∗1 , . . . , q∗d), p))

≤ (bm − 1)−1/λ
d∏

i=1

((
1 + γi

[
w2
i − wi + 1

3

])λ
+ µb(λ)γ

λ
i

)1/λ
.

12.9 Give a proof of Corollary 12.11. Hint: Proceed as in the proof of Corol-

lary 5.46, but use Lemma 2.12.

12.10 Give a sufficient condition for polynomial tractability of the integra-

tion problem in Hsob,s,γ.

12.11 Consider Exercise 12.8 and show that under the assumption
∑∞

i=1 γi <

∞ the mean square worst-case error ê2ds(H
′
sob,s,w,γ ,P((q∗1 , . . . , q∗d), p))

satisfies a bound which is independent of the dimension s.

12.12 Let b be prime, let s,m ∈ N, and let p ∈ Zb[x] be irreducible with

deg(p) = m. Show that there exists a polynomial q∗ ∈ G∗
b,m such that

for all 1/2 < λ ≤ 1 we have

ê2ds(H
′
sob,s,w,γ ,P(vs(q∗), p))

≤
(

s

bm − 1

)1/λ s∏

i=1

((
1 + γi

[
w2
i −wi + 1

3

])λ
+ µb(λ)γ

λ
i

)1/λ
.

12.13 Consider Exercise 12.12 and show that under the assumption
∑∞

i=1 γi <

∞ the mean square worst-case error e2(Hwal,s,b,α,γ,P(vs(q̃), p)) satis-

fies a bound which depends only polynomially on the dimension s.

12.14 Let b be prime, let s,m ∈ N, and let p ∈ Zb[x] be irreducible with

deg(p) = m. Let 0 ≤ α < 1 and 1/2 < λ ≤ 1. Show that there are more

than α|G∗
b,m| polynomials q ∈ G∗

b,m such that

e2(Hsob,s,γ,P(vs(q), p)) ≤ ĉs,b,γ,λ
(

s

1− α

)1/λ

b−m/λ,

where ĉs,b,γ,λ is defined as in (12.21).

12.15 Let s ∈ N, let b ≥ 2 be a prime, α > 1 a real, and γ = (γi)i≥1 be

a sequence of nonnegative reals. Consider the Walsh space Hwal,s,b,α,γ

from Exercise 2.15.

Let P = {x1, . . . ,xbm} be a digital (t,m, s)-net over Zb generated
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by the matrices C1, . . . , Cs. Show that the square worst-case error for

integration in the weighted Hilbert space Hwal,s,b,α,γ is given by

e2(Hwal,s,b,α,γ,P) =
∑

k∈D′
∞(C1,...,Cs)

rwal,b,α(k,γ),

where D′
∞(C1, . . . , Cs) is the dual net without the zero-vector as given

in Remark 4.77. Hint: See [50, Theorem 2].

12.16 For x = ξ1/b+ ξ2/b
2 + · · · and y = η1/b+ η2/b

2 + · · · define
φwal,α(x, y)

=





νb(α) if x = y,

νb(α)− b(i0−1)(1−α)(µ(α) + 1) if ξ1 = η1, . . . , ξi0−1 = ηi0−1

and ξi0 6= ηi0 ,

where νb(α) =
bα(b−1)
bα−b as in Exercise 2.16. Show that the reproducing

kernel Kwal,s,b,α,γ of the Hilbert space Hwal,s,b,α,γ as given in Exer-

cise 2.15 can be simplified to

Kwal,s,b,α,γ(x,y) =

s∏

i=1

(1 + γiφwal,α(xi, yi))

for x = (x1, . . . , xs) and y = (y1, . . . , ys). Hint: See [50, Section 2.2].

12.17 Let P = {x1, . . . ,xbm} be a digital (t,m, s)-net over Zb and write

xn = (xn,1, . . . , xn,s) for 0 ≤ n < bm. Show that the square worst-case

error of QMC integration in the weighted Hilbert space Hwal,s,b,α,γ is

given by

e2(Hwal,s,b,α,γ,P) = −1 +
1

bm

bm−1∑

n=0

s∏

i=1

(1 + γiφwal,α(xn,i, 0)).

12.18 Let b be a prime and let s,m ∈ N. Let C be the set of all s-tuples

(C1, . . . , Cs) of m ×m matrices over Zb and let P(C1, . . . , Cs) be the

digital net over Zb generated by the s-tuple (C1, . . . , Cs). Define

Abm,s :=
1

bm
2s

∑

(C1,...,Cs)∈C
e2(Hwal,s,b,αγ,P(C1, . . . , Cs)).

Show that we have

Abm,s = −1 +
1

bm

s∏

i=1

(1 + γiνb(α)) +

(
1− 1

bm

) s∏

i=1

(
1 + γi

νb(α)

bmα

)

≤ 2

bm

s∏

i=1

(1 + γiνb(α)) .
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Hint: See [50, Lemma 4].

12.19 Let b be a prime and let s,m ∈ N. Show that for 0 ≤ β < 1 and

1/α < λ ≤ 1 there are more than β|C| tuples (C1, . . . , Cs) ∈ C such

that

e2(Hwal,s,b,α,γ,P(C1, . . . , Cs)) ≤
cs,b,α,γ,λ

(1− β)1/λ b
−m/λ,

where cs,b,α,γ,λ := 21/λ
∏s
i=1(1 + νb(αλ)γ

λ
i )

1/λ. Hint: See [50, Theo-

rem 3].

12.20 Let b be prime and p ∈ Zb[x] be irreducible, with deg(p) = m ≥ 1.

Suppose (q∗1 , . . . , q
∗
s) ∈ (G∗

b,m)
s is constructed with Algorithm 12.13 but

with respect to e2(Hwal,s,b,α,γ,P). Then for all 1 ≤ d ≤ s and for all

1/α < λ ≤ 1 we have

e2(Hwal,s,b,α,γ,P((q∗1 , . . . , q∗d), p)) ≤ cs,b,α,γ,λb−m/λ.
12.21 Consider Exercise 12.20 and show that under the assumption

∑∞
i=1 γi <

∞ the square worst-case error e2(Hwal,s,b,α,γ,P((q∗1 , . . . , q∗s), p)) satis-

fies a bound which is independent of the dimension s.

12.22 Let b be prime, let s,m ∈ N and let p ∈ Zb[x] be irreducible with

deg(p) = m. Show that there exists a polynomial q∗ ∈ G∗
b,m such that

for all 1/α < λ ≤ 1 we have

e2(Hwal,s,b,α,γ,P(vs(q∗), p)) ≤ cs,b,α,γ,λ(s/bm)1/λ,
where cs,b,α,γ,λ is as in Exercise 12.19.

12.23 Consider Exercise 12.22 and show that under the assumption
∑∞

i=1 γi <

∞ the square worst-case error e2(Hwal,s,b,α,γ,P(vs(q∗), p)) satisfies a

bound which depends only polynomially on the dimension s.

12.24 Let b be prime, let s,m ∈ N, and let p ∈ Zb[x] be irreducible with

deg(p) = m. Let 0 ≤ β < 1 and 1/α < λ ≤ 1. Show that there are more

than β|G∗
b,m| polynomials q ∈ G∗

b,m such that

e2(Hwal,s,b,α,γ,P(vs(q), p)) ≤ cs,b,α,γ,λ
(

s

1− β

)1/λ

b−m/λ,

where cs,b,α,γ,λ is defined as in Exercise 12.19.



13

Randomisation of digital nets

In this chapter we consider randomisations of digital nets. The aim of this

type of algorithm is to combine random with deterministic algorithms in

such a way that allows one to have the best features of both methods. The

advantage of a QMC algorithm based on a digital net is the improved rate

of convergence. But there are also some disadvantages compared to Monte

Carlo (MC) algorithms (i.e., algorithms where the quadrature points are

chosen uniformly and i.i.d. in [0, 1)s), for example:

• The first point of a digital net or sequence is always 0, which causes

problems in some applications. If the points in [0, 1]s have to be mapped to

Rs such that they are normally distributed, then the point 0 gets mapped

to (−∞, . . . ,−∞).

• Approximations of integrals where the integrand has a singularity using

deterministic samples in a QMC algorithm can be problematic. Uniform

and i.i.d. random samples usually avoid this problem (with high proba-

bility).

• Another concern in applications is bias of the estimator 1
N

∑N−1
n=0 f(xn),

i.e., that the estimator consistently underestimates (or overestimates) the

correct result. For example the left rectangle rule 1
N

∑N−1
n=0 f(n/N) con-

sistently underestimates the true value of the integral
∫ 1
0 f(x) dx for all

strictly monotonically increasing integrands f : [0, 1]→ R, i.e.,

1

N

N−1∑

n=0

f(n/N) <

∫ 1

0
f(x) dx for all N ∈ N.

Uniform and i.i.d. random samples on the other hand satisfy

E

[
1

N

N−1∑

n=0

f(xn)

]
=

∫ 1

0
f(x) dx.
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Only the variance Var
[

1
N

∑N−1
n=0 f(xn)

]
6= 0 in general.

• An advantage of uniformly and i.i.d. chosen random samples over deter-

ministically chosen samples is that in the former case a statistical es-

timate of the error by

√
(N − 1)−1

∑N−1
n=0

(
f(xn)− 1

N

∑N−1
n=0 f(xn)

)2
is

available. For deterministic quadrature points such an estimate is not

available.

Using randomised digital nets as quadrature points avoids these problems.

On the other hand uniform and i.i.d. random choices of the quadrature points

yield an unbiased estimator with standard deviation of order 1/
√
N , and

are therefore inferior to QMC methods in terms of the speed of convergence,

provided that the integrand satisfies some smoothness assumptions.

The aim of this chapter is to develop a combination of random choices

and deterministic choices of the quadrature points which retain the desirable

features of both methods. The strategy is to first construct a deterministic

point set (in our case a digital net or digital sequence), and then apply a

randomisation, which on the one hand retains the distribution properties

of the point set (i.e., the (t,m, s)-net property) and on the other hand has

enough randomness to yield an unbiased estimator. To be more precise, we

want to have quadrature points x0, . . . ,xN−1 such that each xn is uniform

and i.i.d. and at the same time the point set {x0, . . . ,xN−1} has low dis-

crepancy. This way we can avoid the problems described at the beginning

and also obtain a statistical error estimate.

13.1 Randomisation Algorithms

Nowadays, various randomisations are known. The simplest method of intro-

ducing a randomisation in (t,m, s)-nets is by using a digital shift σ ∈ [0, 1)s

which is uniformly distributed (see Chapter 12). This allows one to obtain

an unbiased estimator of the integral and also allows one to estimate the

standard deviation from the correct result.

There are also some variations of this method, for instance, a so-called

digital shift of depth m or a simplified digital shift (see Section 4.4). In

Chapter 12 we analysed the mean square worst-case error of digitally shifted

digital nets and in Section 16.5 we analyse digitally shifted digital nets and

show that one obtains the optimal order of the L2-discrepancy on average

for these point sets.

In this chapter we focus on the scrambling of digital nets as introduced

by Owen [204, 205, 206, 207] and further analysed in [105, 267, 268, 269].
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We first introduce Owen’s scrambling algorithm, which is easiest described

for some generic point x ∈ [0, 1)s, with x = (x1, . . . , xs) and xi = xi,1b
−1 +

xi,2b
−2 + · · · . The scrambled point shall be denoted by y ∈ [0, 1)s, where

y = (y1, . . . , ys) and yi = yi,1b
−1 + yi,2b

−2 + · · · . The point y is obtained by

applying permutations to each digit of each coordinate of x. The permuta-

tion applied to xi,l depends on xi,k for 1 ≤ k < l. Specifically, yi,1 = πi(xi,1),

yi,2 = πi,xi,1(xi,2), yi,3 = πi,xi,1,xi,2(xi,3), and in general

yi,k = πi,xi,1,...,xi,k−1
(xi,k), (13.1)

where πi,xi,1,...,xi,k−1
is a random permutation of {0, . . . , b − 1}. We assume

that permutations with different indices are chosen mutually independent

from each other and that each permutation is chosen with the same proba-

bility. In this case the scrambled point y is uniformly distributed in [0, 1)s

as shown by Owen [204]. We show this fact after we introduce some further

notation.

To describe Owen’s scrambling, for 1 ≤ i ≤ s let

Πi = {πi,xi,1,...xi,k−1
: k ∈ N, xi,1, . . . , xi,k−1 ∈ {0, . . . , b− 1}},

where for k = 1 we set πi,xi,1,...xi,k−1
= πi, be a given set of permutations and

let Pi = (Π1, . . . ,Πs). Then, when applying Owen’s scrambling using these

permutations to some point x ∈ [0, 1)s, we write y = xPi, where y is the

point obtained by applying Owen’s scrambling to x using the permutations

Π1, . . . ,Πs. For x ∈ [0, 1) we drop the subscript i and just write y = xΠ.

Proposition 13.1 Let x ∈ [0, 1)s and let Pi be a uniformly and i.i.d. set

of permutations. Then xPi is uniformly distributed in [0, 1)s, that is, for any

Lebesgue measurable set G ⊆ [0, 1)s, the probability that xPi ∈ G, denoted
by Prob[xPi ∈ G], satisfies Prob[xPi ∈ G] = λs(G), where λs denotes the

s-dimensional Lebesgue measure.

Proof We follow [204, Proof of Proposition 2] in our exposition. We use the

notation from above and set y := xPi. Consider the case s = 1 first and let

E =

[
a

bl
,
a+ 1

bl

)

be an elementary interval where l ≥ 0 and 0 ≤ a < bl. A technical problem

which can arise in the proof below is when y is of the form y1 = y1,1b
−1 +

· · · + y1,lb
−l + (b − 1)b−l−1 + (b − 1)b−l−1 + · · · , since then we have y1 =

y1,1b
−1+ · · ·+(y1,l+1)b−l. We show that this only happens with probability

0.

The probability that there are u ≥ j0 ≥ 1 such that y1,j0 = y1,j0+1 =
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· · · = y1,u = b − 1 is given by ((b − 1)!)−(u−j0). Hence the probability that

y1,j0 = y1,j0+1 = · · · = b− 1, i.e., all digits of y1 are b − 1 from some index

j0 onwards, is 0.

Let ab−l = a1b
−1 + a2b

−2 + · · · + alb
−l. Then y1 ∈ E if and only if

y1 = a1, y2 = a2, . . . , yl = al. Using (13.1), this is equivalent to

π1,x1,1,...,x1,k−1
(x1,k) = ak for 1 ≤ k ≤ l. (13.2)

For each 1 ≤ k ≤ l, the probability that (13.2) holds is b−1. Hence the

probability that y1 ∈ E is b−l. The result therefore holds for all elementary

intervals of [0, 1).

We now extend the result to the general case. First notice that the result

also holds for all subintervals [ub−l, vb−l), where l ≥ 0 and 0 ≤ u < v ≤ b−l.
The endpoints of these intervals are dense in [0, 1). A corollary of Chung [24,

p. 28] extends the result Prob[y1 ∈ B] = λ1(B) to all Borel measurable

subsets B ⊆ [0, 1). The equality Prob[y1 ∈ B] = λ1(B) extends to Lebesgue

measurable sets B since subsets of sets of measure zero have probability zero

of containing y1.

Consider now s > 1. Let B1, . . . , Bs be measurable subsets of [0, 1). Be-

cause the components y1, . . . , ys of y are independent, it follows that

Prob[yi ∈ Bi, 1 ≤ i ≤ s] =
s∏

i=1

λ1(Bi). (13.3)

Finally, λs is the unique measure on [0, 1)s which satisfies (13.3).

We illustrate Owen’s scrambling algorithm in Figure 13.1. The permuta-

tions are applied to each coordinate independently. To illustrate the proce-

dure we first scrambled the abscissa and then the ordinate in Figure 13.1.

Consider a (t,m, s)-net in base b consisting of points x0, . . . ,xbm−1, where

xn = (xn,1, . . . , xn,s) and xn,i = xn,i,1b
−1+xn,i,2b

−2+· · · . We shall denote the

scrambled points by y0, . . . ,ybm−1, where yn = (yn,1, . . . , yn,s) and yn,i =

yn,i,1b
−1 + yn,i,2b

−2 + · · · . Specifically, the scrambled points are given by

yn,i,k = πi,xn,i,1,...,xn,i,k−1
(xn,i,k), for 0 ≤ n < bm, 1 ≤ i ≤ s, and k ≥ 1.

Similarly, if (x0,x1, . . . ) is a (t, s)-sequence, then the scrambled sequence

shall be denoted by (y0,y1, . . . ), where, using the same notation as above,

again yn,i,k = πi,xn,i,1,...,xn,i,k−1
(xn,i,k), for all n ≥ 0, 1 ≤ i ≤ s, and k ≥ 1.

We consider now the expected value of 1
N

∑N−1
n=0 f(yn). For any measur-

able function f we have

E

[
1

N

N−1∑

n=0

f(yn)

]
=

1

N

N−1∑

n=0

E[f(yn)] =

∫

[0,1]s
f(y) dy,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13.1 Owen’s scrambling algorithm in base 2.
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since each point yn is uniformly distributed in [0, 1)s and hence E[f(yn)] =∫
[0,1]s f(y) dy for 0 ≤ n < N . In other words, this means that a scram-

bled point set (note that the above applies even if the underlying point set

x0, . . . ,xN−1 is not a digital net) used in a QMC rule yields an unbiased

estimator.

The second important property of the randomisation algorithm which

we require is that the (t,m, s)-net structure of the points x0, . . . ,xbm−1 is

retained after applying the scrambling algorithm. For some technical reason

this does not quite hold, but it holds with probability one, which is still

sufficient. The following proposition was first shown by Owen [204].

Proposition 13.2 If x0, . . . ,xbm−1 form a (t,m, s)-net in base b, then

y0, . . . ,ybm−1 is a (t,m, s)-net in base b with probability one. If x0,x1, . . .

are obtained from a (t, s)-sequence, then the scrambled points y0,y1, . . . form

a (t, s)-sequence with probability one.

Proof The probability that, for some 0 ≤ n < bm, 1 ≤ i ≤ s, and l ∈ N, all

yn,i,k = b− 1 for all k ≥ l is 0. Equivalently, with probability one, infinitely

many digits in the b-adic expansion of yn,i are different from b−1. Therefore,
the probability that yn,i has infinitely many digits in the b-adic expansion

of yn,i are different from b − 1 for all 0 ≤ n < bm and 1 ≤ i ≤ s is 0, since

the union of a finite number of zero probability events has probability zero.

Hence this holds for each component of each point of a (t,m, s)-net.

For a (t, s)-sequence the same applies, since a countable union of proba-

bility zero events has itself probability zero. Hence this also holds for each

component of each point of a (t, s)-sequence.

Therefore we may, in the following, assume that infinitely many digits in

the b-adic expansion of yn,i differ from b− 1 for all n ∈ N0 and 1 ≤ i ≤ s.
Assume we are given an elementary interval J =

∏s
i=1[aib

−di , (ai+1)b−di)
where 0 ≤ ai < bdi , di ∈ N0, and d1 + · · · + ds ≤ m − t. Let aib

−di =

ai,1b
−1 + ai,2b

−2 + · · ·+ ai,dib
−di .

Then yn ∈ J if and only if yn,i,k = ai,k for all 1 ≤ k ≤ di and all

1 ≤ i ≤ s. Further yn,i,k = ai,k if and only if xn,i,k = π−1
i,xn,i,1,...,xn,i,k−1

(ai,k).

Let a′i,k = π−1
i,xn,i,1,...,xn,i,k−1

(ai,k). Then yn ∈ J if and only if xn ∈ J ′ =∏s
i=1[a

′
ib

−di , (a′i + 1)b−di) where a′ib
−di = a′i,1b

−1 + · · · + a′i,dib
−di . As the

points x0, . . . ,xbm−1 form a (t,m, s)-net, it follows that there are exactly

bm−t points of this net in J ′ and hence there are exactly bm−t points of

y0, . . . ,ybm−1 in J . Thus y0, . . . ,ybm−1 form a (t,m, s)-net with probability

one.

For a (t, s)-sequence x0,x1, . . . for all k ∈ N0 and m ≥ t the point set con-
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sisting of xkbm, . . . ,xkbm+bm−1 forms a (t,m, s)-net which is again a (t,m, s)-

net after scrambling with probability one. Since the union of countably many

zero probability events has probability zero the result for (t, s)-sequences fol-

lows as well.

We have shown that Owen’s scrambling algorithm has the desired prop-

erties that each point is uniformly distributed (which yields an unbiased

estimator of the integral) and that the (t,m, s)-net structure of the original

point set is retained.

However, in order to facilitate efficient implementation of the scrambling

algorithm, various scrambling methods which require less permutations for

scrambling (0,m, s)-nets have been studied [158, 159, 255]. Matoušek [158]

also gives various suggestions on the efficient implementation of random

scrambling of (0,m, s)-nets.

A combination of randomised QMC with antithetic sampling was intro-

duced in [209] which yields further improvements. As pointed out at the

beginning, the approximation of integrals where the integrand has a sin-

gularity using deterministic QMC algorithms is problematic. This problem

has been considered in [89, 208]. More information on randomised QMC can

also be found in [151] and in [152], which is also concerned with variance

reduction techniques and using randomised QMC in applications.

13.2 Crossed and Nested Anova Decomposition

As in [205], for the analysis of the standard deviation of the integration

error it is useful to introduce the crossed and nested ANOVA decomposition

of functions. The crossed ANOVA decomposition of [205] is the same as

the ANOVA decomposition introduced in Chapter 2. Hence we introduce

the nested ANOVA decomposition of [205] in the following. We base our

analysis on Walsh functions.

For the nested ANOVA decomposition consider a function f ∈ L2([0, 1])

with Walsh series expansion

f(x) ∼
∞∑

k=0

f̂(k) bwalk(x), (13.4)

where

f̂(k) =

∫ 1

0
f(y) bwalk(x) dx.

Notice that we do not necessarily have equality in (13.4) since the function
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f is only assumed to be in L2([0, 1]) (and hence may for example be changed

arbitrarily on a set of measure zero without changing f̂(k) for any k ≥ 0).

Consider the bℓ-term approximation of f given by

bℓ−1∑

k=0

f̂(k) bwalk(x) =

bℓ−1∑

k=0

∫ 1

0
f(y) bwalk(x⊖ y) dy =

∫ 1

0
f(y)Dℓ(x⊖ y) dy,

whereDℓ is the Walsh-Dirichlet kernel (see Definition A.16 and Lemma A.17)

given by

Dℓ(z) =
bℓ−1∑

k=0

bwalk(z) =

{
bℓ if z ∈ [0, b−ℓ),
0 otherwise.

Hence we have

bℓ−1∑

k=0

f̂(k) bwalk(x) = bℓ
∫

⌊ybℓ⌋=⌊xbℓ⌋
f(y) dy,

where the integration is over all y such that ⌊ybℓ⌋ = ⌊xbℓ⌋, i.e., the first ℓ

digits of x and y coincide. Therefore

βℓ(x) :=

bℓ−1∑

k=bℓ−1

f̂(k) bwalk(x)

= bℓ
∫

⌊ybℓ⌋=⌊xbℓ⌋
f(y) dy − bℓ−1

∫

⌊ybℓ−1⌋=⌊xbℓ−1⌋
f(y) dy.

(In [205] this function was defined using Haar wavelets.) We also define β0 :=∫ 1
0 f(y) dy. Notice that βℓ is constant on intervals of the form [ub−ℓ, (u +

1)b−ℓ), hence βℓ(x) = βℓ(⌊bℓx⌋b−ℓ).
Let

σ2ℓ (f) := Var[βℓ]. (13.5)

Then because of the orthogonality of the Walsh functions we obtain

σ2ℓ (f) =

∫ 1

0
|βℓ(x)|2 dx =

bℓ−1∑

k=bℓ−1

|f̂(k)|2

and also ∫ 1

0
βℓ(x)βℓ′(x) dx = 0 for ℓ 6= ℓ′.

Since f ∈ L2([0, 1]) and the Walsh function system is complete, we can
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use Plancherel’s identity (see Theorem A.19) to obtain

Var[f ] =

∫ 1

0
|f(y)− E(f)|2 dy =

∞∑

k=1

|f̂(k)|2 =
∞∑

ℓ=1

σ2ℓ (f).

Therefore we obtained a decomposition of the variance of f in terms of the

variances of βℓ, which is called the nested ANOVA decomposition of f .

Notice that
∑∞

k=1 |f̂(k)|2 = Var
[∑∞

k=0 f̂(k) bwalk

]
. Hence, as a by-product,

we obtain that for any f ∈ L2([0, 1]), the variance of f and the variance of

its Walsh series coincide, that is,

Var[f ] = Var

[ ∞∑

k=0

f̂(k) bwalk

]
. (13.6)

13.3 Variance of the integral estimator using scrambled nets

In this section we estimate the variance of the estimator

Î(f) =
1

N

N−1∑

n=0

f(yn) (13.7)

for integrands f ∈ L2([0, 1]
s) when the points y0, . . . ,yN−1 are obtained by

applying Owen’s scrambling to a (digital) (t,m, s)-net over Zb. Throughout

this section let b ≥ 2 be a prime number.

The one-dimensional case

In the following let x0, . . . , xN−1 ∈ [0, 1) be a set of points and let the set

of points y0, . . . , yN−1 ∈ [0, 1) be obtained by applying Owen’s scrambling

algorithm to x0, . . . , xN−1.

We also use the following notation: For points x, y ∈ [0, 1) we write their

b-adic expansions as x = ξ1b
−1 + ξ2b

−2 + · · · , and y = η1b
−1 + η2b

−2 + · · · ,
and analogously for x′, y′ ∈ [0, 1). Further let k = κ0 + κ1b+ · · ·+ κℓ−1b

ℓ−1,

and k′ = κ′0 + κ′1b+ · · ·+ κ′ℓ′−1b
ℓ′−1.

We need the following technical lemma which is referred to as Owen’s

lemma.

Lemma 13.3 Let y, y′ ∈ [0, 1) be two points obtained by applying Owen’s

scrambling algorithm to the points x, x′ ∈ [0, 1). Then we have

E
[
bwalk(y) bwalk′(y′)

]
= 0
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whenever k 6= k′. If k = k′, then

E
[
bwalk(y ⊖ y′)

]
=





1 if 1 ≤ k < br,

− 1
b−1 if br ≤ k < br+1,

0 if k ≥ br+1.

where r is the largest integer such that ξ1 = ξ′1, . . . , ξr = ξ′r, and ξr+1 6= ξ′r+1.

Proof The Walsh function bwalk depends only on the first ℓ digits of y and

bwalk′ depends only on the first ℓ′ digits of y′. To calculate the expectation

E[ bwalk(y) bwalk′(y′)] we therefore only need to average over all choices of

permutations π, πξ1 , πξ1,ξ2 , . . . , πξ1,...,ξℓ and πξ′1 , πξ′1,ξ′2 , . . . , πξ′1,...,ξ′ℓ′
, since the

average over the remaining permutations does not change the result.

Assume that ξ1 = ξ′1, . . . , ξr = ξ′r and ξr+1 6= ξ′r+1. Then η1 = η′1, . . . , ηr =
η′r, and ηr+1 = πξ1,...,ξr(ξr+1) and η

′
r+1 = πξ1,...,ξr(ξ

′
r+1). Further ηr+2, ηr+3, . . .

and η′r+2, η
′
r+3, . . . are independent from each other.

Then

E
[
bwalk(y) bwalk′(y′)

]

=

r∏

j=1

1

b

b−1∑

ηj=0

bwalκj−1⊖κ′j−1
(ηj/b) (13.8)

× 1

b(b− 1)

b−1∑

ηr+1,η
′
r+1

=0

ηr+1 6=η′r+1

bwalκr(ηr+1/b) bwalκ′r(η
′
r+1/b) (13.9)

×
∞∏

j=r+2

1

b

b−1∑

ηj=0

bwalκj−1(ηj/b)

∞∏

j=r+2

1

b

b−1∑

η′j=0

bwalκ′j−1
(η′j/b), (13.10)

where we set κj = 0 for j ≥ ℓ and κ′j = 0 for j ≥ ℓ′ (hence the products in

(13.10) are finite).

If there is a 1 ≤ j ≤ r such that κj−1 6= κ′j−1, then the sum

b−1∑

ηj=0

bwalκj−1⊖κ′j−1
(ηj/b) = 0

in (13.8). This implies that E[ bwalk(y) bwalk′(y′)] = 0.

If there is a j > r + 1 such that κj−1 6= 0 or κ′j−1 6= 0, then one of the

sums in (13.10) yields 0, and therefore E[ bwalk(y) bwalk′(y′)] = 0 as well.

Now consider the case where κr 6= κ′r. If κ
′
r = 0, then bwalκ′r(η

′
r+1/b) = 1



13.3 Variance of the integral estimator using scrambled nets 427

and (13.9) is given by

1

b(b− 1)

b−1∑

ηr+1,η
′
r+1

=0

ηr+1 6=η′r+1

bwalκr(ηr+1/b) =
1

b

b−1∑

yr+1=0

bwalκr(ηr+1/b) = 0.

If κr = 0, then we also obtain 0. If both κr and κ
′
r are not 0, then

1

b(b− 1)

b−1∑

ηr+1,η
′
r+1

=0

ηr+1 6=η′r+1

bwalκr(ηr+1/b) bwalκ′r(η
′
r+1/b)

=
1

b(b− 1)

b−1∑

ηr+1=0

bwalκr(ηr+1/b)
b−1∑

η′
r+1

=0

η′r+1 6=ηr+1

bwalκ′r(η
′
r+1/b)

= − 1

b(b− 1)

b−1∑

ηr+1=0

bwalκr⊖κ′r(ηr+1/b) = 0.

Therefore also in this case we get E[ bwalk(y) bwalk′(y′)] = 0.

Now let k = k′. We have already shown the case where k ≥ br+1. Now if

1 ≤ k < br, then bwalκj−1⊖κ′j−1
(ηj/b) = 1 in (13.8) and also the products in

(13.9) and (13.10) are 1, hence E[ bwalk(y ⊖ y′)] = 1 in this case.

Finally consider br ≤ k < br+1. Then (13.8) and (13.10) are both 1, and

(13.9) is

1

b(b− 1)

b−1∑

ηr+1,η
′
r+1

=0

ηr+1 6=η′r+1

bwalκr((ηr+1 ⊖ η′r+1)/b)

=
1

b(b− 1)

b−1∑

ηr+1=0

bwalκr(ηr+1/b)

b−1∑

η′
r+1

=0

η′r+1 6=ηr+1

bwalκr(η
′
r+1/b)

= − 1

b(b− 1)

b−1∑

ηr+1=0

bwalκr(ηr+1/b) bwalκr(ηr+1/b)

= − 1

b− 1
,

which implies the result.
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The second part of the above lemma can also be written as

E
[
bwalk(y ⊖ y′)

]
=





1 if 1 ≤ ℓ ≤ r,
− 1
b−1 if ℓ = r + 1,

0 if ℓ > r + 1.

=
b

b− 1
χ⌊bℓx⌋=⌊bℓy⌋ −

1

b− 1
χ⌊bℓ−1x⌋=⌊bℓ−1y⌋,

where χA=B is 1 whenever A = B and 0 otherwise.

For w ≥ 0 and points x0, . . . , xN−1 ∈ [0, 1) we define

Mw :=
N−1∑

n,n′=0

χ⌊bwxn⌋=⌊bwxn′⌋ =
N−1∑

n,n′=0

χ⌊bwyn⌋=⌊bwyn′⌋,

and hence we can write

N−1∑

n,n′=0

E [ bwalk(yn ⊖ yn′)] =
bMℓ −Mℓ−1

b− 1
.

We consider now the variance of the estimator Î(f).

Corollary 13.4 Let f ∈ L2([0, 1]), let σ
2
ℓ (f) be as in (13.5), and let Î(f)

be as in (13.7). Let the points y0, . . . , yN−1 ∈ [0, 1) be obtained by applying

Owen’s scrambling algorithm to the points x0, . . . , xN−1 ∈ [0, 1). Then

Var[Î(f)] =
1

N2

∞∑

ℓ=1

bMℓ −Mℓ−1

b− 1
σ2ℓ (f).

Proof Using Proposition 13.1 and Eq. (13.6) we obtain

Var[Î(f)] = E




1

N2

N−1∑

n,n′=0

∞∑

k,k′=0
(k,k′) 6=(0,0)

f̂(k)f̂(k′) bwalk(yn) bwalk′(yn′)




=
1

N2

N−1∑

n,n′=0

∞∑

k,k′=0
(k,k′) 6=(0,0)

f̂(k)f̂(k′)E
[
bwalk(yn) bwalk′(yn′)

]
.

Using Lemma 13.3 the terms where k 6= k′ are all 0, and hence

Var[Î(f)] =
1

N2

N−1∑

n,n′=0

∞∑

k=1

f̂(k)f̂ (k)E
[
bwalk(yn) bwalk(yn′)

]

=

∞∑

k=1

|f̂(k)|2 1

N2

N−1∑

n,n′=0

E [ bwalk(yn ⊖ yn′)]
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=
1

N2

∞∑

ℓ=1

bMℓ −Mℓ−1

b− 1

bℓ−1∑

k=bℓ−1

|f̂(k)|2.

Theorem 13.5 Let f ∈ L2([0, 1]) and Î(f) be given by (13.7). If x0, . . . , xbm−1

is a (0,m, 1)-net in base b, then

Var[Î(f)] = b−m
∑

ℓ>m

σ2ℓ (f).

If x0, . . . , xbm−1 is a (t,m, 1)-net in base b, then

Var[Î(f)] ≤ bt−m
∑

ℓ>m−t
σ2ℓ (f).

Proof Let x0, . . . , xbm−1 be a (0,m, 1)-net. Then for 0 ≤ ℓ ≤ m, for each

0 ≤ n < bm there are exactly bm−ℓ points xn′ such that ⌊bℓxn⌋ = ⌊bℓxn′⌋.
HenceMℓ = b2m−ℓ for 0 ≤ ℓ ≤ m. For ℓ > m, for each n, there is exactly one

point xn′ such that ⌊bℓxn⌋ = ⌊bℓxn′⌋, namely the point xn′ = xn. Therefore

Mℓ = bm for ℓ > m. HenceMℓ = bm+(m−ℓ)+ , where (m−ℓ)+ = max(m−ℓ, 0).
Therefore

bMℓ −Mℓ−1

b− 1
=

{
0 if 0 ≤ ℓ ≤ m,
bm if ℓ > m.

Hence Corollary 13.4 yields

Var[Î(f)] = b−m
∞∑

ℓ=m+1

σ2ℓ .

If x0, . . . , xbm−1 is a (t,m, 1)-net on the other hand, then

bMℓ −Mℓ−1

b− 1

{
= 0 if 0 ≤ ℓ ≤ m− t,
≤ bm+t if ℓ > m− t.

Therefore Corollary 13.4 yields

Var[Î(f)] = bt−m
∞∑

ℓ=m−t+1

σ2ℓ .

We compare the last theorem to MC. From Theorem 1.5 we know that

for uniformly and i.i.d. chosen quadrature points, i.e., the MC algorithm, we

have

Var[Î(f)] =
1

N

∞∑

ℓ=1

σ2ℓ ,

whereN is the number of quadrature points. Hence Var[Î(f)] for a scrambled
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(0,m, 1)-net is always smaller than the variance of a MC algorithm. Further,

for scrambled (t,m, 1)-nets we have

bmVar[Î(f)] = bt
∞∑

ℓ=m+1

σ2ℓ → 0 as m→∞.

Therefore, scrambled (t,m, 1)-nets outperform MC with respect to Var[Î(f)]

asymptotically, as for MC we have NVar[Î(f)] =
∑∞

ℓ=1 σ
2
ℓ for all N ∈ N.

The case of arbitrary dimension s

The general case in dimension s ≥ 1 can be analysed using the same ap-

proach. Recall that the coordinates of a point are randomised independently

from each other.

Let f ∈ L2([0, 1]
s) have the following Walsh series expansion

f(x) ∼
∑

k∈Ns
0

f̂(k) bwalk(x) =: S(x, f). (13.11)

Although we do not necessarily have equality in (13.11), the completeness

of the Walsh function system { bwalk : k ∈ Ns0}, see Theorem A.11, and

Theorem A.19 implies that we do have

Var[f ] =
∑

k∈Ns
0\{0}

|f̂(k)|2 = Var[S(·, f)]. (13.12)

Let ℓ = (ℓ1, . . . , ℓs) ∈ Ns0 and Lℓ = {k = (k1, . . . , ks) ∈ Ns0 : ⌊bℓi−1⌋ ≤
ki < bℓi for 1 ≤ i ≤ s}. Then let

βℓ(x) =
∑

k∈Lℓ

f̂(k) bwalk(x)

and

σ2ℓ(f) := Var[βℓ] =

∫

[0,1]s
|βℓ(x)|2 dx =

∑

k∈Lℓ

|f̂(k)|2.

For ℓ = (ℓ1, . . . , ℓs) ∈ Ns0 \ {0} let

Gℓ =
1

N2

N−1∑

n,n′=0

s∏

i=1

(
b

b− 1
χ⌊bℓixn,i⌋=⌊bℓixn′,i⌋ −

1

b− 1
χ⌊bℓi−1xn,i⌋=⌊bℓi−1xn′,i⌋

)
,

where xn = (xn,1, . . . , xn,s) for 0 ≤ n ≤ N − 1.
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If k ∈ Lℓ, then

1

N2

N−1∑

n,n′=0

E [ bwalk(yn ⊖ yn′)] = Gℓ,

since the coordinates are randomised independently from each other. Owen [205]

called the numbers Γℓ := N2Gℓ gain coefficients, since, as we see below, they

determine how much one gains compared to Monte Carlo algorithms.

The following theorem is from Owen [205].

Theorem 13.6 Let f ∈ L2([0, 1]
s) and Î(f) be given by (13.7). Let the

point set {y0, . . . ,yN−1} ⊆ [0, 1)s be obtained by applying Owen’s scrambling

algorithm to the point set {x0, . . . ,xN−1} ⊆ [0, 1)s. Then the variance of the

estimator Î(f) is given by

Var[Î(f)] =
∑

ℓ∈Ns
0\{0}

Gℓσ
2
ℓ(f).

Proof From Proposition 13.1 and Eq. (13.12) it follows that the variance

of the estimator Î(f) is given by

Var[Î(f)] = E




∑

k,k′∈Ns
0

(k,k′) 6=(0,0)

f̂(k)f̂(k′)
1

N2

N−1∑

n,n′=0

bwalk(yn) bwalk′(yn′)




=
∑

k,k′∈Ns
0

(k,k′) 6=(0,0)

f̂(k)f̂(k′)
1

N2

N−1∑

n,n′=0

E
[
bwalk(yn) bwalk′(yn′)

]
.

The coordinates are randomised independently from each other, hence

E
[
bwalk(yn) bwalk′(yn′)

]
=

s∏

i=1

E
[
bwalki(yn,i) bwalk′i(yn′,i)

]
.

Lemma 13.3 therefore implies that E
[
bwalk(yn) bwalk′(yn′)

]
= 0 unless

k = k′. Hence

Var[Î(f)] =
∑

k∈Ns
0\{0}

|f̂(k)|2 1

N2

N−1∑

n,n′=0

E [ bwalk(yn ⊖ yn′)]

=
∑

ℓ∈Ns
0\{0}

∑

k∈Lℓ

|f̂(k)|2 1

N2

N−1∑

n,n′=0

E [ bwalk(yn ⊖ yn′)]
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=
∑

ℓ∈Ns
0\{0}

Gℓσ
2
ℓ(f).

In the previous result we did not make any assumption on the distribution

properties of the point set {x0, . . . ,xN−1}. In the following we consider the

case when x0, . . . ,xN−1 form a digital (t,m, s)-net, see [268, 269]. The case

where the points form a (t,m, s)-net (not necessarily digital) was considered

in [205].

Corollary 13.7 Let f ∈ L2([0, 1]
s) and Î(f) be given by (13.7). Let the

points {x0, . . . ,xbm−1} be a digital (t,m, s)-net over Zb with generating ma-

trices C1, . . . , Cs over Zb. Then

Var[Î(f)] =
∑

∅6=u⊆Is

b|u|

(b− 1)|u|
∑

ℓu∈N|u|

σ2(ℓu,0)(f)

b|ℓ|1
|L(ℓu,0) ∩ D∞|,

where D∞ = D∞(C1, . . . , Cs) is the dual net as in Remark 4.77 and L(ℓu,0) =

{k ∈ Ns0 : bℓi−1 ≤ ki < bℓi for i ∈ u and ki = 0 for i ∈ Is \ u} and where

|ℓ|1 = ℓ1 + · · ·+ ℓs for ℓ = (ℓ1, . . . , ℓs).

Proof From Theorem 13.6 we have

Var[Î(f)] =
∑

ℓ∈Ns
0\{0}

Gℓσ
2
ℓ(f).

We rewrite this equation by separating out the cases where some components

of ℓ are zero, i.e.,

Var[Î(f)] =
∑

∅6=u⊆Is

∑

ℓu∈N|u|

G(ℓu,0)σ
2
(ℓu,0)

(f).

Many of the coefficients G(ℓu,0) are zero, which we prove in the following.

We can express G(ℓu,0) as a Walsh series in the following way

G(ℓu,0) =
1

b2m

bm−1∑

n,n′=0

∑

v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|

×
∏

i∈v
χ⌊bℓixn,i⌋=⌊bℓixn′,i⌋

∏

i∈u\v
χ⌊bℓi−1xn,i⌋=⌊bℓi−1xn′,i⌋

=
1

b2m

bm−1∑

n,n′=0

∑

v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|
1

|Rℓu,v|
∑

k∈Rℓu,v

bwalk(xn ⊖ xn′),

where Rℓu,v = {k ∈ Ns0 : 0 ≤ ki < bℓi for i ∈ v and 0 ≤ ki < bℓi−1 for i ∈
u \ v, and ki = 0 for i ∈ Is \ u} and hence |Rℓu,v| = b|ℓu|1−|u|+|v|.
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As {x0, . . . ,xbm−1} is a digital (t,m, s)-net in base b, we have

G(ℓu,0) =
∑

v⊆u

(−1)|u|−|v|b|u|−|ℓ|1

(b− 1)|u|
∑

k∈Rℓu,v

1

b2m

bm−1∑

n,n′=0

bwalk(xn ⊖ xn′)

=
b|u|−|ℓ|1

(b− 1)|u|
∑

v⊆u

(−1)|u|−|v| ∑

k∈Rℓu,v

1

bm

bm−1∑

n=0

bwalk(xn)

=
b|u|−|ℓ|1

(b− 1)|u|
∑

v⊆u

(−1)|u|−|v| ∑

k∈Rℓu,v∩D∞

1,

where D∞ is the dual net as in Remark 4.77. Therefore

Var[Î(f)] =
∑

∅6=u⊆Is

b|u|

(b− 1)|u|
∑

ℓu∈N|u|

σ2(ℓu,0)(f)

b|ℓ|1

∑

v⊆u

(−1)|u|−|v| ∑

k∈Rℓu,v∩D∞

1.

For k ∈ Rℓu,u let w = w(k) ⊆ u be the smallest set w such that k ∈ Rℓu,w,

i.e., k ∈ Rℓu,w and k 6∈ Rℓu,w′ for w′ ( w. Then
∑

v⊆u

(−1)|u|−|v| ∑

k∈Rℓu,v∩D∞

1 =
∑

k∈Rℓu,u∩D∞

∑

w(k)⊆v⊆u

(−1)|u|−|v|.

The sum
∑

w(k)⊆v⊆u
(−1)|u|−|v| is 0 unless w(k) = u, in which case the sum

is 1. As w(k) = u is equivalent to k ∈ L(ℓu,0) we obtain

Var[Î(f)] =
∑

∅6=u⊆Is

b|u|

(b− 1)|u|
∑

ℓu∈N|u|

σ2(ℓu,0)(f)

b|ℓ|1

∑

k∈L(ℓu,0)∩D∞

1,

from which the result follows.

Lemma 13.8 Let D∞ be the dual net of a digital (t,m, s)-net over Zb with

generating matrices C1, . . . , Cs as used in Corollary 13.7. Then

|L(ℓu,0)∩D∞| ≤





0 if |ℓu|1 ≤ m− t,
(b− 1)|u| if m− t < |ℓu|1 ≤ m− t+ |u|,
(b− 1)|u|b|ℓu|1−(m−t+|u|) if |ℓu|1 > m− t+ |u|.

Proof We have

L(ℓu,0) ∩ D∞ = {k ∈ L(ℓu,0) : C
⊤
1 trm(k1) + · · ·+ C⊤

s trm(ks) = 0}.

As ki = 0 for i ∈ Is \ u we have

C⊤
1 trm(k1) + · · ·+ C⊤

s trm(ks) =
∑

i∈u
C⊤
i trm(ki).
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We only consider the case u = Is, all the other cases can be shown exactly

the same way.

As bℓi−1 ≤ ki < bℓi we have ki = κi,0 + κi,1b + · · · + κi,ℓi−1b
ℓi−1, where

κi,ℓi−1 6= 0.

For 1 ≤ i ≤ s let ci,r denote the rth row of Ci for 1 ≤ r ≤ m, and set

ci,r = 0 for r > m. Then C⊤
1 trm(k1) + · · ·+ C⊤

s trm(ks) = 0 can be written

as

s∑

i=1

ℓi−1∑

r=1

ci,rκi,r−1 = −
s∑

i=1

ci,ℓiκi,ℓi−1. (13.13)

If
∑s

i=1 ℓi ≤ m − t, then the vectors c1,1, . . . , ci,ℓi , . . . , cs,1, . . . , cs,ℓs are

linearly independent by the digital (t,m, s)-net property of the generating

matrices and therefore (13.13) has only the trivial solution, for which k /∈ Lℓ.

Hence |Lℓ ∩ D∞| = 0 in this case.

If
∑s

i=1(ℓi − 1) ≤ m − t, then c1,1, . . . , ci,ℓi−1, . . . , cs,1, . . . , cs,ℓs−1 are

linearly independent by the digital (t,m, s)-net property of the generat-

ing matrices. Hence for each right-hand side of (13.13) we have at most

one solution and therefore |Lℓ ∩ D∞| ≤ (b − 1)s in this case, since each

κi,ℓi−1 ∈ {1, . . . , b− 1}.
Now assume that |ℓ|1 > m− t+s. Then m− t of the vectors in (13.13) are

linearly independent and the remaining digits can be chosen freely. Therefore

there are at most (b− 1)sb|ℓ|1−(m−t+s) solutions.

Upon combining Corollary 13.7 and Lemma 13.8 we obtain the following

theorem which extends the one-dimensional case as one would expect, see

[268, 269], and [205] for the analogue result for (t,m, s)-nets (not necessarily

digital).

Theorem 13.9 Let f ∈ L2([0, 1]
s) and Î(f) be given by (13.7). Let the

points {x0, . . . ,xbm−1} be a digital (t,m, s)-net over Zb. Then

Var[Î(f)] ≤ b−m+t+s
∑

ℓ∈Ns
0

|ℓ|1>m−t

σ2ℓ(f).

For MC one obtains a variance Var[Î(f)] = 1
N

∑
ℓ∈Ns

0\{0} σ
2
ℓ(f). Hence the

gain of scrambled digital nets lies in the fact that we only sum over σ2ℓ(f)

for which |ℓ|1 > m − t, although one incurs a penalty factor of bt+s using

scrambled digital (t,m, s)-nets. Notice that the gain coefficients Γℓ are 0 for

ℓ ∈ Ns0 with |ℓ|1 ≤ m− t and Γℓ = bt+s for ℓ ∈ Ns0 with |ℓ|1 > m− t.
Theorem 13.9 shows that Var[Î(f)] for a scrambled (0,m, s)-net is always
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at most by a factor of bs larger than the variance for a MC algorithm.

Further, for scrambled (t,m, s)-nets we have

bmVar[Î(f)] = bt+s
∑

ℓ∈Ns
0

|ℓ|1>m−t

σ2ℓ(f)→ 0 as m→∞.

Therefore, scrambled (t,m, s)-nets outperform MC with respect to Var[Î(f)]

asymptotically, as for MC we have NVar[Î(f)] =
∑

ℓ∈Ns
0\{0} σ

2
ℓ(f) for all

N ∈ N.

Of particular interest in this context is also the result by Loh [156], who

shows that a central limit theorem holds for the estimate Î(f) for which the

quadrature points are based on a scrambled (0,m, s)-net. This allows one

to obtain an approximate confidence interval from the variance estimates of

Î(f).

13.4 Mean square worst-case error in the Sobolev spaces Hsob,s,γ

In this section we consider integrands from the unanchored weighted Sobolev

space Hsob,s,γ as introduced in Section 2.5 and considered in Section 12.2.

Our approach is analogous to Chapter 12.

Scramble invariant kernels

In analogy to the digital shift invariant kernels of Section 12.1 we introduce

“scramble invariant kernels” associated with a given reproducing kernel K,

an idea which goes back to [105] (and [100] for random shifts). Throughout

this section we assume that b is a prime.

Let y,y′ ∈ [0, 1)s be obtained by applying Owen’s scrambling algorithm

to x,x′ ∈ [0, 1)s. A reproducing kernel K with the property that K(x,x′) =
K(y,y′) for any points which can be obtained by applying Owen’s scram-

bling algorithm to x,x′ ∈ [0, 1)s is called a scramble invariant reproducing

kernel or short a scramble invariant kernel.

For an arbitrary reproducing kernel we associate a scramble invariant

kernel with it, see [105].

Definition 13.10 For an arbitrary reproducing kernel K we define the

associated scramble invariant kernel Kscr by

Kscr(x,x
′) := E

[
K(y,y′)

]
,

where the expectation is taken with respect to all Owen scrambled points

y,y′ of x,x′.
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The kernel Kscr is indeed scramble invariant as the relation (x,x′) ∼
(z,z′), where z,z′ are obtained by applying an Owen scrambling to x,x′,
is an equivalence relation, i.e. it is reflexive (x,x′) ∼ (x,x′), symmetric

(z,z′) ∼ (x,x′), and transitive (x,x′) ∼ (y,y′) and (y,y′) ∼ (z,z′) implies

(x,x′) ∼ (z,z′). Therefore Kscr(x,x
′) = Kscr(z,z

′).
We need several auxiliary results before we can prove the analogue to

Lemma 12.2 for scrambling. We use the following observation below.

Remark 13.11 Let Π be a given set of permutations. The mapping x 7→
xΠ is bijective when applied to all b-adic irrationals, i.e., all numbers in [0, 1)

which cannot be written in a finite b-adic representation. Hence there is an

inverse to this mapping, which is again a scrambling. The set of permutations

Π′ such that for y = xΠ we have x = yΠ′ for all b-adic irrationals x is denoted

by Π−1.

For a set M ⊆ [0, 1) and a given set of permutations Π we write MΠ =

{xΠ ∈ [0, 1) : x ∈M}.
Lemma 13.12 Let b ≥ 2 be an integer. Then the one-dimensional Lebesgue

measure λ is invariant under Owen’s scrambling. In other words, for a given

set of permutations Π = {πx1,...,xk−1
: k ∈ N, x1, . . . , xk−1 ∈ {0, . . . , b − 1}},

where for k = 1 we set πx1,...,xk−1
= π, and for all Lebesgue measurable sets

M ⊆ [0, 1) we have λ(M) = λ(MΠ).

Proof Let a set of permutations Π be fixed. Let x = ξ1/b+ξ2/b
2+· · · ∈ [0, 1)

and y = xΠ = η1/b+ η2/b
2 + · · · . Then y is not defined if ηj = b− 1 for all

indices j ≥ j0. Hence, the subset {y ∈MΠ : y not defined} is countable.
Consider an elementary interval J = [a/br, (a+1)/br) with a = α0+α1b+

· · ·+αr−1b
r−1. Each x ∈ J has the b-adic expansion x = αr−1/b+αr−2/b

2+

· · ·+ α0/b
r + ξr+1/b

r+1 + ξr+2/b
r+2 + · · · with digits ξj ∈ {0, . . . , b− 1} for

all j ≥ r + 1.

Now for x ∈ J we have

y = xΠ =
π(αr−1)

b
+
παr−1(αr−2)

b2
+ · · · + παr−1,...,α1(α0)

br

+
παr−1,...,α0(ξr+1)

br+1
+
παr−1,...,α0,ξr+1(ξr+2)

br+2
+ · · · .

Hence, for a given Π, x 7→ xΠ maps all but countably many points from J

to the elementary interval

JΠ =
[π(αr−1)

b
+
παr−1(αr−2)

b2
+ · · ·+ παr−1,...,α1(α0)

br
,

π(αr−1)

b
+
παr−1(αr−2)

b2
+ · · ·+ παr−1,...,α1(α0)

br
+

1

br

)
.
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Furthermore, for all but countably many points y ∈ JΠ we can define the

inverse mapping y 7→ yΠ−1 . Hence this mapping preserves the measure of

elementary intervals.

Since every open subset from [0, 1) can be written as a countable union of

elementary intervals it follows, that x 7→ xΠ preserves the measure of every

open subset of [0, 1) and hence the result follows for all Lebesgue measurable

subsets from [0, 1).

Corollary 13.13 Let Pi be a given set of permutations. For all f ∈
L2([0, 1]

s) we have
∫

[0,1]s
f(x) dx =

∫

[0,1]s
f(xPi) dx.

Proof It is enough to show the result for s = 1. Let Π be a given set of

permutations and let f ∈ L2([0, 1]). Define g(x) = f(xΠ). For each M ⊆
f([0, 1)) we have

g−1(M) = {x ∈ [0, 1) : f(xΠ) ∈M}
= {yΠ−1 ∈ [0, 1) : f(y) ∈M}
= f−1(M)Π−1

and hence, by Lemma 13.12, we have λ(g−1(M)) = λ(f−1(M)). Now the

result follows from the definition of the Lebesgue-integral.

For a given x we denote by EΠ[f(y)] the expectation of f(y) = f(xΠ),

where y = xΠ is the point obtained by applying Owen’s scrambling to x,

with respect to uniform choices of the permutations in Owen’s scrambling.

Lemma 13.14 Let a set of permutations Π be chosen i.i.d. uniformly.

Then for any Riemann integrable function f we have

EΠ

[∫ 1

0
f(xΠ) dx

]
=

∫ 1

0
f(x) dx = EΠ [f(xΠ)] =

∫ 1

0
EΠ[f(xΠ)] dx.

Proof First note that

∫ 1

0
f(x) dx =

∫ 1

0
f(xΠ) dx = EΠ

[∫ 1

0
f(xΠ) dx

]
,

by Corollary 13.13, where the expectation is taken with respect to all random

choices of sets of permutations Π. Further we have

EΠ[f(xΠ)] = lim
r→∞

Ur
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with

Ur =
1

b

b−1∑

y1=0

· · · 1
b

b−1∑

yr=0

f(y1b
−1 + · · · + yrb

−r) =
1

br

br−1∑

a=0

f(ab−r).

This is a Riemann sum for the integral
∫ 1
0 f(x) dx, hence

∫ 1

0
f(x) dx = EΠ[f(xΠ)] =

∫ 1

0
EΠ[f(xΠ)] dx,

and hence the result follows.

Lemma 13.15 Let a set of permutations Π be chosen i.i.d. uniformly.

Then for any integers k, k′ ≥ 0 we have

∫ 1

0

∫ 1

0
bwalk(x) bwalk′(y) dxdy =

∫ 1

0

∫ 1

0
EΠ

[
bwalk(xΠ) bwalk′(yΠ)

]
dxdy

and for any x ∈ [0, 1) we have

EΠ

[∫ 1

0
bwalk(xΠ) bwalk′(y) dy

]
=

∫ 1

0
EΠ

[
bwalk(xΠ) bwalk′(yΠ)

]
dy.

Proof We consider the first equation. If (k, k′) = (0, 0), then both sides are

1 and hence the result follows in this case.

Let now (k, k′) 6= (0, 0). The left-hand side of the first equality is 0. Hence

consider now the right-hand side. Then we have

∫ 1

0

∫ 1

0
EΠ

[
bwalk(xΠ) bwalk′(yΠ)

]
dxdy

=

∞∑

r=0

∫∫

Er

EΠ

[
bwalk(xΠ) bwalk′(yΠ)

]
dxdy

+

∫∫

E∞

EΠ

[
bwalk(xΠ) bwalk′(yΠ)

]
dxdy,

where Er = {(x, y) ∈ [0, 1]2 : ⌊xbr⌋ = ⌊ybr⌋, ⌊xbr+1⌋ 6= ⌊ybr+1⌋} and E∞ =

{(x, x) ∈ [0, 1]2}. Note that [0, 1]2 =
⋃∞
r=0Er ∪ E∞ and by Lemma 13.3 we

have for (x, y) ∈ Er that

EΠ

[
bwalk(xΠ) bwalk′(yΠ)

]
=





0 if k 6= k′,
1 if 1 ≤ k = k′ < br,

− 1
b−1 if br ≤ k = k′ < br+1,

0 if k = k′ ≥ br+1.
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Hence for k 6= k′ we have
∫ 1

0

∫ 1

0
EΠ

[
bwalk(xΠ) bwalk′(yΠ)

]
dxdy = 0

and the result follows for this case.

Assume that k = k′ > 0 and let k = κ0 + κ1b + · · · + κa−1b
a−1 with

κa−1 6= 0. Then we have
∫ 1

0

∫ 1

0
EΠ [ bwalk(xΠ ⊖ yΠ)] dxdy

=

∫∫

Ea−1

− 1

b− 1
dxdy +

∞∑

r=a

∫∫

Er

1 dxdy

= −b
−a+1

b− 1
+

∞∑

r=a

b−r = 0.

The second equality can be shown in the same way as the first.

As in Section 12.2 let

K̂(k,k′) =
∫

[0,1]s

∫

[0,1]s
K(x,y) bwalk(x) bwalk′(y) dxdy,

for k,k′ ∈ Ns0. Recall that K̂(k,k′) = K̂(k,k′) and therefore K̂(k,k′) ∈ R.

In the following lemma we show how the scramble invariant kernel can be

expressed in terms of K̂(k,k).

Lemma 13.16 Let the reproducing kernel K ∈ L2([0, 1]
2s) be continuous

and for k ∈ Ns0 let

K̂(k,k) =

∫

[0,1]s

∫

[0,1]s
K(x,y) bwalk(x) bwalk(y) dxdy.

Assume that
∑

k∈Ns
0
|K̂(k,k)| <∞. Then the scramble invariant kernel Kscr

is given by

Kscr(x,x
′) =

∑

u⊆Is

∑

ℓu∈N|u|

∑

k∈L(ℓu,0)

K̂(k,k)

b|u|

b|ℓ|1(b− 1)|u|
∑

v⊆u

(−1)|u|−|v| ∑

h∈Rℓu,v

bwalh(x⊖ x′), (13.14)

where Lℓ = {k = (k1, . . . , ks) ∈ Ns0 : ⌊bℓi−1⌋ ≤ ki < bℓi for 1 ≤ i ≤ s},
Rℓu,v = {h ∈ Ns0 : 0 ≤ hi < bℓi for i ∈ v and 0 ≤ hi < bℓi−1 for i ∈
u \ v, and hi = 0 for i ∈ Is \ u}.
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Proof Using similar arguments as in the proof of Lemma 12.2 it can be

shown that Kscr is continuous (this is Exercise 13.5). As
∑

k∈Ns
0
|K̂(k,k)| <

∞ it follows from the Walsh series expansion (13.14) of Kscr and from Sec-

tion A.3 that Kscr coincides with its Walsh series at all points in [0, 1)2s. It

remains to show that (13.14) is the Walsh series for Kscr.

Using the definition of the scramble invariant kernel we have

K̂scr(k,k
′) :=

∫

[0,1]2s
Kscr(x,x

′) bwalk(x) bwalk′(x′) dxdx′

=

∫

[0,1]2s
EPi

[
K(xPi,x

′
Pi)
]
bwalk(x) bwalk′(x′) dxdx′

= EPi

[∫

[0,1]2s
K(xPi,x

′
Pi) bwalk(x) bwalk′(x′) dxdx′

]

= EPi

[∫

[0,1]2s
K(x,x′) bwalk(xPi) bwalk′(x′

Pi) dxdx′
]

=

∫

[0,1]2s
K(x,x′)EPi

[
bwalk(xPi) bwalk′(x′

Pi)
]
dxdx′,

where we used Corollary 13.13 and Remark 13.11. Lemma 13.3 implies that

K̂scr(k,k
′) = 0 for k 6= k′.

Using Lemma 13.3 we obtain, as in the proof of Corollary 13.4, that for

k = (ku,0) ∈ L(ℓ,0), where ℓu ∈ N|u|, we have

EPi

[
bwalk(xPi) bwalk(x

′
Pi)
]

=
∏

i∈u

(
b

b− 1
χ⌊bℓixi⌋=⌊bℓix′i⌋ −

1

b− 1
χ⌊bℓi−1xi⌋−⌊bℓi−1x′i⌋

)

=
∑

v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|
∏

i∈v
χ⌊bℓixi⌋=⌊bℓix′i⌋

∏

i∈u\v
χ⌊bℓi−1xi⌋=⌊bℓi−1x′i⌋

=
∑

v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|
1

|Rℓu,v|
∑

h∈Rℓu,v

bwalh(x⊖ x′)

=
b|u|

b|ℓ|1(b− 1)|u|
∑

v⊆u

(−1)|u|−|v| ∑

h∈Rℓu,v

bwalh(x⊖ x′).

Therefore

Kscr(x,x
′) =

∑

u⊆Is

∑

ℓu∈N|u|

∑

k∈L(ℓu,0)

K̂(k,k)
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b|u|

b|ℓ|1(b− 1)|u|
∑

v⊆u

(−1)|u|−|v| ∑

h∈Rℓu,v

bwalh(x⊖ x′),

which implies the result.

For a point set P = {x0, . . . ,xN−1} in [0, 1)s let Pscr = {y0, . . . ,yN−1}
be an Owen scrambled version of P.
The mean square worst-case error ê2scr(H ,P) over all Owen scrambled

versions of P is defined by

ê2scr(H ,P) := E[e2(H ,Pscr)],

where e2(H ,Pscr) is the worst-case error (see Definition 2.10) in the repro-

ducing kernel Hilbert space H for a QMC rule based on the quadrature

points Pscr.
In the following theorem we show that the mean square worst-case error

for integration in a reproducing kernel Hilbert space with kernel K is the

same as the worst-case error for integration in the reproducing kernel Hilbert

space with kernelKscr, the associated scramble invariant kernel. To stress the

dependence on the reproducing kernel K we write in the following e(K,P)
and ê2scr(K,P) instead of e(H ,P) and ê2scr(H ,P).

Theorem 13.17 For any reproducing kernel K ∈ L2([0, 1]
2s), which can

be represented by a Walsh series, and point set P we have

ê2scr(K,P) = EPi[e
2(K,Pscr)] = e2(Kscr,P).

Proof According to Proposition 2.11 we have

e2(K,P) =
∫

[0,1]2s
K(x,y) dxdy − 2

N

N−1∑

n=0

∫

[0,1]s
K(xn,y) dy

+
1

N2

N−1∑

n,m=0

K(xn,xm).

Therefore we have

EPi

[
e2(K,Pscr)

]

=

∫

[0,1]2s
K(x,y) dxdy − 2

N

N−1∑

n=0

EPi

[∫

[0,1]s
K(xn,Pi,x) dx

]

+
1

N2

N−1∑

n,m=0

EPi [K(xn,Pi,xm,Pi)] .
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Let the reproducing kernel K be represented by a Walsh series

K(x,y) =
∑

k,k′∈Ns
0

K̂(k,k′) bwalk(x) bwalk′(y).

Note that Lemma 13.15 not only applies to the one-dimensional case but

in any dimension, since the permutations in different coordinates are chosen

independently from each other. Hence, by the first part of Lemma 13.15 we

have
∫

[0,1]2s
K(x,y) dxdy

=
∑

k,k′∈Ns
0

K̂(k,k′)
∫

[0,1]2s
bwalk(x) bwalk′(y) dxdy

=
∑

k,k′∈Ns
0

K̂(k,k′)
∫

[0,1]2s
EPi

[
bwalk(xPi) bwalk′(yPi)

]
dxdy

=

∫

[0,1]2s
EPi [K(xPi,yPi)] dxdy.

By the second part of Lemma 13.15 we have

EPi

[∫

[0,1]s
K(xn,Pi,x) dx

]

=
∑

k,k′∈Ns
0

K̂(k,k′) EPi

[∫

[0,1]s
bwalk(xn,Pi) bwalk′(x) dx

]

=
∑

k,k′∈Ns
0

K̂(k,k′)
∫

[0,1]s
EPi

[
bwalk(xn,Pi) bwalk′(xPi)

]
dx

=

∫

[0,1]s
EPi [K(xn,Pi,xPi)] dx.

Hence we have

EPi

[
e2(K,Pscr)

]

=

∫

[0,1]2s
EPi[K(xPi,yPi)] dxdy − 2

N

N−1∑

n=0

∫

[0,1]s
EPi [K(xn,Pi,xPi)] dx

+
1

N2

N−1∑

n,m=0

Kscr(xn,xm)
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=

∫

[0,1]2s
Kscr(x,y) dxdy − 2

N

N−1∑

n=0

∫

[0,1]s
Kscr(xn,x) dx

+
1

N2

N−1∑

n,m=0

Kscr(xn,xm),

and the result follows.

The scramble invariant kernel for Hsob,s,γ

In the following theorem we determine the scramble invariant kernel in base

b ≥ 2 for the reproducing kernel K of the weighted Sobolev space Hsob,s,γ

(see Section 12.2). Notice that the reproducing kernel given by (12.1) is

continuous since B2 is one-periodic. From Section A.3 (see also Exercise A.9)

we therefore know that the kernel K and its Walsh series coincide at all

points of the domain.

Proposition 13.18 Let K be the reproducing kernel given by (12.1). Then

the corresponding scramble invariant kernel in prime base b ≥ 2 is given by

Kscr(x,y) =
∑

u⊆Is

∑

ℓu∈N|u|

∑

k∈L(ℓu,0)

rsob,b(k,γ)

b|u|

b|ℓ|1(b− 1)|u|
∑

v⊆u

(−1)|u|−|v| ∑

h∈Rℓu,v

bwalh(x⊖ y),

where Lℓ = {k = (k1, . . . , ks) ∈ Ns0 : ⌊bℓi−1⌋ ≤ ki < bℓi for 1 ≤ i ≤ s},
Rℓu,v = {h ∈ Ns0 : 0 ≤ hi < bℓi for i ∈ v and 0 ≤ hi < bℓi−1 for i ∈
u \ v, and hi = 0 for i ∈ Is \ u}, and with rsob,b(k,γ) =

∏s
i=1 rsob,b(ki, γi),

where, for k = κ0 + κ1b+ · · ·+ κa−1b
a−1 with κa−1 6= 0, we define

rsob,b(k, γ) =

{
1 if k = 0,
γ

2b2a

(
1

sin2(κa−1π/b)
− 1

3

)
if k > 0.

The proof follows from Lemma 13.16, Lemma 12.2, and Proposition 12.5.

In the next proposition we show how the scramble invariant kernel can be

simplified. For x = ξ1/b+ ξ2/b
2 + · · · and y = η1/b+ η2/b

2 + · · · we define

φscr(x, y) =





1
6 if x = y,
1
6

(
1− (b+ 1)b−i0

)
if ξi0 6= ηi0
and ξi = ηi for i = 1, . . . , i0 − 1.

(13.15)



444 Randomisation of digital nets

Proposition 13.19 Let K be the reproducing kernel given by (12.1). Then

the corresponding scramble invariant kernel in prime base b ≥ 2 is given by

Kscr(x,y) =
s∏

i=1

(1 + γiφscr(xi, yi))

for x = (x1, . . . , xs) and y = (y1, . . . , ys).

Proof From Proposition 13.18 we have

Kscr(x,y) =
∑

u⊆Is

∑

ℓu∈N|u|

∑

k∈L(ℓu,0)

rsob,b(k,γ)

∏

i∈u

(
b

b− 1
χ⌊bℓixi⌋=⌊bℓiyi⌋ −

1

b− 1
χ⌊bℓi−1xi⌋−⌊bℓi−1yi⌋

)
.

Now

∑

k∈L(ℓu,0)

rsob,b(k,γ) =
∏

i∈u

bℓi−1∑

ki=bℓi−1

rsob,b(ki, γi).

Using the identity
∑b−1

κ=1 sin
−2(κπ/b) = (b2 − 1)/3, given in Corollary A.23,

we obtain

bℓi−1∑

ki=bℓi−1

rsob,b(ki, γi) =
γi

2b2ℓi

bℓi−1∑

ki=bℓi−1

(
1

sin2(κi,ℓi−1π/b)
− 1

3

)

=
γi

2bℓi+1

(
b2 − 1

3
− b− 1

3

)

=
γi
6bℓi

(b− 1).

Therefore

Kscr(x,y)

=
∑

u⊆Is

∏

i∈u

γi
6

∑

ℓu∈N|u|

b−|ℓu|1
∏

i∈u

(
bχ⌊bℓixi⌋=⌊bℓiyi⌋ − χ⌊bℓi−1xi⌋−⌊bℓi−1yi⌋

)

=
∑

u⊆Is

∏

i∈u

γi
6




∞∑

ℓi=1

b−ℓi
(
bχ⌊bℓixi⌋=⌊bℓiyi⌋ − χ⌊bℓi−1xi⌋−⌊bℓi−1yi⌋

)



=
∑

u⊆Is

∏

i∈u

γi
6


−1

b
+

(
1− 1

b2

) ∞∑

ℓi=1

b−ℓi+1χ⌊bℓixi⌋=⌊bℓiyi⌋


 .
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If xi = yi, then

∞∑

ℓi=1

b−ℓi+1χ⌊bℓixi⌋=⌊bℓiyi⌋ =
∞∑

ℓi=1

b−ℓi+1 =
1

1− b−1

and

γi
6


−1

b
+

(
1− 1

b2

) ∞∑

ℓi=1

b−ℓi+1χ⌊bℓixi⌋=⌊bℓiyi⌋


 =

γi
6

= γiφscr(xi, yi).

If xi 6= yi, then the sum
∑∞

ℓi=1 b
−ℓi+1χ⌊bℓixi⌋=⌊bℓiyi⌋ is finite as χ⌊bℓixi⌋=⌊bℓiyi⌋ =

0 for ℓi big enough. Let j0 = 0 if χ⌊bxi⌋=⌊byi⌋ = 0, otherwise let j0 ≥ 1 be the

largest value of ℓi such that χ⌊bℓixi⌋=⌊bℓiyi⌋ = 1. Then

−1

b
+

(
1− 1

b2

) ∞∑

ℓi=1

b−ℓi+1χ⌊bℓixi⌋=⌊bℓiyi⌋ = −
1

b
+

(
1− 1

b2

) j0∑

ℓi=1

b−ℓi+1

= 1− b+ 1

bj0+1
.

If the first i0 − 1 digits in the b-adic expansions of xi and yi coincide and

the i0th digits differ, then we have j0 = i0 − 1 and hence we obtain

γi
6


−1

b
+

(
1− 1

b2

) ∞∑

ℓi=1

b−ℓi+1χ⌊bℓixi⌋=⌊bℓiyi⌋


 =

γi
6

(
1− b+ 1

bi0

)

= γiφscr(xi, yi).

Thus it follows that

Kscr(x,y) =
∑

u⊆Is

∏

i∈u
γiφscr(xi, yi) =

s∏

i=1

(1 + γiφscr(xi, yi)) .

A formula for the mean square worst-case error

Using Theorem 13.17 and the representation of the scramble invariant kernel

we can now give a formula for the mean square worst-case error for a QMC

rule in the weighted Sobolev space Hsob,s,γ by using a scrambled point set.

Theorem 13.20 Let Hsob,s,γ be the Sobolev space defined in Section 12.2.

Let b ≥ 2 be a prime number. The mean square worst-case error ê2scr(Hsob,s,γ,P)
in the weighted Sobolev space Hsob,s,γ using a QMC rule based on the ran-

domly scrambled point set P = {x0, . . . ,xN−1}, with xn = (xn,1, . . . , xn,s),
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is given by

ê2scr(Hsob,s,γ,P) = −1 +
1

N2

N−1∑

n,m=0

∑

u⊆Is

∑

ℓu∈N|u|

∑

k∈L(ℓu,0)

rsob,b(k,γ)

× b|u|

b|ℓ|1(b− 1)|u|
∑

v⊆u

(−1)|u|−|v| ∑

h∈Rℓu,v

bwalh(xn ⊖ xm)

= −1 + 1

N2

N−1∑

n,m=0

s∏

j=1

(1 + γjφscr(xn,j, xm,j)) ,

where the function φscr is given by (13.15).

Proof From Theorem 13.17 and from Proposition 2.11 we obtain that

ê2scr(Hsob,s,γ,P) = e2(Kscr,P)

=

∫

[0,1]2s
Kscr(x,y) dxdy − 2

N

N−1∑

n=0

∫

[0,1]s
Kscr(xn,y) dy

+
1

N2

N−1∑

n,m=0

Kscr(xn,xm)

= −1 + 1

N2

N−1∑

n,m=0

Kscr(xn,xm),

as
∫
[0,1]s Kscr(x,y) dx =

∫
[0,1]s Kscr(x,y) dy = 1 which follows from Proposi-

tion 13.18 together with the orthogonality properties of the Walsh functions

(see Proposition A.10). Now the desired result follows from Proposition 13.18

and Proposition 13.19.

For all x, y ∈ [0, 1) and all w ∈ [0, 1] we have that

φscr(x, y) ≤ φds,w(x, y),

where φds,w(x, y) is defined as in Exercise 12.4 and which is related to the

digital shift invariant kernel K ′
ds of the weighted anchored Sobolev space

H ′
sob,s,w,γ from Exercise 12.3 via (12.34). Comparing Theorem 13.20 to the

result from Exercise 12.5 we therefore obtain that

ê2scr(Hsob,s,γ,P) ≤ ê2ds(H ′
sob,s,w,γ ,P).

Hence all results for ê2ds(H
′
sob,s,w,γ ,P) from Exercises 12.8, 12.11, and

12.12 apply in the same way to ê2scr(Hsob,s,γ,P).
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13.5 Improved rate of convergence for smooth functions

The advantage of scrambling compared to a random digital shift lies in the

fact that, for smooth integrands, one can obtain an improved rate of conver-

gence. Owen [206] first showed that scrambling can yield a convergence of

O(N−3/2+δ) for any δ > 0 (here N δ stands for logN to some power). This

was further improved in [209] to O(N−3/2−1/s+δ) for any δ > 0. Rates of

convergence of O(N−2+δ) for any δ > 0 can be achieved by using a random

shift together with the tent transformation, see [27, 101].

We prove the result for the one-dimensional case first. Let f : [0, 1]→ R. In

order to obtain an improved rate of convergence we require that f has some

smoothness. Owen [206] assumes that the first derivative satisfies a Hölder

condition of some order 0 < α ≤ 1, whereas Yue & Hickernell [269] only

assume that the mixed partial first derivatives up to order one in each vari-

able are square integrable. Owen [209] on the other hand assumes that the

first derivative is continuous. The smoothness assumptions here are based

on the integral modulus of continuity.

For a function f : [0, 1] → R, f ∈ L2([0, 1]), and 0 < δ < 1 we define the

integral modulus of continuity by

Mf,2(δ) = sup
0≤h≤δ

(∫ 1−h

0
|f(x+ h)− f(x)|2 dx

)1/2

.

Assume for instance that f satisfies a Hölder condition. That is, there is

some 0 < α ≤ 1 and a constant Cf > 0 which only depends on f , such that

|f(x+h)−f(x)| ≤ Cfhα for all h > 0 and x such that x, x+h ∈ [0, 1]. Then

the integral modulus of continuity satisfies

Mf,2(δ) ≤ Cfδα.
The main property in obtaining an improved rate of convergence is an

improved bound on σ2ℓ =
∑bℓ−1

k=bℓ−1 |f̂(k)|2. We show below that

σ2ℓ (f) ≤ (b− 1)M2
f,2((b− 1)b−ℓ) for all ℓ ∈ N,

from which we obtain the following corollary.

Corollary 13.21 Let f : [0, 1] → R satisfy a Hölder condition of order

0 < α ≤ 1. Then for any ℓ ∈ N we have

σ2ℓ (f) ≤ C2
f (b− 1)1+2αb−2αℓ,

where Cf > 0 does not depend on ℓ.

From Theorem 13.5 and Corollary 13.21 we now obtain the following result

on the variance of the estimate Î(f).
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Theorem 13.22 Let f : [0, 1] → R satisfy a Hölder condition of order

0 < α ≤ 1 with constant Cf > 0. Then the variance of the estimate Î(f),

which is based on a scrambled (t,m, 1)-net in base b, satisfies

Var[Î(f)] ≤ b−(1+2α)(m−t)C2
f

(b− 1)1+2α

b2α − 1
.

If N = bm denotes the number of points, then we can expect a convergence√
Var[Î(f)] ≈ N−(1+2α)/2 in probability. If α = 1 then f satisfies a Lipschitz

condition. In this case we obtain

√
Var[Î(f)] = O(N−3/2).

Consider now s > 1. The main property in obtaining an improved rate of

convergence is again a bound on σ2ℓ(f).

A function f : [0, 1] → R satisfies a Hölder condition with coefficient

0 < λ ≤ 1 if there is a constant Cf > 0 such that

|f(x)− f(y)| ≤ Cf |x− y|α for all x, y ∈ [0, 1].

The right-hand side of the above inequality forms a metric on [0, 1]. When

one considers the higher-dimensional domain [0, 1]s then |x− y| is changed
to some other metric on [0, 1]s. Here we consider tensor product spaces

and generalize the Hölder condition to higher dimensions in a way which is

suitable for tensor product spaces in our context. Consider, for example, the

function f(x) =
∏s
i=1 fi(xi), where x = (x1, . . . , xs) and each fi : [0, 1]→ R

satisfies a Hölder condition with coefficient 0 < α ≤ 1. Then it follows that

for all ∅ 6= u ⊆ Is we have
∏

i∈u
|fi(xi)− fi(yi)| ≤

∏

i∈u
Cfi

∏

i∈u
|xi − yi|α (13.16)

for all xi, yi ∈ [0, 1] with i ∈ u. But here
∏s
i=1 |xi − yi| is not a metric on

[0, 1]s.

Note that we have

∏

i∈u
|fi(xi)− fi(yi)| =

∣∣∣∣∣∣
∑

v⊆u

(−1)|v|−|u|∏

i∈v
fi(xi)

∏

i∈u\v
fi(yi)

∣∣∣∣∣∣
, (13.17)

which can be described in words in the following way: for given ∅ 6= u ⊆ Is
let xi, yi ∈ [0, 1] with xi 6= yi for all i ∈ u; consider the box J with vertices

{(ai)i∈u : ai = xi or ai = yi for i ∈ u}. Then (13.17) is the alternating sum

of the function
∏
i∈u fi at the vertices of J where adjacent vertices have

opposite signs. This sum can also be defined for functions on [0, 1]s which

are not of product form.

Indeed, for a subinterval J =
∏s
i=1[xi, yi) with 0 ≤ xi < yi ≤ 1 and a
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function f : [0, 1]s → R, let the function ∆(f, J) denote the alternating sum

of f at the vertices of J where adjacent vertices have opposite signs. (Hence

for f =
∏s
i=1 fi we have ∆(f, J) =

∏s
i=1(fi(xi)− fi(yi)).)

We define the generalized variation in the sense of Vitali of order 0 < α ≤
1 by

V (s)
α (f) = sup

P

(∑

J∈P
Vol(J)

∣∣∣∣
∆(f, J)

Vol(J)α

∣∣∣∣
2
)1/2

,

where the supremum is extended over all partitions P of [0, 1]s into subin-

tervals and Vol(J) denotes the volume of the subinterval J .

For α = 1 and if the partial derivatives of f are continuous on [0, 1]s we

also have the formula

V
(s)
1 (f) =

(∫

[0,1]s

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(x)

∣∣∣∣
2

dx

)1/2

.

Indeed we have

|∆(f, J)| =
∣∣∣∣
∫

J

∂sf

∂x1 · · · ∂xs
(x) dx

∣∣∣∣ = Vol(J)

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(ζJ)

∣∣∣∣

for some ζJ ∈ J , which follows by applying the mean value theorem to the

inequality

min
x∈J

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(x)

∣∣∣∣ ≤ Vol(J)−1

∣∣∣∣
∫

J

∂sf

∂x1 · · · ∂xs
(x) dx

∣∣∣∣ ≤ max
x∈J

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(x)

∣∣∣∣ .

Therefore we have

∑

J∈P
Vol(J)

∣∣∣∣
∆(f, J)

Vol(J)

∣∣∣∣
2

=
∑

J∈P
Vol(J)

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(ζJ)

∣∣∣∣
2

,

which is just a Riemann sum for the integral
∫
[0,1]s

∣∣ ∂sf
∂x1···∂xs

∣∣2 dx, and thus

the equality follows.

Until now we did not take projections to lower-dimensional faces into

account.

For ∅ 6= u ⊆ Is, let V (|u|)
α (fu; u) be the generalized Vitali variation with

coefficient 0 < α ≤ 1 of the |u|-dimensional function

fu(xu) =

∫

[0,1]s−|u|
f(x) dxIs\u.

For u = ∅ we have f∅ =
∫
[0,1]s f(x) dxIs and we define V

(|∅|)
α (f∅; ∅) = |f∅|.
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Then

Vα(f) =


∑

u⊆Is

(
V (|u|)
α (fu; u)

)2



1/2

(13.18)

is called the generalized Hardy and Krause variation of f on [0, 1]s.

A function f for which Vα(f) <∞ is said to be of finite variation of order

α. We are now ready to show how the Walsh coefficients of functions with

bounded variation decay.

Lemma 13.23 Let f : [0, 1]s → R, 0 < α ≤ 1, and let b ≥ 2. Then for any

∅ 6= u ⊆ Is and ℓu = (ℓi)i∈u ∈ N|u| we have

σ(ℓu,0)(f) ≤ (b− 1)(α−1/2)+ |u|b−α|ℓu|Vα (f) ,

where |ℓu|1 =
∑

i∈u ℓi and (α− 1/2)+ = max(α− 1/2, 0).

Proof We show the result for u = Is first. Let ℓ = (ℓ1, . . . , ℓs) ∈ Ns and

ℓ−1 = (ℓ1− 1, . . . , ℓs− 1) ∈ Ns0. Let Aℓ = {a = (a1, . . . , as) ∈ Ns0 : 0 ≤ ai <
bℓi for 1 ≤ i ≤ s} and [ab−ℓ, (a + 1)b−ℓ) :=

∏s
i=1[aib

−ℓi , (ai + 1)b−ℓi).
Let x ∈ [ab−ℓ, (a + 1)b−ℓ), then

∑

k∈Aℓ

f̂(k) bwalk(x) =

∫

[0,1]s
f(t)

∑

k∈Aℓ

bwalk(x⊖ t) dt

= b|ℓ|1
∫

[ab−ℓ,(a+1)b−ℓ]
f(t) dt.

For ℓ ∈ Ns0 and a ∈ Aℓ let

cℓ,a =

∫

[ab−ℓ,(a+1)b−ℓ]
f(t) dt.

For x ∈ [ab−ℓ, (a + 1)b−ℓ) let

g(x) :=
∑

u⊆Is
(−1)|u|

∑

k∈Aℓ−(1u,0Is\u
)

f̂(k) bwalk(x)

=
∑

u⊆Is
(−1)|u|b|ℓ−(1u,0Is\u)|1cℓ−(1u,0Is\u),(⌊au/b⌋,aIs\u)

,

where (⌊au/b⌋,aIs\u) is the vector whose ith component is ⌊ai/b⌋ for i ∈ u

and ai otherwise.

Using Plancherel’s identity (see Theorem A.19) we obtain

σ2ℓ(f) =
∑

u⊆Is
(−1)|u|

∑

k∈Aℓ−(1u,0Is\u
)

|f̂(k)|2 =
∫

[0,1]s
|g(x)|2 dx
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=
∑

a∈Aℓ

b−|ℓ|1

∣∣∣∣∣∣
∑

u⊆Is
(−1)|u|b|ℓ−(1u,0Is\u)|1cℓ−(1u,0),(⌊au/b⌋,aIs\u)

∣∣∣∣∣∣

2

= b|ℓ|1
∑

a∈Aℓ

∣∣∣∣∣∣
∑

u⊆Is
(−1)|u|b−|u|cℓ−(1u,0),(⌊au/b⌋,aIs\u)

∣∣∣∣∣∣

2

.

We simplify the inner sum further. Let e = b⌊a/b⌋, i.e., the ith component

of e is given by ei = b⌊ai/b⌋. Further let d = a− e, i.e., the ith component

of d is given by di = ai − ei. We have

∑

u⊆Is
(−1)|u|b−|u|cℓ−(1u,0),(⌊au/b⌋,aIs\u)

=
∑

u⊆Is
(−1)|u|b−|u| ∑

ku∈A1u

cℓ,e+(ku,dIs\u)

=
∑

u⊆Is
(−1)|u|b−|u|b−s+|u| ∑

k∈A1

cℓ,e+(ku,dIs\u)

= b−s
∑

k∈A1

∑

u⊆Is
(−1)|u|cℓ,e+(ku,dIs\u)

= b−s
∑

k∈A1

∫

[eb−ℓ,(e+1)b−ℓ]

∑

u⊆Is
(−1)|u|f(x+ b−ℓ(ku,dIs\u)) dx

= b−s
∑

k∈A1

∫

[ab−ℓ,(a+1)b−ℓ]
±∆(f, Jd,k,x) dx,

where Jd,k,x =
∏s
i=1[(xi+min(ki−di, 0))b−ℓi , (xi+max(ki−di, 0))b−ℓi ] and

where the sign in the integral depends on Jd,k,x.

Therefore

σ2ℓ(f) ≤ b|ℓ|1−2s
∑

a∈Aℓ

∑

k∈A1

∫

[ab−ℓ,(a+1)b−ℓ]
|∆(f, Jd,k,x)|dx

×
∑

k′∈A1

∫

[ab−ℓ,(a+1)b−ℓ]
|∆(f, Jd,k′,x)|dx

= b|ℓ|1−2s
∑

k,k′∈A1

∑

a∈Aℓ

∫

[ab−ℓ,(a+1)b−ℓ]
|∆(f, Jd,k,x)|dx

×
∫

[ab−ℓ,(a+1)b−ℓ]
|∆(f, Jd,k′,x)|dx.
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Using Cauchy-Schwarz’ inequality we have
∫

[ab−ℓ,(a+1)b−ℓ]
|∆(f, Jd,k,x)|dx

≤
(∫

[ab−ℓ,(a+1)b−ℓ]
1 dt

)1/2(∫

[ab−ℓ,(a+1)b−ℓ]
|∆(f, Jd,k,x)|2 dx

)1/2

= b−|ℓ|1/2
(∫

[ab−ℓ,(a+1)b−ℓ]
|∆(f, Jd,k,x)|2 dx

)1/2

.

Let Da,k =
(∫

[ab−ℓ,(a+1)b−ℓ] |∆(f, Jd,k,x)|2 dx
)1/2

. Then we have

σ2ℓ(f) ≤ b−2s
∑

k,k′∈A1

∑

a∈Aℓ

Da,kDa,k′

≤ max
k,k′∈A1

∑

a∈Aℓ

Da,kDa,k′

= max
k∈A1

∑

a∈Aℓ

D2
a,k,

where the last equality follows as the Cauchy-Schwarz inequality is an equal-

ity for two vectors which are linearly dependent. Let k∗ be the value of

k ∈ A1 for which the sum
∑

a∈Aℓ
D2

a,k takes on its maximum. Then

σ2ℓ(f) ≤
∑

a∈Aℓ

∫

[ab−ℓ,(a+1)b−ℓ]
|∆(f, Jd,k∗,x)|2 dx

≤ b−|ℓ|1
∑

a∈Aℓ

sup
x∈[ab−ℓ,(a+1)b−ℓ]

|∆(f, Jd,k∗,x)|2

≤ (b− 1)(2α−1)+sb−2α|ℓ|1

×
∑

a∈Aℓ

sup
x∈[ab−ℓ,(a+1)b−ℓ]

Vol(Jd,k∗,x)

∣∣∣∣
∆(f, Jd,k∗,x)

Vol(Jd,k∗,x)α

∣∣∣∣
2

≤ (b− 1)(2α−1)+sb−2α|ℓ|1V s
α (fIs ;Is),

where (x)+ = max(x, 0).

For ℓ = (ℓu,0) with ℓu ∈ N|u| with ∅ 6= u ⊂ Is we just replace f with∫
[0,1]s−|u| f(x) dxIs\u in the proof above to obtain the result.

Assume that f : [0, 1]s → R has finite variation of order 0 < α ≤ 1. That

is, Vα(fu) <∞ for all ∅ 6= u ⊆ Is. In this case Lemma 13.23 implies that

σ2ℓ(f) ≤ (b− 1)(2α−1)+sb−2α|ℓ|1V 2
α (f),
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for all ℓ ∈ Ns0 \ {0}.
Theorem 13.9 then yields for a digital (t,m, s)-net over Zb that

Var[Î(f)] ≤ b−m+t+s
∑

ℓ∈Ns
0

|ℓ|1>m−t

σ2ℓ(f)

≤ (b− 1)(2α−1)+sb−m+t+sV 2
α (f)

∑

ℓ∈Ns
0

|ℓ|1>m−t

b−2α|ℓ|1

= (b− 1)(2α−1)+sb−m+t+sV 2
α (f)

∞∑

ℓ=m−t+1

b−2αℓ
∑

ℓ∈Ns
0

|ℓ|1=ℓ

1

= (b− 1)(2α−1)+sb−m+t+sV 2
α (f)

∞∑

ℓ=m−t+1

b−2αℓ

(
ℓ+ s− 1

s− 1

)
.

We need the following lemma.

Lemma 13.24 For any real number b > 1 and any k, t0 ∈ N, we have

∞∑

t=t0

b−t
(
t+ k − 1

k − 1

)
≤ b−t0

(
t0 + k − 1

k − 1

)(
1− 1

b

)−k
.

Proof By the binomial theorem we have

∞∑

t=t0

b−t
(
t− t0 + k − 1

k − 1

)
= b−t0

(
1− 1

b

)−k
.

Hence the result follows from the inequality
(
t+ k − 1

k − 1

)
/

(
t− t0 + k − 1

k − 1

)
=

(t+ k − 1)(t + k − 2) · · · (t− t0 + k)

t(t− 1) · · · (t− t0 + 1)

≤
(
t0 + k − 1

k − 1

)
.

Thus we obtain the following theorem which should be compared with

[92, 209, 269].

Theorem 13.25 Let f : [0, 1]s → R have bounded variation Vα(f) < ∞
of order 0 < α ≤ 1. Then the variance of the estimator Var[Î(f)] using a

randomly scrambled digital (t,m, s)-net over Zb is bounded by

Var[Î(f)] ≤ V 2
α (f)b

−(1+2α)(m−t) (b− 1)(2α−1)+sb2s

b2α(b− 1)s

(
m− t+ s

s− 1

)
.

Several remarks are in order.
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Remark 13.26 (i) If N = bm denotes the number of points, then we can

expect a convergence

√
Var[Î(f)] = O(N−α−1/2(logN)(s−1)/2) in proba-

bility for integrands having bounded variation of order α.

(ii) If f has square integrable partial mixed derivatives up to order one in

each variable, then we obtain a convergence of
√

Var[Î(f)] = O(N−3/2(logN)(s−1)/2)

This is a significant improvement over a convergence of O(N−1(logN)s−1)

which one obtains for deterministic point sets.

(iii) If f ∈ L2([0, 1]
s), but does not have bounded variation of some order

α > 0, then we still get a convergence of

√
Var[Î(f)] = o(N−1/2) in

probability. This convergence is still better than the MC rate.

(iv) The smoothness of the integrand does not have to be known a priori.

QMC algorithms based on scrambled digital (t,m, s)-nets automatically

take advantage of it.

On the other hand, scrambling does not seem to improve the convergence

rate beyond N−3/2 even if one assumes stronger smoothness assumptions on

the integrand. A method which does take advantage of further smoothness

is investigated in Chapter 15. Before we prove such results we need to prove

some bounds on the decay of the Walsh coefficients, which is done in the

next chapter.

Exercises

13.1 Write down the permutations used in Figure 13.1 to scramble the pic-

ture.

13.2 Show that if one uses a randomly shifted digital net in a QMC rule,

then one obtains an unbiased estimator of the integral.

13.3 Let f(x) = x2. Calculate the nested ANOVA terms σ2ℓ (f) for ℓ ∈ N0.

13.4 In analogy to a digital shift of depth m (see Definition 4.69), define

Owen’s scrambling of depth m. Here, one randomises the first m digits

as in Owen’s scrambling and the digits with index larger than m are

randomised as in a digital shift of depth m. Define this scrambling

method and prove an analogue to Lemma 13.3 for this randomisation.

Hint: See [159, P. 63] for the definition of the scrambling algorithm of

depth m.

13.5 Show that if the reproducing kernel K ∈ L2([0, 1]
s) is continuous, then
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the associated scramble invariant kernel Kscr is also continuous. Hint:

Use a similar method as in the proof of Lemma 12.2.

13.6 Show the second part of Lemma 13.15.

13.7 Use Eq. 13.15 to show that φscr is continuous and deduce that the

scramble invariant kernelKscr given in Proposition 13.19 is continuous.

13.8 Obtain a formula for the scramble invariant kernel associated with the

reproducing kernel

K(x,y) =

s∏

i=1

K(xi, yi) =

s∏

i=1

min(1− xi, 1− yi),

where x = (x1, . . . , xs),y = (y1, . . . , ys) ∈ [0, 1]s.

13.9 Obtain a bound on ê2scr(Hsob,s,γ ,P) in (13.4) by estimating the formula

in Theorem 13.20 directly.

13.10 Proof Lemma 13.23 for the case s = 1.

13.11 Improve the constant in Theorem 13.25 by using a better bound on

σℓ for ℓ = (ℓu,0). Hint: Use V
|u|
α (fu); u) instead of Vα(f).
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The decay of the Walsh coefficients of smooth
functions

In the next chapter we show that QMC rules can achieve improved rates of

convergence for sufficiently smooth functions. The essential property which

enables us to prove such results rests on the decay of the Walsh coefficients

of smooth functions, which is the topic of this chapter. We follow [38] in our

approach.

14.1 Motivation

The question we are going to answer in this section is the following: let

f : [0, 1) → R be a δ times continuously differentiable function. What can

we say about the asymptotic behaviour of the Walsh coefficients f̂(k) as

k →∞?

First let us compare this question with its analog for Fourier series. Let

f : [0, 1)→ R be a one-periodic, δ times continuously differentiable function.

The Fourier coefficient f̂F (k) :=
∫ 1
0 f(x)e

2πikx dx then satisfies f̂F (k) =

O(k−δ), see, for example, [271, Theorem 13.14, p. 117]. In other words, the

smoother the function f , the faster do the Fourier coefficients decay.

Does the same hold for Walsh coefficients? The answer to this question has

to be No. For one, consider the following: say f̂(1) = 1 and
∑∞

k=2 |f̂(k)| < 1.

Then, as | 2walk(x)| = 1, it follows that the function
∑∞

k=1 f̂(k) 2walk(x)

must have a discontinuity at 1/2. Hence if the Walsh coefficients decay very

fast, then the function has a discontinuity.

An even more elaborate result in the same direction is known from Fine [77,

Theorem VIII]. He proved the following theorem (note that he considered

only base b = 2, so in the following we also restrict ourselves to b = 2

although the results are true more generally, see Exercise 14.8).
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Theorem 14.1 Let b = 2. The only absolutely continuous functions whose

Walsh coefficients satisfy f̂(k) = o(1/k) are the constants.

This seems to provide an answer to the question asked at the beginning.

But let us consider some examples to shed some more light in the result.

Example 14.2 Maybe the simplest example is choosing F1(x) = x. In this

case

F̂1(k) =





1/2 for k = 0,

−1/(4k) for k = 2a with a ≥ 0,

0 otherwise,

as shown in Lemma A.22. Therefore only for k = 2a we have F̂1(k) = O(1/k),

for all other k > 0 we have F̂1(k) = 0.

Example 14.3 Now let us consider F2(x) = x2. We have

F̂2(k) =





1/3 for k = 0,

−1/(4k) for k = 2a with a ≥ 0,

2−a1−a2−3 for k = 2a1 + 2a2 with a1 > a2 ≥ 0,

0 otherwise.

The case k = 2a is as in Example 14.2. The case k = 2a1 + 2a2 is now more

complicated. If we fix a2 and let a1 →∞, then F̂2(k) = O(1/k). But, if say

a1 = a2 + 1 and a1 →∞, then F̂2(k) = O(1/k2). Again, if k has more than

two nonzero digits in its base 2 expansion then F̂2(k) = 0.

For arbitrary polynomials the result is as one would expect from the pre-

vious two examples.

Example 14.4 Let F3(x) = e−2πix. We have F̂3(0) = 0 and for k =

2a1 + · · · + 2av with a1 > · · · > av ≥ 0 we have

F̂3(k) =
2iv

πv

∑

h1,...,hv∈Z,hl≡1 (mod 2)

1=h12a1+···+hv2av

v∏

l=1

1

hl
.

(A proof of this formula can be found in [36, Lemma 6.12]. As we use it only

for illustration purposes we do not include a proof here.) For v = 1 we have

F̂3(1) = 2i
π and F̂3(2

a1) = 0 for a1 > 0. For k = 2a1 + 2a2 with a2 > 0 we

have F̂3(k) = 0 and for a2 = 0 we have

F̂3(k) = −
2

π2

∑

h1,h2∈Z,h1,h2≡1 (mod 2)

1=h12a1+h2

1

h1h2
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= − 2

π2

∑

h1∈Z,h1≡1 (mod 2)

1

h1(1− h12a1)

= − 2

π2

∑

h∈Z

1

(1 + 2h)(1 − (1 + 2h)2a1)

=
2

π2

∞∑

h=0

1

(1 + 2h)((1 + 2h)2a1 − 1)

+
2

π2

∞∑

h=1

1

(2h − 1)(1 + (2h − 1)2a1)

≤ 2

π2

(
1

2a1 − 1
+

∞∑

h=1

1

2h(2h2a1)
+

1

1 + 2a1
+

∞∑

h=1

1

2h(2h2a1 )

)

≤ 2

π2

(
1

2a1 − 1
+

1

1 + 2a1
+

π2

12 · 2a1
)
.

Hence for k = 2a1 +1 we have F̂3(k) = O(1/k). The case for v > 2 could be

analysed in a similar way, but gets very involved quickly.

In the following we state another result due to Fine [77] which helps us

analyse the cases when v > 2.

Hence we see that although Fine’s result (Theorem 14.1) is of course

true, it does not tell the whole story. Some of the Walsh coefficients of

smooth functions do decay with order 1/k, but others decay much faster

(or are 0 altogether). In that context, the result which Fine uses to obtain

Theorem 14.1 is of particular interest.

Theorem 14.5 Let b = 2 and let the Walsh series associated with f be

given by

f(x) ∼
∞∑

k=1

f̂(k) 2walk(x)

and let

F (x) =

∫ x

0
f(t) dt ∼

∞∑

k=1

F̂ (k) 2walk(x).

Then for fixed k′ ≥ 0 we have

F̂ (2a + k′) = −2−a−2f̂(k′) + o(2−a) as a→∞.

Fine’s argument for proving Theorem 14.1 based on Theorem 14.5 simply
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uses the observation that if there is one k′ for which f̂(k′) 6= 0, then

−2aF̂ (2a + k′) = f̂(k′)/4 + o(1) 6= o(1).

But if all f̂(k′) vanish, then f(x) = 0 and F (x) = c.

We consider the above examples now in light of Theorem 14.5.

Example 14.6 First let us consider F1(x) = x again. Let f1(x) =
d
dxF1(x) =

1. Then f̂1(k) = 1 for k = 0 and 0 otherwise. Theorem 14.5 does now assert

that F̂1(k) = O(1/k) for k = 2a and F̂1(k) = o(2−a) for k = 2a + k′, with
k′ > 0, as a → ∞. This is because f̂1(k

′) = 0 for k′ > 0. Note that this re-

sult is now stronger than just stating that the Walsh coefficients decay with

order 1/k. It says that if k = 2a+ k′, with k′ > 0 fixed, then F̂1(k) = o(2−a)
as a→∞.

Example 14.7 Let us now consider F3(x) = e−2πix. Let f3(x) =
d
dxF3(x) =

−2πie−2πix. Let now v = 3 and k = 2a1 + 2a2 + 2a3 . We have f3(x) =

−2πiF3(x) and hence we know how f̂3(k) behaves for v ≤ 2 from Exam-

ple 14.4. Let k′ = 2a2 + 2a3 . Then if a3 > 0 we have f̂3(k
′) = 0 and hence

F̂3(k) = o(2a1). If a3 = 0, then F̂3(k) = O(2−a1−a2) + o(2−a1).

Hence Theorem 14.5 gives us more information than Theorem 14.1. In-

deed, a generalisation of Theorem 14.5 can give us a complete picture on

how the Walsh coefficients of smooth functions behave as shown below.

14.2 A formula by Fine

We need the following lemma which was first shown in [77] and appeared

in many other papers (see for example [37] for a more general version).

The following notation is used throughout this chapter: for k ∈ N we write

k = κba−1 + k′ where a ∈ N, 1 ≤ κ < b and 0 ≤ k′ < ba−1.

Lemma 14.8 For k ∈ N let Jk(x) =
∫ x
0 bwalk(t) dt. Then

Jk(x) =
1

ba

(
1

1− ω−κ
b

bwalk′(x) +

(
1

2
+

1

ω−κ
b − 1

)
bwalk(x)

+

∞∑

c=1

b−1∑

l=1

1

bc(ωlb − 1)
bwallba+c−1+k(x)

)
.

For k = 0, i.e., J0(x) =
∫ x
0 1 dt = x, we have

J0(x) =
1

2
+

∞∑

c=1

b−1∑

l=1

1

bc(ωlb − 1)
bwallbc−1(x). (14.1)
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Proof Let k = κba−1 + k′ with a ∈ N, 0 ≤ k′ < ba−1 and 1 ≤ κ < b.

The function bwalκba−1(y) is constant on each interval [rb−a, (r + 1)b−a)
and bwalk′(y) is constant on each interval [cb−a+1, (c + 1)b−a+1). We have

bwalk(y) = bwalκba−1(y) bwalk′(y). For any 0 ≤ c < ba−1 we have

∫ (c+1)b−a+1

cb−a+1
bwalk(t) dt = bwalk′(cb−a+1)

∫ (c+1)b−a+1

cb−a+1
bwalκba−1(t) dt

= bwalk′(cb−a+1)
1

ba

b−1∑

r=0

bwalκ(r/b) = 0.

Thus we have

Jk(x) = bwalk′(x)Jκba−1(x).

Let x = x1b
−1+x2b

−2+ · · · and y = xa+1b
−1+xa+2b

−2+ · · · , then we have

Jκba−1(x) = b−a
xa−1∑

r=0

bwalκ(r/b) + b−a bwalκ(xa/b)y.

We now investigate theWalsh series representation of the function Jκba−1(x).

First note that bwalκ(xa/b) = bwalκba−1(x). Further, by a slight adaption

of formula (A.3) we obtain

y =
1

2
+

∞∑

c=1

b−1∑

l=1

1

bc(ωlb − 1)
bwallbc−1(y). (14.2)

As bwallbc−1(y) = bwallba+c−1(x) we obtain

y =
1

2
+

∞∑

c=1

b−1∑

l=1

1

bc(ωlb − 1)
bwallba+c−1(x).

Further for 1 ≤ κ < b we define the function ζa(x) =
∑xa−1

r=0 bwalκ(r/b),

where a ∈ N and x = x1b
−1 + x2b

−2 + · · · and where for xa = 0 we set

ζa(x) = 0. The function ζa depends on x only through xa, thus it is a step-

function which is constant on the intervals [cb−a, (c + 1)b−a) for 0 ≤ c ≤
ba − 1. The function ζa can be represented by a finite Walsh series. Indeed,

ζa(x) = (1− bwalκba−1(x))(1− bwalκ(1/b))
−1, which can be written as

ζa(x) =
b−1∑

z=0

cz bwalzba−1(x),

with c0 = (1 − bwalκ(1/b))
−1 = (1 − ω−κ

b )−1, cκ = −c0 and cz = 0 for

z 6∈ {0, κ}.
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Altogether we obtain

baJκba−1(x) =

b−1∑

z=0

cz bwalzba−1(x) +
1

2
bwalκba−1(x)

+

∞∑

c=1

b−1∑

l=1

1

bc(ωlb − 1)
bwallba+c−1+κba−1(x)

and therefore

baJk(x) =

b−1∑

z=0

cz bwalzba−1+k′(x) +
1

2
bwalk(x)

+

∞∑

c=1

b−1∑

l=1

1

bc(ωlb − 1)
bwallba+c−1+k(x).

The result for k = 0 follows easily from (14.2).

We also need the following elementary lemma.

Lemma 14.9 For any 1 ≤ κ < b we have
∣∣∣∣

1

1− ω−κ
b

∣∣∣∣ ≤
1

2 sin(π/b)
and

∣∣∣∣
1

2
+

1

ω−κ
b − 1

∣∣∣∣ ≤
1

2 sin(π/b)
.

We introduce some further notation which is used throughout the ap-

pendix.

We write k ∈ N in its b-adic expansion as k = κ1b
a1−1+ · · ·+κvbav−1 with

v ∈ N, digits 1 ≤ κ1, . . . , κv < b and a1 > a2 > · · · > av ≥ 1. Hence v is the

number of nonzero b-adic digits of k. In this setting we have k′ = k−κ1ba1−1.

Furthermore, for v > 1 let k′′ = k′ − κ2ba2−1, and hence 0 ≤ k′′ < ba2−1.

Similarly, for l ∈ N let l = λ1b
d1−1 + · · · + λwb

dw−1, where w ∈ N, digits

1 ≤ λ1, . . . , λw < b, and d1 > · · · > dw > 0. Further let l′ = l − λ1bd1−1

and hence 0 ≤ l′ < bd1−1. For w > 1 let l′′ = l′ − λ2b
d2−1, and hence

0 ≤ l′′ < bd2−1.

14.3 On the Walsh coefficients of polynomials and power series

In the following we obtain bounds on the Walsh coefficients of monomials

xr. Let

χr,v(a1, . . . , av;κ1, . . . , κv) =

∫ 1

0
xr bwalk(x) dx.
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For k = 0 we define χr,0, which is given by

χr,0 =

∫ 1

0
xr dx =

1

r + 1
.

The Walsh coefficients of xr are 0 if v > r, hence we have χr,v = 0 for

v > r. This also follows from Lemma A.22, since by using the formula for x

in Lemma A.22 one obtains only nonzero coefficients for v ≤ r (see also [37,

Lemma 3.7].)

The Walsh series for x is already known from Lemma 14.8, thus (note

that we need to take the complex conjugate of (14.1) to obtain the Walsh

series for x)

χ1,1(a1;κ1) = −b−a1(1− ω−κ1
b )−1. (14.3)

It can be checked that |χ1,1| ≤ 1
2 . Indeed, we always have

|χr,v(a1, . . . , av ;κ1, . . . , κv)| ≤
∫ 1

0
xr| bwalk(x)|dx =

∫ 1

0
xr dx =

1

r + 1

for all r, v ∈ N0.

We obtain a recursive formula for the χr,v using integration by parts,

namely

∫ 1

0
xr bwalk(x) dx = Jk(x)x

r

∣∣∣∣
1

0

− r
∫ 1

0
xr−1Jk(x) dx = −r

∫ 1

0
xr−1Jk(x) dx.

(14.4)

Using Lemma 14.8 and (14.4) we obtain for 1 ≤ v ≤ r and r > 1 that

χr,v(a1, . . . , av ;κ1, . . . , κv) (14.5)

= − r

ba1

(
1

1− ω−κ1
b

χr−1,v−1(a2, . . . , av;κ2, . . . , κv)

+

(
1

2
+

1

ω−κ1
b − 1

)
χr−1,v(a1, . . . , av ;κ1, . . . , κv)

+

∞∑

c=1

b−1∑

ϑ=1

1

bc(ωϑb − 1)
χr−1,v+1(a1 + c, a1, . . . , av ;ϑ, κ1, . . . , κv)

)
.

From (14.5) and using induction we can obtain

χr,r(a1, . . . , ar;κ1, . . . , κr) =
−r

ba1(1− ω−κ1
b )

χr−1,r−1(a2, . . . , ar;κ2, . . . , κr)

=
(−1)rr!
ba1+···+ar

r∏

w=1

1

1− ω−κw
b
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and, with a bit more effort,

χr,r−1(a1, . . . , ar−1;κ1, . . . , κr−1)

=
(−1)rr!

ba1+···+ar−1

r−1∏

w=1

1

1− ω−κw
b

(
−1

2
+

r−1∑

w=1

(
1

2
+

1

baw(ω−κw
b − 1)

))
,

for all r ∈ N.

In principle we can obtain all values of χr,v recursively using (14.5). We

calculated already χr,v for v = r, r − 1 and we could continue doing so for

v = r− 2, . . . , 1. But the formulae become increasingly complex, so we only

prove a bound on them.

For any r ∈ N0 and a nonnegative integer k with b-adic expansion given

by k = κ1b
a1−1 + · · · + κvb

av−1 with v ∈ N, digits 1 ≤ κ1, . . . , κv < b and

a1 > a2 > · · · > av ≥ 1 (if k 6= 0) we define

µr(k) =





0 for r = 0, k ≥ 0,

0 for k = 0, r ≥ 0,

a1 + · · · + amin(r,v) otherwise.

(14.6)

Lemma 14.10 For 1 ≤ r < v we have χr,v = 0 and for any 1 ≤ v ≤ r we

have

|χr,v(a1, . . . , av;κ1, . . . , κv)|

≤ min
0≤u≤v

1

bµu(k)
r!

(r − u+ 1)!

3min(1,u)

(2 sin(π/b))u

(
1 +

1

b
+

1

b(b+ 1)

)max(0,u−1)

.

Proof The first result follows from Lemma A.22 (see also [37]).

For the second result we use induction on r. We have already shown the

result for r = v = 1.

Now assume that

|χr−1,v(a1, . . . , av ;κ1, . . . , κv)|

≤ min
0≤u≤v

1

bµu(k)
(r − 1)!

(r − u)!
3min(1,u)

(2 sin(π/b))u

(
1 +

1

b
+

1

b(b+ 1)

)max(0,u−1)

.

We show that the result holds for r. We have already shown that |χr,v| ≤ 1
r+1 ,

which proves the result for u = 0.

By taking the absolute value of (14.5) and using the triangular inequality

we obtain

|χr,v(a1, . . . , av;κ1, . . . , κv)| (14.7)

≤ rb−a1
(
|1− ω−κ1

b |−1|χr−1,v−1(a2, . . . , av ;κ2, . . . , κv)|



464 The decay of the Walsh coefficients of smooth functions

+|1/2 + (ω−κ1
b − 1)−1||χr−1,v(a1, . . . , av ;κ1, . . . , κv)|

+
∞∑

c=1

b−1∑

ϑ=1

b−c|ωϑb − 1|−1|χr−1,v+1(a1 + c, a1, . . . , av;ϑ, κ1, . . . , κv)|
)
.

Using Lemma 14.9, |χr−1,v| ≤ 1
r and

∑∞
c=1 b

−c = 1
b−1 , we obtain from

(14.7) that

|χr,v(a1, . . . , av ;κ1, . . . , κv)| ≤
3b−a1

2 sin(π/b)
,

which proves the bound for u = 1.

To prove the bound for 1 < u ≤ v we proceed in the same manner. Using

Lemma 14.9, and

|χr−1,v(a1, . . . , av;κ1, . . . , κv)|

≤ 1

bµu−1(k)

(r − 1)!

(r − u+ 1)!

3min(1,u−1)

(2 sin(π/b))u−1

(
1 +

1

b
+

1

b(b+ 1)

)max(0,u−2)

,

we obtain

|χr,v(a1, . . . , av ;κ1, . . . , κv)|

≤ rb−a1

2 sin(π/b)

(
|χr−1,v−1(a2, . . . , av;κ2, . . . , κv)|

+|χr−1,v(a1, . . . , av;κ1, . . . , κv)|

+

∞∑

c=1

b−1∑

ϑ=1

b−c|χr−1,v+1(a1 + c, a1, . . . , av;ϑ, κ1, . . . , κv)|
)

≤ 1

bµu(k)
r!

(r − u+ 1)!

3min(1,u)

(2 sin(π/b))u

(
1 +

1

b
+

1

b(b+ 1)

)max(0,u−2)

×
(
1 + ba2−a1 +

ba2−a1

b+ 1

)

≤ 1

bµu(k)
r!

(r − u+ 1)!

3min(1,u)

(2 sin(π/b))u

(
1 +

1

b
+

1

b(b+ 1)

)max(0,u−1)

,

as
∑∞

c=1

∑b−1
ϑ=1 b

−2c = 1
b+1 and a1 > a2. Thus the result follows.

Let now f(x) = f0 + f1x + f2x
2 + · · · . The kth Walsh coefficient of f is

given by

f̂(k) =

∫ 1

0
f(x) bwalk(x) dx =

∞∑

r=0

fr

∫ 1

0
xr bwalk(x) dx



14.3 On the Walsh coefficients of polynomials and power series 465

=
∞∑

r=v

frχr,v(a1, . . . , av;κ1, . . . , κv).

We can estimate the kth Walsh coefficient by

|f̂(k)| =
∣∣∣∣∣
∞∑

r=v

χr,v(a1, . . . , av;κ1, . . . , κv)fr

∣∣∣∣∣

≤
∞∑

r=v

|χr,v(a1, . . . , av;κ1, . . . , κv)||fr|

≤
∞∑

r=v

|fr| min
0≤u≤v

1

bµu(k)
r!

(r − u+ 1)!

3min(1,u)

(2 sin(π/b))u

×
(
1 +

1

b
+

1

b(b+ 1)

)max(0,u−1)

≤ min
0≤u≤v

1

bµu(k)
3min(1,u)

(2 sin(π/b))u

(
1 +

1

b
+

1

b(b+ 1)

)max(0,u−1)

×
∞∑

r=v

r!|fr|
(r − u+ 1)!

.

Hence we have shown the following theorem.

Theorem 14.11 Let f(x) = f0+f1x+f2x
2+ · · · and let k ∈ N with b-adic

expansion k = κ1b
a1−1 + · · ·+ κvb

av−1 with v ∈ N, digits 1 ≤ κ1, . . . , κv < b

and a1 > a2 > · · · > av ≥ 1. Then we have

|f̂(k)|

≤ min
0≤u≤v

1

bµu(k)
3min(1,u)

(2 sin(π/b))u

(
1 +

1

b
+

1

b(b+ 1)

)max(0,u−1) ∞∑

r=v

r!|fr|
(r − u+ 1)!

.

The bound in the theorem makes of course only sense for u for which∑∞
r=v

r!|fr|
(r−u+1)! is finite. We give some examples:

• For f ∈ C∞([0, 1]) we have f (r)(0) = r!fr. If |f (r)(0)| grows exponentially
(e.g. for f(x) = eax with a > 1), then

∑∞
r=v

|f(r)(0)|
(r−v+1)! is finite for any

v ∈ N. The theorem implies that the Walsh coefficients decay with order

O(b−µv(k)).

• Using Sterling’s formula we obtain that r!
(r−v+1)! ≈ (r − v + 1)v−1 as r

tends to ∞. For f(x) = 1
1−cx with 0 < c < 1 we have fr = cr. In this case
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we have
∞∑

r=v

r!|fr|
(r − v + 1)!

≈
∞∑

r=v

(r − v + 1)v−1cr = cv−1
∞∑

r=1

rv−1cr <∞,

for all v ∈ N. The theorem implies that the Walsh coefficients decay with

order O(b−µv(k)).

For f ∈ C∞([0, 1]) with f(x) =
∑∞

r=0 frx
r we define the semi-norm

‖f‖ =
∞∑

r=1

|fr| =
∞∑

r=1

|f (r)(0)|
r!

.

Then the (v − 1)th derivative of f is given by

f (v−1)(x) =

∞∑

r=0

(v − 1 + r)!

r!
fv−1+rx

r =

∞∑

r=v−1

r!

(r − v + 1)!
frx

r−v+1

and

‖f (v−1)‖ =
∞∑

r=v

r!|fr|
(r − v + 1)!

=

∞∑

r=v

|f (r)(0)|
(r − v + 1)!

.

Hence we obtain the following corollary from Theorem 14.11.

Corollary 14.12 Let f ∈ C∞([0, 1]) with ‖f (z)‖ < ∞ for all z ∈ N0.

Then for every k ∈ N with b-adic expansion k = κ1b
a1−1+ · · ·+κvbav−1 with

v ∈ N, digits 1 ≤ κ1, . . . , κv < b and a1 > a2 > · · · > av ≥ 1 we have

|f̂(k)| ≤ 1

bµv(k)
3

(2 sin(π/b))v

(
1 +

1

b
+

1

b(b+ 1)

)v−1

‖f (v−1)‖.

Let us consider another example: Let fr = r−δ, with δ > 1. For instance

we can choose u = min(v, ⌈δ⌉ − 2) in the theorem above, which guarantees

that
∑∞

r=v
r!|fr|

(r−u+1)! < ∞. On the other hand, this sum is not finite for

⌈δ⌉−2 < u ≤ v. The theorem implies that the Walsh coefficients decay with

order O(b−µmin(v,⌈δ⌉−2)(k)). Note that this function f is only ⌈δ⌉ − 2 times

continuously differentiable. We consider this case in the next section.

14.4 On the Walsh coefficients of functions in Cα([0, 1])

Before the next lemma we introduce a variation of fractional order: For

0 < λ ≤ 1 and f : [0, 1]→ R let

Vλ(f) = sup
N∈N

0=x0<x1<···<xN=1

N∑

n=1

|xn − xn−1|
|f(xn)− f(xn−1)|
|xn − xn−1|λ

,
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where the supremum is taken over all partitions of the interval [0, 1]. For

λ = 1 we obtain the total variation.

If f has a continuous first derivative on [0, 1], then

V1(f) =

∫ 1

0
|f ′(x)|dx.

If f satisfies a Hölder condition of order 0 < λ ≤ 1, i.e., |f(x) − f(y)| ≤
Cf |x− y|λ for all x, y ∈ [0, 1], then Vλ(f) ≤ Cf .

Lemma 14.13 Let f ∈ L1([0, 1]) and let k ∈ N with k = κba−1 + k′ where
a ∈ N, 1 ≤ κ < b, 0 ≤ k′ < ba−1 and let 0 ≤ c < ba−1. Then

∣∣∣∣∣

∫ (c+1)b−a+1

cb−a+1

f(x) bwalk(x) dx

∣∣∣∣∣ ≤ b
−a+1 sup

d,e
|f(e)− f(d)|,

where the supremum is taken over all cb−a+1 ≤ d < e ≤ (c + 1)b−a+1 with

ba|e− d| ∈ {1, . . . , b− 1}.

Proof We have bwalk(x) = bwalκba−1(x) bwalk′(x) and the function bwalk′(x)

is constant on the interval [cb−a+1, (c + 1)b−a+1). Hence we have

∣∣∣∣∣

∫ (c+1)b−a+1

cb−a+1

f(x) bwalk(x) dx

∣∣∣∣∣ =
∣∣∣∣∣

∫ (c+1)b−a+1

cb−a+1

f(x) bwalκba−1(x) dx

∣∣∣∣∣ .

Note that the function bwalκba−1 is constant on each of the subintervals

[rb−a, (r + 1)b−a) for 0 ≤ r < ba. Without loss of generality we may assume

that c = 0, for all other c the result follows by the same arguments. Thus

we have

∫ b−a+1

0
f(x) bwalκba−1(x) dx =

b−1∑

r=0

bwalκ(r/b)

∫ (r+1)b−a

rb−a

f(x) dx.

Let now ar :=
∫ (r+1)b−a

rb−a f(x) dx and A := 1
b

∑b−1
r=0 ar. Then we have

b−1∑

r=0

bwalκ(r/b)ar =
b−1∑

r=0

bwalκ(r/b)(ar −A)

and

|ar −A| ≤
1

b

b−1∑

t=0

|ar − at| ≤ max
0≤t<b

|ar − at|.
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We have at =
∫ (r+1)b−a

rb−a f(x+ (t− r)b−a) dx and therefore

|ar − at| =
∣∣∣∣∣

∫ (r+1)b−a

rb−a

(f(x)− f(x+ (t− r)b−a)) dx
∣∣∣∣∣

≤
∫ (r+1)b−a

rb−a

∣∣f(x)− f(x+ (t− r)b−a)
∣∣ dx

≤ 1

ba
sup

max(0,r−t)≤xba≤min(b,b+r−t)

∣∣f(x)− f(x+ (t− r)b−a)
∣∣ .

Therefore
∣∣∣∣∣
b−1∑

r=0

bwalκ(r/b)ar

∣∣∣∣∣ ≤
b−1∑

r=0

|ar −A|

≤
b−1∑

r=0

max
0≤t<b

|ar − at|

≤ b max
0≤r<t<b

|ar − at|

≤ b−a+1 max
0≤ℓ<b

sup |f(x)− f(x+ ℓb−a)|,

where the supremum is taken over all x for which 0 ≤ x ≤ b−a(b − ℓ). The
result follows.

In the following lemma we now obtain a bound on the Walsh coefficients

for functions of bounded variation. The following lemma appeared already

in [77] (albeit in a slightly different form; see also [37, 215]).

Lemma 14.14 Let 0 < λ ≤ 1 and let f ∈ L2([0, 1]) satisfy Vλ(f) < ∞.

Then for any k ∈ N the kth Walsh coefficient of f satisfies

|f̂(k)| ≤ b1−λ(a−1)Vλ(f),

where k = κba−1 + k′, where 1 ≤ κ < b, a ∈ N, and 0 ≤ k′ < ba−1.

Proof Let f ∈ L2([0, 1]) with kth Walsh coefficient f̂(k). Let k ∈ N be

given. Then we have

∣∣∣∣
∫ 1

0
f(x) bwalk(x) dx

∣∣∣∣ ≤
ba−1−1∑

c=0

∣∣∣∣∣

∫ (c+1)b−a+1

cb−a+1

f(x) bwalk(x) dx

∣∣∣∣∣ .

Now we use Lemma 14.13 and thereby obtain that the above sum is
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bounded by

ba−1−1∑

c=0

b−a+1 sup
d,e
|f(e)− f(d)|,

where the supremum is taken over all cb−a+1 ≤ d < e ≤ (c + 1)b−a+1 with

ba|e− d| ∈ {1, . . . , b− 1}. Now we have

b−a+1 sup
d,e
|f(e)− f(d)|

≤ sup

N−1∑

i=0

|yi+1 − yi|1−λ|f(yi+1)− f(yi)|
b−a+1

|yi+1 − yi|1−λ
,

where the supremum on the right hand side of the inequality is taken over

all partitions of the interval [cb−a+1, (c + 1)b−a+1) of the form N ∈ N and

cb−a+1 = y0 < y1 < · · · < yN = (c+1)b−a+1 where ba|yi+1−yi| ∈ {1, . . . , b−
1} for 0 ≤ i ≤ N − 1.

For all 0 ≤ i ≤ N − 1 we have b−a ≤ |yi+1 − yi| ≤ b−a+1 and therefore

b−a+1

|yi+1 − yi|1−λ
≤ b|yi+1 − yi|λ ≤ b1−λ(a−1)

and hence

b−a+1 sup
d,e
|f(e)− f(d)| ≤ b1−λ(a−1) sup

N−1∑

i=0

|yi+1 − yi|1−λ|f(yi+1)− f(yi)|,

where the supremum is taken over all partitions of the interval [cb−a+1, (c+

1)b−a+1) of the above form.

Note that

ba−1−1∑

c=0

sup
N−1∑

i=0

|yi+1 − yi|1−λ|f(yi+1)− f(yi)|

≤ sup
N∈N

0=x0<x1<···<xN=1

N−1∑

i=0

|xi+1 − xi|
|f(xi+1)− f(xi)|
|xi+1 − xi|λ

= Vλ(f),

where the supremum on the left hand side is taken over all partitions of the

interval [cb−a+1, (c + 1)b−a+1) of the above form and the supremum on the

right hand side is taken over all partitions of [0, 1) into subintervals. Thus

the result follows.

Thus, the decay of the Walsh coefficients of functions with smoothness

0 < α ≤ 1 has already been considered and we deal with α > 1 in the

following.
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Let now f ∈ L2([0, 1]) with Vλ(f) <∞ and let F1(x) :=
∫ x
0 f(y) dy. Then

using integration by parts as in the previous section, we obtain for k ∈ N

F̂1(k) =

∫ 1

0
F1(x) bwalk(x) dx = −

∫ 1

0
f(x)Jk(x) dx.

Substituting the Walsh series for Jk from Lemma 14.8, we obtain

F̂1(k) = −
1

ba1

(
1

1− ω−κ1
b

f̂(k′) +

(
1

2
+

1

ω−κ1
b − 1

)
f̂(k)

+
∞∑

c=1

b−1∑

ϑ=1

1

bc(ωϑb − 1)
f̂(ϑba1+c−1 + k)

)
.

Taking the absolute value on both sides and using the same estimations as

in the previous section, we obtain

|F̂1(k)| ≤
b−a1

2 sin(π/b)

(
|f̂(k′)|+ |f̂(k)| +

∞∑

c=1

b−1∑

ϑ=1

1

bc
|f̂(ϑba1+c−1 + k)|

)
.

(14.8)

Thus, using Lemma 14.14 we obtain for k ∈ N with v ≥ 2, that

|F̂1(k)| ≤ b−a1−λa2Vλ(f)
b1+λ

2 sin(π/b)
(1 + 2b−λ).

For k = κ1b
a1−1 we obtain

|F̂1(k)| ≤
b−a1

2 sin(π/b)

(
|f̂(0)| + 2b1+λb−λa1Vλ(f)

)
.

Defining Fα(x) =
∫ x
0 Fα−1(y) dy for α ≥ 1, we can obtain bounds on the

Walsh coefficients of Fα by using induction on α. Using similar arguments

as in the proof of Lemma 14.10 we obtain for v > α that

|F̂α(k)| ≤ b−µα(k)−λaα+1Vλ(f)
b1+λ(1 + 2b−λ)
(2 sin(π/b))α

(
1 +

1

b
+

1

b(b+ 1)

)α−1

,

(14.9)

and for v = α that

|F̂α(k)| (14.10)

≤ b−µα(k)

(2 sin(π/b))α

(
1 +

1

b
+

1

b(b+ 1)

)α−1 (
|f̂(0)| + 2b1+λb−λaαVλ(f)

)
.

For 1 ≤ v < α we have

|F̂α(k)| ≤
b−µα(k)

(2 sin(π/b))v

(
1 +

1

b
+

1

b(b+ 1)

)v−1
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×
(
|F̂α−v(0)|+ 2b1+λb−λavVλ(Fα−v)

)
. (14.11)

Note that we also have Fα(x) =
∫ 1
0 f(t)

(x−t)α−1
+

(α−1)! dt, where (x − t)α−1
+ =

(x − t)α−1χ[0,x)(t) for 0 ≤ x, t ≤ 1 and χ[0,x)(t) is 1 for t ∈ [0, x) and 0

otherwise.

A function f ∈ Cα([0, 1]) for which Vλ(f
(α)) < ∞ can be represented by

a Taylor series

f(x) = f(0) +
f (1)(0)

1!
x+ · · · + f (α−1)(0)

(α− 1)!
xα−1 +

∫ 1

0
f (α)(t)

(x− t)α−1
+

(α− 1)!
dt.

With this we can now obtain a bound on the Walsh coefficients of f . For

v ≥ α we know from above that

∫ 1

0

(
f(0) +

f (1)(0)

1!
x+ · · ·+ f (α−1)(0)

(α− 1)!
xα−1

)
bwalk(x) dx = 0.

To bound the Walsh coefficient of
∫ 1
0 f

(α)(t)
(x−t)α−1

+

(α−1)! dt for v > α we can use

(14.9) to obtain

|f̂(k)| ≤ b−µα(k)−λaα+1Vλ(f
(α))

b1+λ(1 + 2b−λ)
(2 sin(π/b))α

(
1 +

1

b
+

1

b(b+ 1)

)α−1

.

For v = α we can use (14.10) to obtain

|f̂(k)| ≤ b−µα(k)

(2 sin(π/b))α

(
1 +

1

b
+

1

b(b+ 1)

)α−1

×
(
|f̂ (α)(0)| + 2b1+λb−λaαVλ(f

(α))
)
.

For 1 ≤ v < α we have
∣∣∣∣∣

∫ 1

0

(
f(0) +

f (1)(0)

1!
x+ · · ·+ f (α−1)(0)

(α− 1)!
xα−1

)
bwalk(x) dx

∣∣∣∣∣

≤ b−µα(k) 3

(2 sin(π/b))v

(
1 +

1

b
+

1

b(b+ 1)

)v−1 α−1∑

r=v

|f (r)(0)|
(r − v + 1)!

and therefore, using (14.11), we obtain

|f̂(k)| ≤ b−µα(k)

(2 sin(π/b))v

(
1 +

1

b
+

1

b(b+ 1)

)v−1

×
[
3

α−1∑

r=v

|f (r)(0)|
(r − v + 1)!

+
(
|f̂ (v)(0)| + 2b1+λb−λavVλ(f

(v))
)]

,
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where f̂ (v)(0) denotes the 0th Walsh coefficient of f (v). We have shown the

following theorem.

Theorem 14.15 Let f ∈ Cα([0, 1]) with Vλ(f
(α)) < ∞, and let k ∈ N.

Then for v > α we have

|f̂(k)| ≤ b−µα(k)−λaα+1Vλ(f
(α))

b1+λ(1 + 2b−λ)
(2 sin(π/b))α

(
1 +

1

b
+

1

b(b+ 1)

)α−1

,

for α = v we have

|f̂(k)| ≤ b−µα(k)

(2 sin(π/b))α

(
1 +

1

b
+

1

b(b+ 1)

)α−1

×
(∣∣∣∣
∫ 1

0
f (α)(x) dx

∣∣∣∣+ 2b1+λb−λaαVλ(f
(α))

)
,

and for v < α we have

|f̂(k)| ≤ b−µα(k)

(2 sin(π/b))v

(
1 +

1

b
+

1

b(b+ 1)

)v−1

×
[
3

α−1∑

r=v

|f (r)(0)|
(r − v + 1)!

+

(∣∣∣∣
∫ 1

0
f (v)(x) dx

∣∣∣∣+ 2b1+λb−λavVλ(f
(v))

)]
.

We also prove bounds on the decay of the Walsh coefficients of functions

from Sobolev spaces. For this, we first need bounds on the Walsh coefficients

of Bernoulli polynomials, which we consider in the next section.

14.5 On the Walsh coefficients of Bernoulli polynomials

For r ∈ N0 let Br(·) denote the Bernoulli polynomial of degree r and br(·) =
Br(·)
r! . For example we have B0(x) = 1, B1(x) = x−1/2, B2(x) = x2−x+1/6

and so on. It is well known that
∫ 1
0 Br(x) dx = 0, for all r ∈ N, see [1], and

we note that B2r(|x− y|) = B2r({x− y}).
Those polynomials have the properties

b′r(x) = br−1(x) and

∫ 1

0
br(x) = 0 for all r ∈ N.

We obviously have b′0(x) = 0 and
∫ 1
0 b0(x) dx = 1. Further, Br(1 − x) =

(−1)rBr(x) and also br(1 − x) = (−1)rbr(x). The numbers Br = Br(0) are

the Bernoulli numbers and Br = 0 for all odd r ≥ 3. Further, for r ∈ N, we

have

br(x) = −
1

(2πi)r

∑

h∈Z\{0}
h−re2πihx, for 0 ≤ x ≤ 1. (14.12)
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It is more convenient to deal with br(·) rather than the Bernoulli polyno-

mials.

For r, k ∈ N with k = κ1b
a1−1 + · · · + κvb

av−1 where v ∈ N, κ1, . . . , κv ∈
{1, . . . , b− 1} and a1 > a2 > · · · > av ≥ 1 let

βr(k) = βr,v(a1, . . . , av ;κ1, . . . , κv) :=

∫ 1

0
br(x) bwalk(x) dx. (14.13)

As for χr,v, we also have βr,v = 0 for v > r. Further, for k = 0 let v = 0 and

we have βr,0 = 0 for all r ∈ N.

The Walsh series for b1 can be obtained from the Walsh series of J0 from

Lemma 14.8 and is given by

b1(x) = x− 1

2
=

∞∑

c=1

b−1∑

ϑ=1

1

bc(ω−ϑ
b − 1)

bwalϑbc−1(x).

Thus

β1,1(a1;κ1) = −b−a1(1− ω−κ1
b )−1.

Using integration by parts and Jk(0) = Jk(1) = 0 we obtain for all r > 1

that ∫ 1

0
br(x) bwalk(x) dx = −

∫ 1

0
br−1(x)Jk(x) dx. (14.14)

Using Lemma 14.8 and (14.14) we obtain for 1 ≤ v ≤ r and r > 1 that

βr,v(a1, . . . , av;κ1, . . . , κv) (14.15)

= − 1

ba1

(
1

1− ω−κ1
b

βr−1,v−1(a2, . . . , av;κ2, . . . , κv)

+

(
1

2
+

1

ω−κ1
b − 1

)
βr−1,v(a1, . . . , av;κ1, . . . , κv)

+

∞∑

c=1

b−1∑

ϑ=1

1

bc(ωϑb − 1)
βr−1,v+1(a1 + c, a1, . . . , av;ϑ, κ1, . . . , κv)

)
.

From (14.15) for all r ∈ N we can obtain

βr,r(a1, . . . , ar;κ1, . . . , κr) =
(−1)r

ba1+···+ar

r∏

w=1

1

1− ω−κw
b

.

The first few values of βr,v are as follows:

• r = 1: β1,0 = 0, β1,1(a1;κ1) = −b−a1(1− ω−κ1
b )−1;
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• r = 2: β2,0 = 0, β2,1(a1;κ1) = b−2a1(1 − ω−κ1
b )−1(1/2 + (ω−κ1

b − 1)−1),

β2,2(a1, a2;κ1, κ2) = b−a1−a2(1− ω−κ1
b )−1(1− ω−κ2

b )−1.

In principle we can obtain all values of βr,v recursively using (14.15).

We calculated already βr,v for v = r and we could continue doing so for

v = r− 1, . . . , 1. But the formulae become increasingly complex, so we only

prove a bound on them.

For any r ≥ 0 and a nonnegative integer k we introduce the function

µr,per(k) =





0 for r = 0, k ≥ 0,

0 for k = 0, r ≥ 0,

a1 + · · ·+ av + (r − v)av for 1 ≤ v < r,

a1 + · · ·+ ar for v ≥ r.
(14.16)

Lemma 14.16 For any r ≥ 2 and 1 ≤ v ≤ r we have

|βr,v(a1, . . . , av;κ1, . . . , κv)| ≤
b−µr,per(k)

(2 sin(π/b))r

(
1 +

1

b
+

1

b(b+ 1)

)r−2

.

Proof We prove the bound by induction on r. Using Lemma 14.9 it can

easily be seen that the result holds for r = 2. Hence assume now that r > 2

and the result holds for r − 1. By taking the absolute value of (14.15) and

using the triangular inequality together with Lemma 14.9 we obtain

|βr,v(a1, . . . , av ;κ1, . . . , κv)| ≤
b−a1

2 sin(π/b)

×
(
|βr−1,v−1(a2, . . . , av ;κ2, . . . , κv)|+ |βr−1,v(a1, . . . , av ;κ1, . . . , κv)|

+
∞∑

c=1

b−1∑

ϑ=1

1

bc
|βr−1,v+1(a1 + c, a1, . . . , av;ϑ, κ1, . . . , κv)|

)
.

We can now use the induction assumption for |βr−1,v−1|, |βr−1,v |, |βr−1,v+1|.
Hence, for v > 1, we obtain

|βr,v(a1, . . . , av ;κ1, . . . , κv)| ≤
b−µr,per(k)

(2 sin(π/b))r

(
1 +

1

b
+

1

b(b+ 1)

)r−3

×
(
1 + ba2−a1 +

∞∑

c=1

b−1∑

ϑ=1

b−2cba2−a1
)
.

By noting that
∑∞

c=1

∑b−1
ϑ=1 b

−2c = 1
b+1 , and a1 > a2 we obtain the result.
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For v = 1 note that βr,0 = 0. In this case we have

|βr,1(a1;κ1)| ≤
b−µr,per(k)

(2 sin(π/b))r

(
1 +

1

b
+

1

b(b+ 1)

)r−3
(
1 +

∞∑

c=1

b−1∑

ϑ=1

b−2c

)

≤ b−µr,per(k)

(2 sin(π/b))r

(
1 +

1

b
+

1

b(b+ 1)

)r−2

,

which implies the result.

The br are polynomials, but using (14.12) we can extend br periodically

so that it is defined on R. We denote those functions by b̃r. Then for r ∈ N

we have

b̃2r(x) =
2(−1)r+1

(2π)2r

∞∑

h=1

h−2r cos 2πhx for x ∈ R,

and

b̃2r+1(x) =
2(−1)r+1

(2π)2r+1

∞∑

h=1

h−2r−1 sin 2πhx for x ∈ R.

From this it can be seen that b̃r(x) = (−1)r b̃r(−x) for all r ≥ 2. Note

that for x, y ∈ [0, 1] we have b2r(|x − y|) = b̃2r(x − y) and b2r+1(|x − y|) =
(−1)1x<y b̃2r+1(x − y), where 1x<y is 1 for x < y and 0 otherwise. We also

extend Br(·) periodically to R, which we denote by B̃r(·).
In the next section we also need a bound on the Walsh coefficients of

b̃r(x− y). For k, l ∈ N0 let

γr(k, l) =

∫ 1

0

∫ 1

0
b̃r(x− y) bwalk(x) bwall(y) dxdy (14.17)

= − 1

(2πi)r

∑

h∈Z\{0}
h−rτh,kτh,l,

where

τh,k :=

∫ 1

0
e2πihx bwalk(x) dx.

We have γr(k, 0) = γr(0, l) = 0 for all k, l ∈ N0, as
∫ 1+z
z b̃r(x) dx = 0

for any z ∈ R. Further we have γr(l, k) = (−1)rγr(k, l) and therefore also

|γr(k, l)| = |γr(l, k)|.
We obtain bounds on γr by induction. In the next lemma we calculate the

values of γ2.
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Lemma 14.17 For all k, l ∈ N0 we have γ2(k, 0) = γ2(0, l) = 0. For

k, l ∈ N we have

γ2(k, l) =





b−2a1
(

1
2 sin2(κ1π/b)

− 1
3

)
if k = l,

b−a1−d1(ω−κ1
b − 1)−1(ωλ1b − 1)−1 if k′ = l′ > 0,

and k 6= l,

b−a1−d1(1/2 + (ω−λ1
b − 1)−1)(ω−κ1

b − 1)−1

+b−2a1(1/2 + (ωκ1b − 1)−1)(1− ω−κ1
b )−1 if k′ = l,

b−a1−d1(1/2 + (ωκ1b − 1)−1)(ωλ1b − 1)−1

+b−2d1(1/2 + (ω−λ1
b − 1)−1)(1 − ωλ1b )−1 if k = l′,

b−a1−a2(1− ω−κ2
b )−1(ω−κ1

b − 1)−1 if k′′ = l,

b−d1−d2(1− ωλ2b )−1(ωλ1b − 1)−1 if k = l′′,
0 otherwise.

Proof For all k, l ∈ N0 we have that γ2(k, 0) = γ2(0, l) = 0. Now assume

that k, l > 0.

The Walsh series for b̃2(x− y) = b2(|x− y|) = (x−y)2
2 − |x−y|

2 + 1
12 can be

calculated in the following way: We have x = J0(x) and y = J0(y) and so

(x− y)2
2

=
(J0(x)− J0(y))2

2
.

Further

|x− y| = x+ y − 2min(x, y) = x+ y − 2

∫ 1

0
χ[0,x)(t)χ[0,y)(t) dt,

where χ[0,x)(t) is 1 for t ∈ [0, x) and 0 otherwise. Note that Jk(x) =∫ x
0 bwalk(t) dt =

∫ 1
0 χ[0,x)(t) bwalk(t) dt, which implies

χ[0,x)(t) =

∞∑

k=0

Jk(x) bwalk(t).

Thus
∫ 1

0
χ[0,x)(t)χ[0,y)(t) dt =

∞∑

m,n=0

Jm(x)Jn(y)

∫ 1

0
bwalm(t) bwaln(t) dt

=
∞∑

m=0

Jm(x)Jm(y).

The Walsh series for b̃2(x− y) is therefore given by

b̃2(x− y) =
(J0(x))

2 + (J0(y))
2 − J0(x)− J0(y)
2

+
∞∑

m=1

Jm(x)Jm(y) +
1

12
.
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We have

γ2(k, l)

=

∫ 1

0

∫ 1

0
b̃2(x− y) bwalk(x) bwall(y) dxdy

=

∫ 1

0

∫ 1

0

[
(J0(x))

2 + (J0(y))
2 − J0(x)− J0(y)
2

+

∞∑

m=1

Jm(x)Jm(y) +
1

12

]

× bwalk(x) bwall(y) dxdy

=

∞∑

m=1

∫ 1

0
Jm(x) bwalk(x) dx

∫ 1

0
Jm(y) bwall(y) dy.

It remains to consider the integral
∫ 1
0 Jm(x) bwalk(x) dx. Letm = ηbe−1+m′,

with 0 < η < b, e > 0, and 0 ≤ m′ < be−1. Then, using Lemma 14.8, we

have

∫ 1

0
Jm(x) bwalk(x) dx

= b−e
(

1

1− ωηb

∫ 1

0
bwalm′(x) bwalk(x) dx

+

(
1

2
+

1

ωηb − 1

)∫ 1

0
bwalm(x) bwalk(x) dx

+
∞∑

c=1

b−1∑

ϑ=1

1

bc(ω−ϑ
b − 1)

∫ 1

0
bwalϑbe+c−1+m(x) bwalk(x) dx

)
.

This integral is not 0 only if either m′ = k, m = k or m + ϑbe+c−1 = k for

some ϑ, c. Analogously the same applies to the integral
∫ 1
0 Jm(y) bwall(y) dy.

Hence we only need to consider a few cases for which γ2(k, l) is nonzero, and

by going through each of them we obtain the result.

Note that many values of γ2(k, l) are 0, in particular, if k and l are suffi-

ciently “different” from each other. This property is inherited by br for r > 2

via the recursion

γr(k, l) = −
1

ba1

(
1

1− ω−κ1
b

γr−1(k
′, l) +

(
1

2
+

1

ω−κ
b − 1

)
γr−1(k, l)

+

∞∑

c=1

b−1∑

ϑ=1

1

bc(ωϑb − 1)
γr−1(ϑb

c+a1−1 + k, l)

)
. (14.18)
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This recursion is obtained from

γr(k, l) = −
∫ 1

0

∫ 1

0
b̃r−1(x− y)Jk(x) bwall(y) dxdy, (14.19)

which in turn can be obtained using integration by parts. In the following

lemma we show that γr(k, l) = 0 for many choices of k and l.

Lemma 14.18 Let k, l ∈ N0. For k ∈ N we write k = κ1b
a1−1 + · · · +

κvb
av−1 with digits 1 ≤ κ1, . . . , κv < b and a1 > a2 > · · · > av ≥ 1 and for

l ∈ N we write l = λ1b
d1−1 + · · · + λwb

dw−1 with digits 1 ≤ λ1, . . . , λw < b

and d1 > d2 > · · · > dv ≥ 1. Then we have:

1. For any k, l ∈ N0 and r ∈ N we have γr(k, 0) = γr(0, l) = 0.

2. For k, l ∈ N with |v − w| > r ≥ 2 we have γr(k, l) = 0.

3. Let k, l, r ∈ N, r ≥ 2, such that |v − w| ≤ r.
(i). If v = 1, but (κ1, a1) 6= (λw, dw), then γr(k, l) = 0.

(ii). If w = 1, but (λ1, d1) 6= (κv, av), then γr(k, l) = 0.

(iii). If r − 1 ≤ |v − w| ≤ r, but

(av−min(v,w)+1, . . . , av, κv−min(v,w)+1, . . . , κv)

6= (dw−min(v,w)+1, . . . , dw, λw−min(v,w)+1, . . . , λw),

then γr(k, l) = 0.

(iv). If v,w > 1 and 0 ≤ |v − w| ≤ r − 2, but

(av−min(v,w)+2, . . . , av, κv−min(v,w)+2, . . . , κv)

6= (dw−min(v,w)+2, . . . , dw, λw−min(v,w)+2, . . . , λw),

then γr(k, l) = 0.

Proof 1. This has been shown already.

2. We have γ2(k, l) = 0 for |v−w| > 2, which follows from Lemma 14.17. Let

r > 2. Then by repeatedly using (14.18) we can write γr(k, l) as a sum of

γ2(mi, nj) for some values mi, nj , i.e., γr(k, l) =
∑

i,j ai,jγ2(mi, nj). But

if |v − w| > r, then the difference between the number of nonzero digits

of mi and nj is bigger than 2 and hence γr(k, l) = 0 by Lemma 14.17.

3. For r = 2 the proof follows again from Lemma 14.17: If v = 1 (w = 1),

then k′ = 0 (l′ = 0 respectively) and we only have the cases k = l, k = l′

(l = k′ respectively), and k = l′′ (l = k′′ respectively) for which the result

follows. The case 1 ≤ |v−w| ≤ 2 comprises the cases k′ = l, k = l′, k′′ = l,

and k = l′′. The case v = w can be obtained by considering k = l, and

k′ = l′ with k 6= l. For r > 2, we can again use (14.18) repeatedly to obtain

a sum of γ2(mi, nj). The result then follows by using Lemma 14.17.



14.6 On the Walsh coefficients of functions in Sobolev spaces 479

In the following we prove a bound on |γr(k, l)| for arbitrary r ≥ 2. We set

µr,per(k, l) := max
0≤s≤r

µs,per(k) + µr−s,per(l). (14.20)

Lemma 14.19 For r ≥ 2 and k, l ∈ N we have

|γr(k, l)| ≤
2b−µr,per(k,l)

(2 sin(π/b))r

(
1 +

1

b
+

1

b(b+ 1)

)r−2

.

Proof For r = 2 we use Lemma 14.17, and Lemma 14.9 to obtain the result.

Let now r > 2. By taking the absolute value of (14.18) and using the

triangular inequality together with Lemma 14.9 we obtain

|γr(k, l)| ≤
b−a1

2 sin(π/b)

(
|γr−1(k

′, l)|+ |γr−1(k, l)|

+

∞∑

c=1

b−1∑

ϑ=1

1

bc
|γr−1(ϑb

a1+c−1 + k, l)|
)
. (14.21)

By using integration by parts with respect to the variable y in (14.17) we ob-

tain a formula similar to (14.19). Hence there is also an analogue to (14.21).

W.l.o.g. assume that k ≥ l (otherwise use the analogue to (14.21)) and

assume that the result holds for r − 1. Then

|γr(k, l)|

≤ 2b−a1

(2 sin(π/b))r

(
1 +

1

b
+

1

b(b+ 1)

)r−3

(
b−µr−1,per(k′,l) + b−µr−1,per(k,l) + (b− 1)

∞∑

c=1

b−c−µr−1,per(ba1+c−1+k,l)

)
.

We have a1 + µr−1,per(k
′, l) = µr,per(k, l), a1 + µr−1,per(k, l) > µr,per(k, l),

and a1 + µr−1,per(b
a1+c−1 + k, l) = 2a1 + c + µr−2,per(k, l) > c+ µr,per(k, l).

Therefore we obtain

|γr(k, l)| ≤
2b−µr,per(k,l)

(2 sin(π/b))r

(
1 +

1

b
+

1

b(b+ 1)

)r−3
(
1 +

1

b
+
b− 1

b

∞∑

c=1

b−2c

)
.

As
∑∞

c=1 b
−2c = (b2 − 1)−1, the result follows.

14.6 On the Walsh coefficients of functions in Sobolev spaces

In this section we consider functions in reproducing kernel Hilbert spaces.

We consider the (unanchored) Sobolev space Hα of real valued functions
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f : [0, 1]→ R, for which α ∈ N, and where the inner product is given by

〈f, g〉α =

α−1∑

k=0

∫ 1

0
f (k)(x) dx

∫ 1

0
g(k)(x) dx+

∫ 1

0
f (α)(x)g(α)(x) dx,

where f (k) denotes the kth derivative of f and where f (0) = f . Let ‖f‖α =√
〈f, f〉α. The reproducing kernel for this space is given by

Kα(x, y) =

α∑

k=0

Bk(x)Bk(y)

(k!)2
− (−1)α B̃2α(x− y)

(2α)!

=

α∑

k=0

bk(x)bk(y)− (−1)αb̃2α(x− y),

see for example [257, Section 10.2]. For α = 1 we have the Sobolev space

from Section 2.5 and from Section 12.2 (in the unweighted form). It can be

checked that

f(y) = 〈f,Kα(·, y)〉α

=

α∑

k=0

∫ 1

0
f (k)(x) dx bk(y)− (−1)α

∫ 1

0
f (α)(x)̃bα(x− y) dx.

Hence the mth Walsh coefficient of f is given by

f̂(m) =

α∑

k=0

∫ 1

0
f (k)(x) dx b̂k(m)

− (−1)α
∫ 1

0

∫ 1

0
f (α)(x)̃bα(x− y) dx bwalm(y) dy. (14.22)

A bound on the Walsh coefficients of b0(y), . . . , bα(y) can be obtained from

Lemma 14.16. For the remaining term we use Lemma 14.19. We have

b̃α(x− y) =
∞∑

k,l=1

γα(k, l) bwalk(x) bwall(y) = (−1)αb̃α(y − x)

and therefore

(−1)α
∫ 1

0

∫ 1

0
f (α)(x)̃bα(x− y) dx bwalm(y) dy

=

∫ 1

0

∫ 1

0
f (α)(x)̃bα(y − x) dx bwalm(y) dy

=

∞∑

k,l=1

γα(k, l)

∫ 1

0
f (α)(x) bwall(x) dx

∫ 1

0
bwalk(y) bwalm(y) dy
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=
∞∑

l=1

γα(m, l)

∫ 1

0
f (α)(x) bwall(x) dx.

Using Lemma 14.19 we can estimate the absolute value of the last expression

by

∞∑

l=1

|γα(m, l)|
∫ 1

0
|f (α)(x)|dx (14.23)

≤
∫ 1

0
|f (α)(x)|dx 2

(2 sin(π/b))α

(
1 +

1

b
+

1

b(b+ 1)

)α−2 ∞∑

l=1
γα(m,l)6=0

b−µα,per(m,l).

It remains to prove a bound on the rightmost sum, which we do in the

following lemma.

Lemma 14.20 For any α,m ∈ N, α ≥ 2, we have

∞∑

k=1
γα(m,k)6=0

b−µα,per(m,k) ≤ b−µα,per(m)

(
3 +

2

b
+

2b+ 1

b− 1

)
.

Proof Let m = η1b
e1−1 + · · · + ηzb

ez−1, where 1 ≤ η1, . . . , ηz < b and e1 >

· · · > ez > 0. We consider now all natural numbers k for which γα(m,k) 6= 0.

From Lemma 14.18 we know that γα(m,k) = 0 for |v − z| > α. Hence we

only need to consider the cases where |v − z| ≤ α:

• v = max(z − α, 0): If z − α ≤ 0, then this case does not occur; otherwise

there is only one k for which γα(m,k) 6= 0, and we obtain the summand

b−µα,per(m).

• v = max(z−α+1, 0): Again if z−α+1 ≤ 0, then this case does not occur;

otherwise we can bound this summand from above by b−µα,per(m)−1.

• max(z − α + 1, 0) < v ≤ z: First, let v = 1. Then κ1 = ηz and a1 =

ez . Therefore k is fixed, µα,per(m,k) = µα,per(m), and b−µα,per(m,k) =

b−µα,per(m).

Let now v > 1, which implies z > 1 (as z ≥ v) and z − v + 2 ≤ α. In

this case

(a2, . . . , av, κ2, . . . , κv) = (ez−v+2, . . . , ez , ηz−v+2, . . . , ηz).

Thus

µα,per(m,k) = µz−v+1,per(m) + a1 + µα−(z−v+2),per(k
′, k′)

≥ µα,per(m) + a1 − av−z+α.
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Note that v− z +α > 1. Let a′v = a1 − av−z+α > v− z + α− 2. Then the

sum over all k for which 1 < v ≤ z is bounded by

b−µα,per(m)(b−1)
z∑

v=2

∞∑

a′=v−1

b−a
′ ≤ b−µα,per(m)

∞∑

v=2

b−v+2 ≤ b−µα,per(m) b

b− 1
.

• z+1 ≤ v ≤ z+α− 2: If z = 1 then 2 ≤ v ≤ α− 1, and, by Lemma 14.18,

we have η1 = κv and e1 = av. In this case µα,per(m,k) = µα,per(k) and

µα,per(k) − µα,per(m) = (a1 − av) + · · · + (av − av) + (α − v)(av − av) =
a′1 + · · · + a′v−1, where a

′
i = ai − av and a′1 > · · · > a′v−1 > 0. The sum

over all k for which 2 ≤ v ≤ α− 1, and γα(m,k) 6= 0, is then bounded by

α−1∑

v=2

(b− 1)v−1
∑

a1>···>av−1>av=e1>0

b−µα,per(k)

≤ b−µα,per(m)
α−1∑

v=2

(b− 1)v−1
∑

a′1>···>a′v−1>0

b−a
′
1−···−a′v−1

≤ b−µα,per(m)
α−1∑

v=2

b−(v−2)

≤ b−µα,per(m) b

b− 1
.

For z > 1 and z + 1 ≤ v ≤ z + α− 2 we have

(av−z+2, . . . , av, κv−z+2, . . . , κv) = (e2, . . . , ez, η2, . . . , ηz)

and v − z + 2 ≤ α. Thus
µα,per(m,k) = a1 + · · ·+ av−z+1 + e1 + µα−(v−z+2),per(m

′,m′)

≥ µα,per(m)− µα−1,per(m
′) + a1 + · · ·+ av−z+1

+µα−(v−z+2),per(m
′,m′)

≥ µα,per(m) + a′1 + · · ·+ a′v−z+1,

where a′i = ai − e2 = ai − av−z+2 and a′1 > · · · > a′v−z+1 > 0. Thus the

sum over all k for which z+1 ≤ v ≤ z+α−2 and γα(m,k) 6= 0 is bounded

by

b−µα,per(m)
z+α−2∑

v=z+1

(b− 1)v−z+1
∑

a′1>···>a′v−z+1>0

b−a
′
1−···−a′v−z+1

≤ b−µα,per(m)
z+α−2∑

v=z+1

b−1−···−(v−z)
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≤ b−µα,per(m)

b− 1
.

• v = z+α: In this case µα,per(m,k) = a1+ · · ·+aα−µα,per(m)+µα,per(m),

where µα,per(m) ≤ αaα+1. Thus a1+ · · ·+aα−µα,per(m) ≥ (a1−aα+1)+

· · ·+(aα− aα+1) and a1 > · · · > aα > aα+1. Hence, the sum over all k for

which v = z + α is bounded by

(b− 1)αb−µα,per(m)
∑

a1>···>aα>0

b−a1−···−aα ≤ b−µα,per(m)b−α(α−1)/2.

• v = z+α−1: In this case µα,per(m,k) = a1+· · ·+aα−µα,per(m)+µα,per(m),

where now aα = e1 and κα = η1 are fixed. Hence, the sum over all k for

which v = z + α− 1 is bounded by

(b−1)α−1b−µα,per(m)
∑

a1>···>aα−1>0

b−a1−···−aα−1 ≤ b−µα,per(m)b−(α−1)(α−2)/2.

By summing up the bounds obtained for each case, we obtain the result.

From (14.22), Lemma 14.16, (14.23), and Lemma 14.20 we obtain the

following theorem.

Theorem 14.21 Let α ∈ N, α ≥ 2. Then for any k ∈ N we have

|f̂(k)| ≤
α∑

w=v

∣∣∣∣
∫ 1

0
f (w)(x) dx

∣∣∣∣
b−µw,per(k)

(2 sin(π/b))w

(
1 +

1

b
+

1

b(b+ 1)

)max(0,w−2)

+

∫ 1

0
|f (α)(x)|dx 2b−µα,per(k)

(2 sin(π/b))α

(
1 +

1

b
+

1

b(b+ 1)

)α−2

×
(
3 +

2

b
+

2b+ 1

b− 1

)
,

for all f ∈Hα, where for v > α the empty sum
∑α

w=v is defined to be 0.

For α ∈ N and a nonnegative integer k we use the function µα introduced

in (14.6), for which we have µα(0) = 0 and µα(k) = a1 + · · · + amin(α,v) for

k ∈ N with b-adic expansion k = κ1b
a1−1 + · · · + κvb

av−1 with v ∈ N, digits

1 ≤ κ1, . . . , κv < b and a1 > a2 > · · · > av ≥ 1.

Then we have µw,per(k) ≥ µα(k) for v ≤ w ≤ α and µα,per(k) ≥ µα(k) for
all α ≥ 2 and k ∈ N.

Using Hölder’s inequality we obtain the following corollary.

Corollary 14.22 Let α ∈ N, α ≥ 2. Then for any k ∈ N we have

|f̂(k)| ≤ b−µα(k)Cα,q‖f‖p,α,
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where ‖f‖p,α =
(∑α

w=0

∣∣∣
∫ 1
0 f

(w)(x) dx
∣∣∣
p
+
∫ 1
0 |f (α)(x)|p dx

)1/p
, where 1/p +

1/q = 1, and

Cα,q :=

(
α∑

w=1

1

(2 sin(π/b))wq

(
1 +

1

b
+

1

b(b+ 1)

)qmax(0,w−2)

+
2q

(2 sin(π/b))αq

(
1 +

1

b
+

1

b(b+ 1)

)q(α−2) (
3 +

2

b
+

2b+ 1

b− 1

)q)1/q

.

The results can be extended to dimension s ∈ N by considering an s-

dimensional Sobolev space Hs,α,γ with reproducing kernel

Ks,α,γ(x,y) =
∑

u⊆Is
γu

s∏

i=1

(
α∑

k=1

Bk(xi)Bk(yi)

(k!)2
− (−1)αB2α(|xi − yi|)

(2α)!

)

and with inner product

〈f, g〉Hs,α,γ =
∑

u⊆Is
γ−1
u

∑

v⊆u

∑

τ
u\v∈{1,...,α−1}|u\v|

∫

[0,1]|v|

(∫

[0,1]s−|v|
f (τu\v,αv,0)(x) dxIs\v

)

×
(∫

[0,1]s−|v|
g(τ u\v,αv,0)(x) dxIs\v

)
dxv,

where γ = (γi)i≥1 is a sequence of positive weights, γu =
∏
i∈u γi, and where

(τ u\v,αv,0) is the vector whose jth component is α if j ∈ v, 0 if j ∈ Is \ u
and τj if j ∈ u \ v (where τu\v = (τj)j∈u\v). For a vector η = (η1, . . . , ηs) we

write f (η)(x) := ∂η1+···+ηs

∂x
η1
1 ...∂xηss

f(x).

Note that for α = 1 we obtain the weighted Sobolev space Hsob,s,γ con-

sidered in Section 12.2, i.e., Hs,1,γ = Hsob,s,γ.

Then we have

f(y) = 〈f,Ks,α,γ(·,y)〉
=
∑

u⊆Is
γ−1
u

∑

v⊆u

∑

τ
u\v∈{1,...,α−1}|u\v|

∏

i∈u
bτi(yi)

∫

[0,1]|v|

∫

[0,1]s−|v|
f (τu\v,αv,0)(x) dxIs\v

∏

j∈Is\u
b̃α(xj − yj) dxv.

For k = (k1, . . . , ks) ∈ Ns0 we write µα(k) := µα(k1) + · · ·+ µα(ks). Using
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the bounds on the Walsh coefficients of bτj and b̃α(· − yj) we obtain the

following theorem.

Theorem 14.23 Let α ∈ N, α ≥ 2. Then for any k ∈ Ns we have

|f̂(k)| ≤ b−µα(k)Cα,q,s‖f‖p,α,

where

‖f‖pp,α :=
∑

u⊆Is
γ−1
u

∑

v⊆u

∑

τ
u\v∈{1,...,α−1}|u\v|

∫

[0,1]|v|

(∫

[0,1]s−|v|
f (τu\v,αv,0)(x) dxIs\v

)p
dxv,

where 1/p + 1/q = 1, and Cα,q,s > 0 is a constant independent of k and f .

In [38] it was also shown that the bounds on the Walsh coefficients shown

above are essentially best possible.

Notice that because the Walsh coefficients considered here converge fast,

the Walsh series for functions f with smoothness α ≥ 2 converges absolutely.

Indeed we have

∞∑

k=0

|f̂(k)| ≤ Cα,q‖f‖p,α
∞∑

k=0

b−µα(k) <∞.

Therefore
∑∞

k=0 f̂(k) bwalk(x) converges at every point x ∈ [0, 1) and the

result from Section A.3 applies.

Exercises

14.1 Calculate the Walsh coefficients of F1(x) = x. Hint: You can find the

calculation for the general case in Appendix A.

14.2 Calculate the Walsh coefficients of F2(x) = x2. Hint: Use Exercise 14.1.

14.3 Calculate the Walsh coefficients of x3. Hint: Use Exercise 14.1.

14.4 Calculate the Walsh coefficients of F3(x) = e−2πix. Hint: See [36, Lem-

ma 6.12] for the general case.

14.5 Use Theorem 14.5 to elaborate more clearly on Example 14.3 as was

done in Example 14.6.

14.6 Use Theorem 14.5 to consider arbitrary v > 3 in Example 14.7.

14.7 Let f ∈ L2([0, 1]
s) and let F (x) =

∫ x
0 f(y) dy. Further let F̂ (k) denote
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the kth Walsh coefficient of F . Let k ∈ N with k = lba−1+k′, 0 < l < b

and 0 ≤ k′ < ba−1. Show that then we have

F̂ (k) = −b−a
∞∑

h=0

f̂(k′ + h) ρk(h),

where

ρk(h) =





cz + 2−1χz=l for h = zba−1,

υzb
−i−1 for h = zba−1+i + lba−1, i > 0, 0 < z < b,

0 otherwise,

and where χz=l = 1 for z = l and 0 otherwise, υz =
∑b−1

r=0 bwalz(r/b) =

b/(ωzb − 1) and cz as in the proof of Lemma 14.8. Further for k = 0 we

have

F̂ (0) = f̂(0) −
∞∑

h=0

f̂(h) φ(h),

where

φ(h) =





2−1 for h = 0,

υzb
−i−1 for h = zba−1+i, i > 0, 0 < z < b,

0 otherwise.

14.8 Prove Theorem 14.5 and Theorem 14.1 for Walsh functions in arbitrary

base b ≥ 2. Hint: Use Exercise 14.7.

14.9 Use now Exercise 14.7 to elaborate more clearly on Example 14.3 as

was done in Example 14.6.

14.10 Use Exercise 14.7 to consider arbitrary v > 3 in Example 14.7.

14.11 Show that if f has a continuous first derivative on [0, 1], then V1(f) =∫ 1
0 |f ′(x)|dx.

14.12 Find an explicit constant Cα,q,s > 0 in Theorem 14.23.

14.13 Use Corollary 14.22 to obtain a bound on σℓ defined in (13.5). Using

this bound obtain a bound on Var[Î(f)], defined in (13.7), for functions

f with ‖f‖p,α <∞.



15

Arbitrarily high order of convergence of the
worst-case error

In this chapter we explain how digital nets and sequences can be modified

to obtain the optimal rate of convergence for smooth functions. This theory

was developed in [37] (and in [36] for periodic integrands).

15.1 Motivation for the definition of higher order digital nets

and sequences

The definition of higher order digital nets can be motivated in the following

way. Assume that the integrand f can be represented by its Walsh series

f(x) =
∑

k∈Ns
0

f̂(k) bwalk(x),

where f̂(k) =
∫
[0,1]s f(x) bwalk(x) dx. Then the integration error using a

digital net {x0, . . . ,xbm−1} with generating matrices C1, . . . , Cs is given by
∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

bm

bm−1∑

n=0

f(xn)

∣∣∣∣∣ =

∣∣∣∣∣∣
f̂(0)− 1

bm

bm−1∑

n=0

∑

k∈Ns
0

f̂(k) bwalk(x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

k∈Ns
0\{0}

f̂(k)
1

bm

bm−1∑

n=0

bwalk(xn)

∣∣∣∣∣∣

≤
∑

k∈D∞\{0}
|f̂(k)|,

where D∞ = D∞(C1, . . . , Cs) is defined in Remark 4.77, i.e.,

D∞ = {k ∈ Ns0 : C⊤
1 trm(k1) + · · · +C⊤

s trm(ks) = 0},
where for k ∈ N0 with b-adic expansion k =

∑
j≥0 κjb

j we write trm(k) :=

(κ0, . . . , κm−1)
⊤ ∈ (Zmb )

⊤. Let D′
∞ := D∞ \ {0}. Then, using the estimation
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from Theorem 14.23 we obtain
∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

bm

bm−1∑

n=0

f(xn)

∣∣∣∣∣ ≤ Cα,q,s‖f‖p,α
∑

k∈D′
∞

b−µα(k), (15.1)

where Cα,q,s > 0 is a constant independent of f and the quadrature points,

‖f‖p,α is a norm of f depending only on the integrand f , and
∑

k∈D′
∞
b−µα(k)

only depends on the digital net. Here, as in Chapter 14, for any α ≥ 0 and

a nonnegative integer k with b-adic expansion k = κ1b
d1−1 + · · · + κvb

dv−1

with v ∈ N, digits 1 ≤ κ1, . . . , κv < b and a1 > a2 > · · · > av ≥ 1 (if k 6= 0)

the quantity µα(k) is defined by

µα(k) =





0 for α = 0, k ≥ 0,

0 for k = 0, α ≥ 0,

d1 + · · ·+ dmin(α,v) otherwise.

(15.2)

For k = (k1, . . . , ks) ∈ Ns0 we set µα(k) =
∑s

i=1 µα(ki).

Assume that δ > 0 is the largest integer such that ‖f‖p,α < ∞ for all

α ≤ δ. We call δ the smoothness of the integrand. Then (15.1) applies for

all 1 ≤ α ≤ δ. In practice, the number δ might not be known for a given

integrand, hence we assume in the following that δ is an unknown number.

The aim is now to find digital nets, i.e., generating matrices C1, . . . , Cs
over Zb such that

∑
k∈D′

∞
b−µα(k) = O(N−α(logN)αs) for all 1 ≤ α ≤ δ,

where the number of quadrature points N = bm.

Roughly speaking, we show below that the sum
∑

k∈D′
∞
b−µα(k) is domi-

nated by its largest term, which is given by b−µ
∗
α(C1,...,Cs), where

µ∗α(C1, . . . , Cs) := min
k∈D′

∞

µα(k).

In order to achieve a convergence of almost N−α = b−αm we must have

that the largest term in
∑

k∈D′
∞
b−µα(k) is also of this order, that is, we

must have µ∗α(C1, . . . , Cs) ≈ αm (or say µ∗α(C1, . . . , Cs) > αm− t for some

constant t independent of m) for all 1 ≤ α ≤ δ.
We can use the following analogy to find generating matrices C1, . . . , Cs

over Zb which achieve µ∗α(C1, . . . , Cs) ≈ αm: The definition of µ∗α(C1, . . . , Cs)

is similar to the strength of a digital net as defined in Remark 4.53, that

is, the quantity m − t. On the other hand, the classical case corresponds

to α = 1, hence one can expect a relationship between µ∗1(C1, . . . , Cs) and

m− t.
Indeed for matrices C1, . . . , Cs over Zb let c

(i)
j ∈ Zmb be the jth row vector

of Ci for 1 ≤ i ≤ s and 1 ≤ j ≤ m. Then the matrices C1, . . . , Cs generate a
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digital (t,m, s)-net over Zb if for all d1, . . . , ds ∈ N0 with d1+· · ·+ds ≤ m−t,
the vectors

c
(1)
1 , . . . , c

(1)
d1
, . . . , c

(s)
1 , . . . , c

(s)
ds

are linearly independent over Zb.

Now assume that the matrices C1, . . . , Cs generate a digital (t,m, s)-net

over Zb and that we are given a k ∈ Ns0 \ {0} with µ1(k) ≤ m − t. Let

di = µ1(ki) for 1 ≤ i ≤ s, then
C⊤
1 trm(k1) + · · ·+ C⊤

s trm(ks)

is a linear combination of the µ1(k) vectors

(c
(1)
1 )⊤, . . . , (c(1)d1 )

⊤, . . . , (c(s)1 )⊤, . . . , (c(s)ds )
⊤.

As k 6= 0 and d1 + · · · + ds = µ1(k) ≤ m − t, which implies that the vec-

tors c
(1)
1 , . . . , c

(1)
d1
, . . . , c

(s)
1 , . . . , c

(s)
ds

are linearly independent, it follows that

C⊤
1 trm(k1) + · · · + C⊤

s trm(ks) 6= 0 ∈ Fmb . Thus k /∈ D′
∞. This shows that

if C1, . . . , Cs generate a classical digital (t,m, s)-net and k ∈ D′
∞, then

µ1(k) > m− t. This is precisely the type of result described above which we

also want to have for α > 1. Before we discuss this case we have to make

the following important remark:

Remark 15.1 In this chapter we have to deal with generating matrices of

size n×m with n ≥ m in place ofm×m matrices. The construction principle

for digital nets explained in Section 4.4 works along the same lines as for

the classical case n = m. The only difference is that in the more general

case the components of the points of the digital nets have n digits in their

b-adic expansion (instead of m). We see below that this enlargement of the

generating matrices is necessary to obtain the higher order convergence.

In the classical case α = 1 we had some linear independence condition

on the rows of the generating matrices which lead to the desired result. We

now want to generalise this linear independence condition to 1 ≤ α ≤ δ for

some δ > 1, i.e., we want to have that if k ∈ Ns0 \ {0} with µα(k) ≤ αm− t
(where t can depend on α), then the n×m matrices C1, . . . , Cs should have

linearly independent rows such that C⊤
1 trn(k1)+ · · ·+C⊤

s trn(ks) 6= 0 ∈ Zmb .

That is we want to have that

k ∈ D′
∞,n implies µα(k) > αm− t for all 1 ≤ α ≤ δ,

where the additional index n in D′
∞,n indicates that the digit vectors are

truncated after the first n digits (and not after m digits as for m × m

matrices).



490 Arbitrarily high order of convergence of the worst-case error

If we consider the first bm points of a sequence, then we also want to

have this property for all m larger than some m0. Let C1, . . . , Cs ∈ ZN×N
b be

the generating matrices of a digital sequence and let C
(n×m)
1 , . . . , C

(n×m)
s ∈

Zn×mb be the corresponding left upper n × m matrices for m,n ∈ N. Let

n = σm for some σ ∈ N. Then we want to have that

k ∈ D′
∞,σm(C

(σm×m)
1 , . . . , C(σm×m)

s )

implies that

µα(k) > αm− t for all 1 ≤ α ≤ δ
for all m ≥ m0. A priori it is not clear that such matrices can exist. In order

to avoid proving results for an empty set, we can weaken the assumption by

writing k ∈ D′
∞,σm(C

(σm×m)
1 , . . . , C

(σm×m)
s ) implies that

µα(k) > βσm− t for all 1 ≤ α ≤ δ
for all m ≥ m0, for some β which depends on α and σ but not on m (if

βσ < α then the assumption is obviously weaker). (For α = δ = β = σ = 1

we know from Chapter 8 that generating matrices exist which satisfy this

property.) The largest term in
∑

k∈D′
∞
b−µα(k) is then of order b−βσm+t and

we show below that also the sum
∑

k∈D′
∞
b−µα(k) is of the same order. Hence

we obtain a convergence rate of order βσ. Thus, for 1 ≤ α ≤ δ and σ ∈ N, we

want to have generating matrices for which the above property is satisfied

for β = β(α, σ) as large as possible.

In the following we consider again digital nets with generating matrices

C1, . . . , Cs ∈ Zn×mb , rather than digital sequences. First note that if n <

αm− t, then k = (bn, 0, . . . , 0) ∈ D′
∞,n, but µα(k) = n+ 1 ≤ αm− t. Since

for a given digital net the parameters m and n are fixed, 1 ≤ α ≤ δ, and δ

is unknown, i.e., δ can theoretically be arbitrarily large, this problem can in

general not be avoided. A way out is to replace αm with n, or, to make it

consistent with the requirements for digital sequences, with βn. That is, we

want to have the property that k ∈ D′
∞,n implies that

µα(k) > βn− t for all 1 ≤ α ≤ δ,
where β and t depend on α and t is independent of m and n. In this case

we obtain a convergence of order b−βn. If we choose α = δ, then, from the

lower bound by Sharygin [239], we know that the best possible convergence

is b−αm. This implies that βn ≤ αm since we want t to be independent of m

and n. Further, the fact that k = (bn, 0, . . . , 0) ∈ D′
∞,n and µα(k) = n + 1

also shows that mink∈D′
∞,n

µα(k) ≤ n + 1. Hence we may without loss of

generality also assume that β ≤ 1.
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Let k = (k1, . . . , ks) ∈ Ns0 \ {0}, where ki = κi,1b
di,1−1 + · · ·+ κi,νib

di,νi−1,

with n ≥ di,1 > · · · > di,νj > 0 and digits 1 ≤ κi,1, . . . , κi,νi < b. Now

C⊤
1 trn(k1) + · · · + C⊤

s trn(ks) is a linear combination of the rows

(c
(1)
d1,1

)⊤, . . . , (c(1)d1,ν1
)⊤, . . . , (c(s)ds,1)

⊤, . . . , (c(s)ds,νs )
⊤.

Thus, if the rows c
(1)
d1,1

, . . . , c
(1)
d1,ν1

, . . . , c
(s)
ds,1

, . . . , c
(s)
ds,νs

∈ Zmb are linearly inde-

pendent, then C⊤
1 trn(k1) + · · ·+ C⊤

s trn(ks) 6= 0, and therefore k /∈ D′
∞,n.

Therefore, if C1, . . . , Cs ∈ Zn×mb are such that for all choices of di,1 >

· · · > di,νi > 0 for 1 ≤ i ≤ s, with
d1,1 + · · · + d1,min(α,ν1) + · · ·+ ds,1 + · · ·+ ds,min(α,νs) ≤ βn− t,

the rows

c
(1)
d1,1

, . . . , c
(1)
d1,ν1

, . . . , c
(s)
ds,1

, . . . , c
(s)
ds,νs

are linearly independent, then k ∈ D′
∞,n implies that µα(k) > βn− t. (Note

that we also include the case where some νi = 0, in which case we just set

di,1 + · · ·+ di,min(α,νi) = 0.)

We can now formally define such digital nets for which the generating

matrices satisfy such a property.

From now on let b be a prime and identify the finite field Fb with Zb.

Definition 15.2 Let s, α, n,m ∈ N, let 0 < β ≤ min(1, αm/n) be a real

number and let 0 ≤ t ≤ βn be an integer. Let Zb be the finite field of prime

order b and let C1, . . . , Cs ∈ Zn×mb where c
(i)
j ∈ Zmb is the jth row vector of

the matrix Ci for 1 ≤ j ≤ n and 1 ≤ i ≤ s. If for all 1 ≤ di,νi < · · · < di,1 ≤ n,
where 0 ≤ νi ≤ m for all 1 ≤ i ≤ s, with

s∑

i=1

min(νi,α)∑

j=1

di,j ≤ βn− t

the vectors

c
(1)
d1,ν1

, . . . , c
(1)
d1,1

, . . . , c
(s)
ds,νs

, . . . , c
(s)
ds,1

are linearly independent over Zb then the digital net with generating matri-

ces C1, . . . , Cs is called a higher order digital (t, α, β, n ×m, s)-net over Zb
or short a digital (t, α, β, n ×m, s)-net over Zb.

Informally, we also refer to the nets defined above as higher order digital

nets.

For α = β = 1 and n = m one obtains a digital (t,m, s)-net over Zb as

introduced in Section 4.4.



492 Arbitrarily high order of convergence of the worst-case error

From duality theory (see Chapter 7) it follows that for a digital (t, α, β, n×
m, s)-net we have mink∈D′

∞,n
µb,α(k) > βn− t. A proof of this fact is left as

Exercise 15.1.

Remark 15.3 We can group the parameters in the following way:

• m,n, s are fixed parameters. Here s denotes the number of generating

matrices and m,n specify the size of the generating matrices, i.e., they

are of size n×m.

• α is a variable parameter, i.e., given (fixed) generating matrices can for

example generate a (t1, 1, β1, 10× 5, 5)-net, a (t2, 2, β2, 10× 5, 5)-net, and

so on (note the point set is always the same in each instance; the values

t1, t2, . . . , β1, β2, . . . may differ). This is necessary as in the upper bounds

α is the smoothness of the integrand, which may not be known explicitly.

• t and β are dependent parameters, they depend on the generating matrices

and on α. For given generating matrices, it is desirable to know the values

of β and t for each value of α ∈ N.

In summary the parameters t, α, β, n,m, s have the following meaning:

• The number s denotes the dimension of the point set.

• The point set has bm points.

• The number n determines the maximum number of nonzero digits in the

base b expansion of the coordinates of each point. By the arguments given

above it follows that the convergence of the integration error can, at best,

only be of order b−n (independent of how large one might choose the

number of points bm).

• t denotes the quality parameter of the point set; a low tmeans high quality.

• β is also a quality parameter. We see below that it is possible to achieve

an integration error of order b−n. Note that bm is the number of points

and that m and n can be chosen independently from each other. Hence

the order b−n is only true for a range of n depending on m, which is the

reason for the parameter β, i.e., the integration error is roughly b−βn.
Hence β is a quality parameter related to the convergence rate.

• α is the smoothness parameter of the point set.

• k := ⌊βn⌋ − t can be viewed as the strength of the higher order digital

net; the convergence of the integration error is of the form b−k.

We also define sequences of points for which the first bm points form a

digital (t, α, β, n ×m, s)-net. In the classical case one can just consider the

left upperm×m submatrices of the generating matrices of a digital sequence
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and determine the net properties of these for each m ∈ N. Here, on the other

hand, we are considering digital nets whose generating matrices are n ×m
matrices. Thus we would have to consider the left upper nm×m submatrices

of the generating matrices of the digital sequence for each m ∈ N and where

(nm)m≥1 is a sequence of natural numbers. For our purposes here it is enough

to consider only nm of the form σm, for some given σ ∈ N.

Definition 15.4 Let s, α, σ ∈ N and t ∈ N0 and let 0 < β ≤ min(1, α/σ) be

a real number. Let Zb be the finite field of prime order b and let C1, . . . , Cs ∈
ZN×N
b where c

(i)
j ∈ ZN

b is the jth row vector of the matrix Ci for j ∈ N and 1 ≤
i ≤ s. Further let C(σm×m)

i denote the left upper σm×m submatrix of Ci for

1 ≤ i ≤ s. If for allm > t/(βσ) the matrices C
(σm×m)
1 , . . . , C

(σm×m)
s generate

a digital (t, α, β, σm × m, s)-net over Zb, then the digital sequence with

generating matrices C1, . . . , Cs is called a higher order digital (t, α, β, σ, s)-

sequence over Zb or short a digital (t, α, β, σ, s)-sequence over Zb .

Informally we also refer to the sequences defined above as higher order

digital sequences.

For α = β = σ = 1 one obtains a digital (t, s)-sequence over Zb as

introduced in Section 4.4.

Note that, from above, we know that there is no digital (t, α, β, σ, s)-

sequence for which β > min(1, α/σ). Hence the assumption β ≤ min(1, α/σ)

only avoids cases for which digital (t, α, β, σ, s)-sequences cannot exist.

The meaning of the parameters for higher order digital sequences is similar

to the one for higher order nets. In particular we now assume that n = σm.

The question now is: Do digital (t, α, β, n ×m, s)-nets and (t, α, β, σ, s)-

sequences exist for all given α, β, σ, s ∈ N and some t (which may depend

on α and s but not on m) and all m ∈ N? An affirmative answer to this

question is given in the next section.

15.2 Construction of higher order digital nets and sequences

In this section we present explicit constructions of digital (t, α, β, n×m, s)-
nets and (t, α, β, σ, s)-sequences over Zb. The basic construction principle

appeared first in [36] and was slightly modified in [37]. The construction

requires a parameter d, which, in case the smoothness of the integrand δ is

known, should be chosen as d = δ.

To construct a digital (t, α, β, dm × m, s)-net over Zb (we only consider

the case where n = dm), choose a usual digital (t′,m, sd)-net over Zb. Let

C1, . . . , Csd ∈ Zm×m
b be the generating matrices of the digital (t′,m, sd)-

net. We recall that many explicit examples of such generating matrices



494 Arbitrarily high order of convergence of the worst-case error

are known, see Chapter 8. As we see below, the choice of the underlying

(t′,m, sd)-net has a direct impact on the bound on the quality parameter t

of the digital (t, α, β, dm×m, s)-net. Let c(i)j ∈ Zmb be the jth row vector of

them×m matrix Ci for 1 ≤ j ≤ m and 1 ≤ i ≤ sd. Now for 1 ≤ i ≤ s let the
matrix Di be made of the first rows of the matrices C(i−1)d+1, . . . , Cid, then

the second rows of C(i−1)d+1, . . . , Cid, and so on. The matrix Di is then a

dm×m matrix over Zb whose lth row vector d
(i)
l ∈ Zmb is given by d

(i)
l = c

(v)
u

whenever l = (u − i)d + v for 1 ≤ l ≤ dm with (i − 1)d + 1 ≤ v ≤ id and

1 ≤ u ≤ m. That is, the row vectors of Di from top to bottom are

c
((i−1)d+1)
1 , . . . , c

(id)
1 , c

((i−1)d+1)
2 , . . . , c

(id)
2 , . . . , c((i−1)d+1)

m , . . . , c(id)m .

In the following we prove that the above construction yields a (t, α, β, dm×
m, s)-net over Zb. The proof of this result is simplified by using the following

propagation rule which was first shown in [36, 37].

Proposition 15.5 Let α′ ∈ N be given.

1. Let P be a digital (t′, α′, β′, n ×m, s)-net over Zb. Then for any α ∈ N,

P is also a digital (t, α, β, n ×m, s)-net over Zb, where

β = β′ min(1, α/α′) and t =
⌈
t′min(1, α/α′)

⌉
.

2. Let S be a digital (t′, α′, β′, σ, s)-sequence over Zb. Then for any α ∈ N,

S is also a digital (t, α, β, σ, s)-sequence over Zb, where

β = β′ min(1, α/α′) and t =
⌈
t′min(1, α/α′)

⌉
.

Proof Let C1, . . . , Cs ∈ Zn×mb be the generating matrices of P. Let c
(i)
k ∈

Zmb denote the kth row vector of Ci for 1 ≤ k ≤ n and 1 ≤ i ≤ s.
Choose an α ∈ N. Then choose arbitrary 1 ≤ di,νi < · · · < di,1 ≤ n such

that

d1,1 + · · ·+ d1,min(ν1,α) + · · ·+ ds,1 + · · ·+ ds,min(νs,α)

≤ βnmin(1, α/α′)−
⌈
tmin(1, α/α′)

⌉
.

We need to show that the vectors

c
(1)
d1,ν1

, . . . , c
(1)
d1,1

, . . . , c
(s)
ds,νs

, . . . , c
(s)
ds,1

are linearly independent over Zb. This is certainly the case as long as

d1,1 + · · ·+ d1,min(ν1,α′) + · · ·+ ds,1 + · · ·+ ds,min(νs,α′) ≤ βn− t,

since P is a digital (t′, α′, β′, n×m, s)-net over Zb.
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Now we have

d1,1 + · · ·+ d1,min(ν1,α′) + · · ·+ ds,1 + · · ·+ ds,min(νs,α′)

≤ α′

min(α′, α)

(
d1,1 + · · ·+ d1,min(ν1,α) + · · ·+ ds,1 + · · · + ds,min(νs,α)

)

≤ βn− α′

min(α′, α)

⌈
t
min(α′, α)

α′

⌉

≤ βn− t,

and hence the result for higher order digital nets follows.

The result for higher order digital sequences follows from Definition 15.4

and the result for higher order digital nets.

We note that also the propagation rules from Chapter 9 can be generalised

to higher order digital nets, see [42].

Lemma 15.6 Let d ∈ N and let C1, . . . , Csd be the generating matrices of

a digital (t′,m, sd)-net over Zb. Then the matrices D1, . . . ,Ds defined above

are generating matrices of a higher order digital (t, d, 1, dm×m, s)-net over
Zb with

t ≤ d
(
t′ +

⌊
s(d− 1)

2

⌋)
.

Proof Let t̃ := d (t′ + ⌊s(d− 1)/2⌋), let d
(i)
j ∈ Zmb be the jth row vec-

tor of the matrix Di for 1 ≤ j ≤ n and 1 ≤ i ≤ s, and let the integers

d1,1, . . . , d1,ν1 , . . . , ds,1, . . . , ds,νs be such that 1 ≤ di,νi < · · · < di,1 ≤ dm for

1 ≤ i ≤ s and

d1,1 + · · ·+ d1,min(ν1,d) + · · · + ds,1 + · · ·+ ds,min(νs,d) ≤ dm− t̃.

We need to show that the vectors

d
(1)
d1,1

, . . . ,d
(1)
d1,ν1

, . . . ,d
(s)
ds,1

, . . . ,d
(s)
ds,νs

are linearly independent over Zb.

For 1 ≤ i ≤ s the vectors {d(i)
di,νi

, . . . ,d
(i)
di,1
} stem from the matrices

C(i−1)d+1, . . . , Cid. For (i − 1)d + 1 ≤ fi ≤ id, let efi ∈ N0 be the largest

integer such that (efi − i)d + fi ∈ {di,νi , . . . , di,1}. If no such integer exists

we set efi = 0.

For a real number x let (x)+ = max(0, x). For a given 1 ≤ i ≤ s we have

di,1 + · · ·+ di,min(νi,d) ≥
id∑

fi=(i−1)d+1

[(efi − i)d+ fi]+
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≥ d
id∑

fi=(i−1)d+1

efi +

id∑

fi=(i−1)d+1

(fi − id)

≥ d
id∑

fi=(i−1)d+1

efi −
d(d− 1)

2
.

Thus

d

s∑

i=1

id∑

fi=(i−1)d+1

efi ≤
s∑

i=1

(di,1 + · · ·+ di,min(νi,d)) +
sd(d− 1)

2

≤ dm− t̃+ sd(d− 1)

2

and therefore

s∑

i=1

id∑

fi=(i−1)d+1

efi ≤ m−
t̃

d
+
s(d− 1)

2

= m− t′ −
⌊
s(d− 1)

2

⌋
+
s(d− 1)

2

≤ m− t′ + 1

2
.

As efi , m and t′ are all integers, it follows that

s∑

i=1

id∑

fi=(i−1)d+1

efi ≤ m− t′.

Thus it follows from the digital (t′,m, sd)-net property of the digital net gen-

erated by C1, . . . , Csd that the vectors d
(1)
d1,1

, . . . ,d
(1)
d1,ν1

, . . . ,d
(s)
ds,1

, . . . ,d
(s)
ds,νs

are linearly independent and therefore it follows that

t ≤ t̃ = d
(
t′ + ⌊s(d− 1)/2⌋

)
.

The quality of the digital nets obtained by the above construction was

first investigated in [36, 37]. The following result for the above construction

was shown in [42].

Theorem 15.7 Let d, α ∈ N, let C1, . . . , Csd be the generating matrices of a

digital (t′,m, sd)-net over Zb. Then the matrices D1, . . . ,Ds defined as above

are generating matrices of a higher order digital (t, α,min(1, α/d), dm ×
m, s)-net over Zb with

t ≤ min(d, α)min

(
m, t′ +

⌊
s(d− 1)

2

⌋)
.
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Proof First note that if m ≤ t′ + ⌊s(d− 1)/2⌋, then t = min(d, α)m and

min(1, α/d)dm − t = min(d, α)m −min(d, α)m = 0,

hence in this case the bound is trivial.

If m > t′+ ⌊s(d−1)/2⌋, then the result follows from Proposition 15.5 and

Lemma 15.6.

Theorem 15.7 can be strengthened for α = 1, in which case we obtain the

following result shown in [33].

Proposition 15.8 Let d ∈ N and let C1, . . . , Csd be the generating matrices

of a digital (t,m, sd)-net over Zb. Then the matrices D1, . . . ,Ds defined

above are the generating matrices of a digital (t,m, s)-net over Zb.

Proof Let d1, . . . , ds ∈ N0 such that d1 + · · · + ds ≤ m − t. Then the

first di rows of Di stem from the matrices C(i−1)d+1, . . . , Cid. Indeed there

are numbers l(i−1)d+1, . . . , lid ∈ N0, such that di = l(i−1)d+1 + · · · + lid
with the property that the first di rows of Di are exactly the union of

the first l(i−1)d+r rows of C(i−1)d+r for 1 ≤ r ≤ d. Hence the fact that∑s
i=1 di =

∑s
i=1

∑d
r=1 l(i−1)d+r ≤ m− t and the digital (t,m, sd)-net prop-

erty of C1, . . . , Csd imply that the vectors from the union of the first di rows

ofDi for all 1 ≤ i ≤ s, are linearly independent. This implies that D1, . . . ,Ds

generate a digital (t,m, s)-net.

The above construction and Theorem 15.7 can easily be extended to dig-

ital (t, α, β, σ, s)-sequences. Indeed, let d ∈ N and let C1, . . . , Csd be the

generating matrices of a digital (t′, sd)-sequence over Zb. Again many ex-

plicit generating matrices are known, see Chapter 8. Let c
(i)
j ∈ ZN

b be the

jth row vector of Ci for j ∈ N and 1 ≤ i ≤ s. Now let the matrix Di be made

of the first rows of the matrices C(i−1)d+1, . . . , Cid, then the second rows of

C(i−1)d+1, . . . , Cid and so on, i.e., the first few row vectors of Di from the

top are

c
((j−1)d+1)
1 , . . . , c

(jd)
1 , c

((j−1)d+1)
2 , . . . , c

(jd)
2 , . . . .

The following theorem states that the matrices D1, . . . ,Ds are the gen-

erating matrices of a digital (t, α,min(1, α/d), d, s)-sequence over Zb. This

was first shown in [36, 37], see also [39].

Theorem 15.9 Let d ∈ N and let C1, . . . , Csd be the generating matrices

of a digital (t′, sd)-sequence over Zb. Then for any α ∈ N the matrices

D1, . . . ,Ds defined above are generating matrices of a higher order digital
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(t, α,min(1, α/d), d, s)-sequence over Zb with

t ≤ min(α, d)

(
t′ +

⌊
s(d− 1)

2

⌋)
.

The proof of this theorem is based on the result for higher order digital

nets and is left to the reader as an exercise (see Exercise 15.3).

From the previous section we know that we can expect a convergence

rate of order βσ for QMC rules based on higher order digital sequences.

Theorem 15.9 implies that βσ = min(1, α/d)d = min(d, α). Therefore, if

δ ≤ d, where δ denotes the smoothness of the integrand, we obtain the

optimal convergence rate of order α, whereas for δ ≥ α > d we obtain a

convergence rate of order d. In other words, the construction yields the best

possible result for all δ ≤ d.

Remark 15.10 Digital (t, α, β, σ, s)-sequences over Zb with βσ = α are

optimal in terms of the convergence rate (note that βσ > α is not possible

by the result by Sharygin [239] and higher order sequences with βσ < α do

not yield the optimal rate of convergence).

Assume we are given a digital (t′, α′, β′, σ, s)-sequence S over Zb for some

fixed values of t′, α′, β′, σ, s with α′ = β′σ. Then Proposition 15.5 shows that

for any 1 ≤ α ≤ α′, the sequence S is a digital (t, α, β, σ, s)-sequence over

Zb with

βσ = β′ min(1, α/α′)σ = α′ min(1, α/α′) = min(α′, α) = α.

Hence, if one shows that a digital sequence S is optimal for some value

α′ ∈ N, then it follows that the sequence S is also optimal for all 1 ≤ α ≤ α′.
Analogous comments apply to higher order digital nets.

For (t, α, β, σ, s)-sequences over Zb with α = βσ, there is also a lower

bound on the quality parameter t from [39], which states that for all α ≥ 2

we have

t > s
α(α− 1)

2
− α.

Assume now that δ ≤ d in which case Theorem 15.9 yields higher order

digital sequences with βσ = min(1, α/d)d = min(d, α) = α. As there are

digital (t′, sd)-sequences with t′ = O(sd), see [190, 191], Theorem 15.9 yields

that there are higher order digital sequences with βσ = α and

t = O(αsd).

In particular this means that, asymptotically, the construction is optimal
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for α = d, in which case we have βσ = α and

t = O(sα2).

See [39] for more information.

Again, Theorem 15.9 can be strengthened for α = 1, in which case we

obtain the following result.

Proposition 15.11 Let d ∈ N and let C1, . . . , Csd be the generating ma-

trices of a digital (t′, sd)-sequence over Zb. Then the matrices D1, . . . ,Ds

defined above are the generating matrices of a digital (t′, s)-sequence over

Zb.

Again the proof of this proposition is left to the reader as an exercise (see

Exercise 15.4).

Geometrical properties of digital (t, α, β, n×m, s)-nets and their generali-

sation were shown in [39]. In the following section we show pictures of those

properties.

15.3 Geometrical properties of higher order digital nets

In this section we describe geometrical properties of higher order digital

nets. For d = 2, the generating matrices D1 ∈ Z2·4×4
2 and D2 ∈ Z2·4×4

2 for

the digital net over Z2 shown in Figure 15.1 are obtained from the classical

digital (1, 4, 4)-net over Z2 with the following generating matrices:

C1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , C2 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 ,

C3 =




1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1


 , C4 =




0 1 1 0

1 1 0 1

0 0 0 1

0 0 1 0


 .
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Using the construction principle from the previous section we obtain

D1 =




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0




and D2 =




1 1 1 1

0 1 1 0

0 1 0 1

1 1 0 1

0 0 1 1

0 0 0 1

0 0 0 1

0 0 1 0




.

Theorem 15.7 implies that D1 and D2 generate a digital (4, 2, 1, 8×4, 2)-net

over Z2. Upon inspection one can see that it is also a digital (3, 2, 1, 8×4, 2)-

net over Z2, but not a digital (2, 2, 1, 8×4, 2)-net over Z2 (the first two rows

of D1 and D2 are linearly dependent).

Figure 15.2 shows that the point set is also a classical (1, 4, 2)-net over

Z2.

Figure 15.1 A digital (3, 2, 1, 8× 4, 2)-net over Z2 which is also a classical
digital (1, 4, 2)-net over Z2.

Figure 15.3 shows a partition of the square for which each union of the

shaded rectangles contains exactly two points. Figures 15.4 and 15.5 show

that also other partitions of the unit square are possible where each union

of shaded rectangles contains the fair number of points. Many other parti-

tions of the square are possible where the point set always contains the fair

number of points (see Definition 4.1) in each union of rectangles, see [39],

but there are too many of them to show them all here. Even in the simple

case considered here there are 12 possible partitions, for each of which the

point set is fair – this is quite remarkable since the point set itself has only

16 points (we exclude all those partitions for which the fairness would follow
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(a) (b)

(c) (d)

Figure 15.2 The digital (3, 2, 1, 8× 4, 2)-net is also a digital (1, 4, 2)-net, as
each elementary interval of volume 1/8 of every partition of the unit square
contains exactly two points.

already from some other partition, otherwise there would be 34 of them).

In the classical case we have 4 such partitions, all of which are shown in

Figure 15.2. (The partitions from the classical case are included in the gen-

eralised case; so out of the 12 partitions 4 are shown in Figure 15.2, one is

shown in Figure 15.3, one is shown in Figure 15.5 and one is indicated in

Figure 15.4.)

For ν = (ν1, . . . , νs) ∈ {0, . . . , αm}s let |ν|1 =
∑s

i=1 νi and define dν =

(d1,1, . . . , d1,ν1 , . . . , ds,1, . . . , ds,νs) with integers 1 ≤ di,νi < · · · < di,1 ≤ αm

in case νi > 0 and {di,1, . . . , di,νi} = ∅ in case νi = 0, for 1 ≤ i ≤ s.

For given ν and dν let aν ∈ {0, . . . , b− 1}|ν|1 , which we write as aν =

(a1,d1,1 , . . . , a1,d1,ν1 , . . . , as,ds,1 , . . . , as,ds,νs ).

The subsets of [0, 1)s which form a partition and which each have the fair

number of points are of the form

J(dν ,aν)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15.3 The digital (3, 2, 1, 8× 4, 2)-net. The union of the shaded rect-
angles in each figure from (a) to (h) contains exactly two points.
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Figure 15.4 Digital (3, 2, 1, 8× 4, 2)-net over Z2. The union of the shaded
rectangles contains two points. As in Figure 15.3 one can also form a parti-
tion of the square with this type of rectangle where each union of rectangles
contains two points.

Figure 15.5 Digital (3, 2, 1, 8× 4, 2)-net over Z2. The union of the shaded
rectangles contains half the points.

=

s∏

i=1

b−1⋃

ai,l=0

l∈{1,...,αm}\{di,1,...,di,νi}

[
ai,1
b

+ · · ·+ ai,αm
bαm

,
ai,1
b

+ · · ·+ ai,αm
bαm

+
1

bαm

)
,

where
∑s

i=1

∑νi
l=1 di,l ≤ βn− t and where aν ∈ {0, . . . , b− 1}|ν|1 .

Figures 15.2, 15.3, 15.4, and 15.5 give only a few examples of unions of

intervals for which each subset of the partition contains the right number

of points. As the J(dν ,aν), for fixed ν and dν (with aν running through

all possibilities) form a partition of [0, 1)s, it is clear that the right number

of points in J(dν ,aν) has to be bmVol(J(dν ,aν)). For example, the digital

net in Figure 15.3 has 16 points and the partition consists of 8 different

subsets J(dν ,aν), hence each J(dν ,aν) contains exactly 16/8 = 2 points.

(In general, the volume of J(dν ,aν) is given by b−|ν|1 , see [39].)
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15.4 Squared worst-case error in Hs,α,γ

In the following, we consider the worst-case error for multivariate integration

in the Sobolev space Hs,α,γ for s, α ∈ N, α ≥ 2, which has been introduced in

Section 14.6. A similar approach has been used in [36] for periodic functions,

whereas in [37] a reproducing kernel Hilbert space based on Walsh functions

has been introduced for which numerical integration was analysed. We follow

[9] in our exposition where the Sobolev space Hs,α,γ was considered.

The reproducing kernel for Hs,α,γ is given by

Ks,α,γ(x,y)

=
∑

u⊆Is
γu
∏

i∈u

(
α∑

τ=1

Bτ (xi)Bτ (yi)

(τ !)2
− (−1)αB2α(|xi − yi|)

(2α)!

)
(15.3)

and the inner product is

〈f, g〉Hs,α,γ =
∑

u⊆Is
γ−1
u

∑

v⊆u

∑

τ
u\v∈{1,...,α−1}|u\v|

∫

[0,1]|v|

(∫

[0,1]s−|v|
f (τu\v,αv,0)(x) dxIs\v

)

×
(∫

[0,1]s−|v|
g(τ u\v,αv,0)(x) dxIs\v

)
dxv,

(where we used the same notation as in Section 14.6). We often represent

Ks,α,γ by its Walsh series, in particular, we have

Ks,α,γ(x,y) =
∑

k,l∈Ns
0

K̂s,α,γ(k, l) bwalk(x) bwall(y), (15.4)

where

K̂s,α,γ(k, l) =

∫

[0,1]2s
Ks,α,γ(x,y) bwalk(x) bwall(y) dxdy. (15.5)

From Proposition 2.11 we know that the square worst-case error for QMC

integration of functions from the Sobolev space Hs,α,γ using a point set

P = {x0, . . . ,xN−1} is given by

e2(Hs,α,γ ,P) =
∫

[0,1]2s
Ks,α,γ(x,y) dx dy − 2

N

N−1∑

n=0

∫

[0,1]s
Ks,α,γ(xn,x)dx

+
1

N2

N−1∑

n,n′=0

Ks,α,γ(xn,xn′).
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The square initial error for QMC integration in Hs,α,γ is given by

e2(Hs,α,γ, 0) =

∫

[0,1]2s
Ks,α,γ(x,y) dxdy.

Using (15.3), and the fact that
∫ 1
0 Br(x) dx = 0 for all r ∈ N and

∫ 1
0 B2α(|x−

y|) dx = 0 for all y ∈ [0, 1), which follows from (14.12), we obtain the fol-

lowing result:

Theorem 15.12 The square worst-case error for QMC integration in the

Sobolev space Hs,α,γ using the point set P = {x0, . . . ,xN−1} is given by

e2(Hs,α,γ ,P) = −1 +
1

N2

N−1∑

n,n′=0

Ks,α,γ(xn,xn′). (15.6)

Furthermore, the square initial error e2(Hs,α,γ , 0) for QMC integration in

Hs,α,γ is one.

We now consider the Walsh coefficients of the function

K1,α,(1)(x, y) :=

α∑

τ=1

Bτ (x)Bτ (y)

(τ !)2
− (−1)αB2α(|x− y|)

(2α)!
,

which, for k, l ∈ N0, are defined by

K̂1,α,(1)(k, l) =

∫ 1

0

∫ 1

0
K1,α,(1)(x, y) bwalk(x) bwall(y) dxdy. (15.7)

We note that for l ∈ N0, K̂1,α,(1)(0, l) = 0.

For k = (k1, . . . , ks) ∈ Ns0 we already used the notation (ku,0) to denote

the s-dimensional vector whose ith component is ki for i ∈ u and 0 otherwise.

On the other hand, for u = {v1, . . . , ve} ⊆ Is and ku = (kv1 , . . . , kve) ∈ N|u|

we write (ku,0) for the s-dimensional vector whose ith component is ki if

i ∈ u and zero otherwise.

The following lemma shows how to express the Walsh coefficients K̂s,α,γ ,

given by (15.5), in terms of K̂1,α,(1).

Lemma 15.13 Let k, l ∈ Ns, then for any u, v ⊆ Is we have

K̂s,α,γ((ku,0), (lv,0)) =

{
γu
∏
i∈u K̂1,α,(1)(ki, li) for u = v,

0 for u 6= v,

where the empty product
∏
i∈∅ is set to one.

Proof Using equations (15.3) and (15.5) we obtain

K̂s,α,γ((ku,0), (lv,0))
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=

∫

[0,1]2s
Ks,α,γ(x,y) bwal(ku,0)(x) bwal(lv,0)(y) dxdy

=

∫

[0,1]2s


∑

w⊆Is

∏

i∈w
γiK1,α,(1)(xi, yi)



bwal(ku,0)(x) bwal(lv,0)(y) dxdy

=
∑

w⊆Is
γw

∫

[0,1]2s

∏

i∈w
K1,α,(1)(xi, yi) bwal(ku,0)(x) bwal(lv,0)(y) dxdy.

Note that
∫ 1
0 K1,α,(1)(x, y) dx =

∫ 1
0 K1,α,(1)(x, y) dy = 0 according to the

properties of Bernoulli polynomials and that
∫ 1
0 bwalk(x) dx = 0 for k ∈ N.

Thus if u 6= v, u 6= w, or v 6= w the integral in the last line of the equation

is zero. The remaining case u = v = w yields γu
∏
i∈u K̂1,α,(1)(ki, li).

The next theorem shows how to rewrite the worst-case error in terms of

the Walsh coefficients of the reproducing kernel.

Theorem 15.14 The square worst-case error for QMC integration in the

Sobolev space Hs,α,γ using a higher order digital (t, α, β, n×m, s)-net P over

Zb with generating matrices C1, . . . , Cs ∈ Zn×mb is given by

e2(Hs,α,γ ,P) =
∑

∅6=u⊆Is
γu

∑

ku,lu∈N
|u|

(ku,0),(lu,0)∈D∞,n

∏

i∈u
K̂1,α,(1)(ki, li), (15.8)

where D∞,n = {k ∈ Ns0 : C⊤
1 trn(k1) + · · ·+ C⊤

s trn(ks) = 0}.

Proof Let P = {x0, . . . ,xbm−1}. From equations (15.4) and (15.6) we ob-

tain

e2(Hs,α,γ ,P) = −1 +
1

b2m

bm−1∑

j,j′=0


 ∑

k,l∈Ns
0

K̂s,α,γ(k, l) bwalk(xj) bwall(xj′)




= −1 + 1

b2m

∑

k,l∈Ns
0

K̂s,α,γ(k, l)
bm−1∑

j,j′=0

bwalk(xj) bwall(xj′)

=
∑

k,l∈D∞,n\{0}
K̂s,α,γ(k, l).

We now use Lemma 15.13 to obtain

e2(Hs,α,γ ,P) =
∑

∅6=u⊆Is

∑

ku,lu∈N
|u|

(ku,0),(lu,0)∈D∞,n

K̂s,α,γ((ku,0), (lu,0))
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=
∑

∅6=u⊆Is
γu

∑

ku,lu∈N
|u|

(ku,0),(lu,0)∈D∞,n

∏

i∈u
K̂1,α,(1)(ki, li).

15.5 A bound on the Walsh coefficients

Our goal is to derive a bound on the square worst-case error which shows the

optimal rate of convergence. As is shown in Section 15.6, a key ingredient

for achieving this is a bound on the Walsh coefficients K̂1,α,(1), as defined by

(15.7). This was first considered in [9] and is the topic of this section (see

[36] for the periodic case).

We note that for k, l ∈ N0

∣∣∣K̂1,α,(1)(k, l)
∣∣∣ =

∣∣∣∣
∫ 1

0

∫ 1

0
K1,α,(1)(x, y) bwalk(x) bwall(y) dxdy

∣∣∣∣

=

∣∣∣∣∣
α∑

τ=1

βτ (k)βτ (l) + (−1)α+1γ2α(k, l)

∣∣∣∣∣

≤
α∑

τ=1

|βτ (k)||βτ (l)|+ |γ2α(k, l)|, (15.9)

where β is defined by (14.13) and γ is defined by (14.17) in Section 14.5.

We now show that for k, l ∈ N,

α∑

τ=1

|βτ (k)||βτ (l)|+ |γ2α(k, l)| ≤ Cα,bb−µα(k)−µα(l),

where Cα,b > 0 only depends on α and b and where µα is defined by (15.2)

(and (14.6)).

For k, α ∈ N0, α ≥ 2, we have µα,per(k) ≥ µα(k), where µα,per is defined

by (14.16). We state the following lemma, which is comprised of results from

Section 14.5 and Lemma 14.16.

Lemma 15.15 Let k ∈ N be given by k = κ1b
a1−1 + · · · + κvb

av−1, where

1 ≤ κ1, . . . , κv < b and a1 > · · · > av > 0. Then for any τ ∈ N we have

|βτ (k)| ≤
{
Cτ,bb

−µτ,per(k) if 1 ≤ v ≤ τ,
0 if v > τ,

where for τ = 1 we have C1,b = (2 sin(π/b))−1 and for τ ≥ 2 we have

Cτ,b =
(
(1 + 1/b+ 1/(b(b + 1)))τ−2

)
/(2 sin(π/b))τ .

Lemma 15.16 For k, l ∈ N with b-adic expansions

k = κ1b
ak,1−1 + · · ·+ κvkb

ak,vk−1
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l = ι1b
al,1−1 + · · · + ιvlb

al,vl−1,

let v := max(vk, vl). Then for all α ∈ N we have

α∑

τ=1

|βτ (k)||βτ (l)| ≤ C ′
α,b,vb

−µα(k)−µα(l),

where C ′
α,b,v =

∑α
τ=v C

2
τ,bb

−2(τ−v), 1 ≤ v ≤ α, with Cτ,b from Lemma 15.15

and C ′
α,b,v = 0, for v > α.

Proof From Lemma 15.15, it follows that for 1 ≤ τ ≤ α, 1 ≤ vk ≤ τ , we

get

|βτ (k)| ≤ Cτ,bb−µτ,per(k)

= Cτ,bb
−µτ (k)−(τ−vk)ak,vk

= Cτ,bb
−µα(k)−(τ−vk)ak,vk ,

and for 1 ≤ τ ≤ α, vk > τ , βτ (k) = 0. Therefore we obtain for v ≥ 1,

α∑

τ=1

|βτ (k)||βτ (l)| ≤
α∑

τ=v

Cτ,bb
−µτ (k)−(τ−vk)ak,vkCτ,bb

−µτ (l)−(τ−vl)al,vl

≤ b−µα(k)−µα(l)
α∑

τ=v

C2
τ,bb

−2(τ−v).

We now show how to find a bound for |γ2α(k, l)|.
Lemma 15.17 Let γ2α(k, l) be defined by (14.17), let α, k, l ∈ N and v =

max(vl, vk). Then it follows that

|γ2α(k, l)| ≤ C̃2α,bb
−µα(k)−µα(l)−2(α−v)+ ,

where C̃2α,b = 2(1 + 1/b + 1/(b(b + 1)))2α−2/(2 sin(π/b))2α. Here (·)+ :=

max(·, 0).

Proof We firstly note that for k, l ∈ N,

µ2α,per(k, l) ≥ µα,per(k) + µα,per(l),

where µ2α,per(k, l) is defined by (14.16). We now get

µα,per(k) + µα,per(l) = µα(k) + (α− vk)+avk + µα(l) + (α− vl)+avl
≥ µα(k) + µα(l) + 2(α− v)+

and hence the result follows from Lemma 14.19.

The following proposition establishes the desired bound.
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Proposition 15.18 Let βτ (k), βτ (l) and γ2α(k, l) be defined as above.

Then for k, l, α ∈ N we have

α∑

τ=1

|βτ (k)||βτ (l)|+ |γ2α(k, l)| ≤ Dα,bb
−µα(k)−µα(l),

where Dα,b = max1≤v≤α
(
C ′
α,b,v + C̃2α,bb

−2(α−v)+
)

and where C ′
α,b,v is de-

fined in Lemma 15.16 and C̃2α,b is defined in Lemma 15.17.

Proof The proof follows immediately from Lemmas 15.16 and 15.17.

For later reference we show some values of Dα,b in Table 15.1 for different

values of α and b. In brackets, we give the value of v for which the maximum

was attained.

α/b 2 3 5

2 0.4097(2) 0.5571(2) 2.1165(2)

3 0.2845(3) 0.3727(3) 2.3296(3)

4 0.2714(1) 0.3469(1) 2.5642(4)

5 0.2693(1) 0.3467(1) 2.8224(5)

6 0.2690(1) 0.3467(1) 3.1066(6)

7 0.2689(1) 0.3467(1) 3.4193(7)

8 0.2689(1) 0.3467(1) 3.7636(8)

Table 15.1 Values of Dα,b for different values of α and b, and the values of

v for which the maximum was attained is given in brackets.

15.6 A bound for the worst-case error

In this section, we state a bound for the worst-case error for QMC integration

in the Sobolev space Hs,α,γ , where s, α ∈ N, α ≥ 2.

Lemma 15.19 The square worst-case error for QMC integration in the

Sobolev space Hs,α,γ using a higher order digital (t, α, β, n×m, s)-net P over
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Zb with generating matrices C1, . . . , Cs ∈ Zn×mb can be bounded by

e2(Hs,α,γ ,P) ≤
∑

∅6=u⊆Is
γuD

|u|
α,b




∑

ku∈N|u|

(ku,0)∈D∞,n

b−µα(ku)




2

,

where Dα,b is given in Proposition 15.18.

Proof From Lemma 15.13, Theorem 15.14, Equation (15.9) and Proposi-

tion 15.18, we get

e2(Hs,α,γ ,P)
≤

∑

∅6=u⊆Is
γu

∑

ku,lu∈N
|u|

(ku,0),(lu,0)∈D∞,n

∏

i∈u

∣∣∣K̂s,α,(1)(ki, li)
∣∣∣

≤
∑

∅6=u⊆Is
γu

∑

ku,lu∈N
|u|

(ku,0),(lu,0)∈D∞,n

∏

i∈u

(
α∑

τ=1

|βτ (ki)||βτ (li)|+ |γ2α(ki, li)|
)

≤
∑

∅6=u⊆Is
γu

∑

ku,lu∈N|u|

(ku,0),(lu,0)∈D∞,n

∏

i∈u
Dα,bb

−µα(ki)−µα(li)

=
∑

∅6=u⊆Is
γuD

|u|
α,b

∑

ku,lu∈N
|u|

(ku,0),(lu,0)∈D∞,n

b−µα(ku)b−µα(lu),

and the result now follows.

We see from Table 15.1 that Dα,b < 1 for b ∈ {2, 3} and 2 ≤ α ≤ 8, hence,

in this case, (Dα,b)
|u| goes to 0 exponentially fast for increasing values of |u|.

In Section 15.1 we derived a criterion for the generating matrices of a

digital net based on the assumption that the sum
∑

ku∈N|u|

(ku,0)∈D∞,n

b−µα(ku) for

∅ 6= u ⊆ Is is dominated by its largest term. The justification for this

assumption is given in the following lemma, which was first shown in [37].

Lemma 15.20 Let s, α ∈ N, b ≥ 2 be a prime, C1, . . . , Cs ∈ Zn×mb be the

generating matrices of a higher order digital (t, α, β, n × m, s)-net over Zb
with 0 < β ≤ 1 such that βn is an integer. Then for all ∅ 6= u ⊆ Is we have

∑

ku∈N
|u|

(ku,0)∈D∞,n

b−µα(ku) ≤ C|u|,b,α(βn− t+ 2)|u|αb−(βn−t),
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where

C|u|,b,α = b|u|α
(
1

b
+

(
b

b− 1

)|u|α)
.

Proof To simplify the notation we prove the result only for u = Is. For all
other subsets the result follows by the same arguments.

We partition the set D′
∞,n into parts where the highest digits of ki are

prescribed and we count the number of solutions of C⊤
1 trn(k1) + · · · +

C⊤
s trn(ks) = 0. For 1 ≤ i ≤ s let now di,α < · · · < di,1 with di,1 ∈ N.

Note that we now allow di,j < 1, in which case the contributions of those

di,j are to be ignored. This notation is adopted in order to avoid considering

many special cases. Further we write ds,α = (d1,1, . . . , d1,α, . . . , ds,1, . . . , ds,α)

and define

D′
∞,n(ds,α) = {k ∈ D′

∞,n : ki = ⌊κi,1bdi,1−1 + · · ·+ κi,αb
di,α−1 + li⌋

with 0 ≤ li < bdi,α−1 and 1 ≤ κi,j < b for 1 ≤ i ≤ s},

where ⌊·⌋ just means that the contributions of di,j < 1 are to be ignored.

Then we have

∑

k∈D′
∞,n

b−µα(k) (15.10)

=
∞∑

d1,1=α

d1,1−1∑

d1,2=α−1

· · ·
d1,α−1−1∑

d1,α=1

· · ·
∞∑

ds,1=α

ds,1−1∑

ds,2=α−1

· · ·
ds,α−1−1∑

ds,α=1

|D′
∞,n(ds,α)|
b|ds,α|1 ,

where |ds,α|1 = d1,1 + · · · + d1,α + · · · + ds,1 + · · · + ds,α. Some of the sums

above can be empty in which case we just set the corresponding summation

index di,j = 0.

Note that by the digital (t, α, β, n × m, s)-net property we have that

|D′
∞,n(ds,α)| = 0 as long as d1,1 + · · ·+ d1,α+ · · ·+ ds,1+ · · ·+ ds,α ≤ βn− t.

Hence for 1 ≤ i ≤ s and 1 ≤ j ≤ α let di,j ≥ 0 be given such that

d1,1, . . . , ds,1 ∈ N, di,α < · · · < di,1 for 1 ≤ i ≤ s and where if di,j < 1 we set

di,j = 0 (in which case we also have di,j+1 = di,j+2 = · · · = 0 and the inequal-

ities di,j > · · · > di,α are ignored) and d1,1+· · ·+d1,α+· · ·+ds,1+· · ·+ds,α >
βn− t. We now need to estimate |D′

∞,n(ds,α)|, that is we need to count the

number of k ∈ D′
∞,n with ki = ⌊κi,1bdi,1−1 + · · · + κi,αb

di,α−1 + li⌋.
There are at most (b − 1)αs choices for κ1,1, . . . , κs,α (we write at most

because if di,j < 1 then the corresponding κi,j does not have any effect and

therefore need not to be included).
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Let now 1 ≤ κ1,1, . . . , κs,α < b be given and define

g = κ1,1(c
(1)
d1,1

)⊤ + · · ·+ κ1,α(c
(1)
d1,α

)⊤ + · · ·+ κs,1(c
(s)
ds,1

)⊤ + · · ·+ κs,α(c
(s)
ds,α

)⊤,

where c
(i)
j ∈ Zmb is the jth row vector of the matrix Ci for 1 ≤ j ≤ n and

1 ≤ i ≤ s and where we set c
(i)
j = 0 if j < 1 or if j > n. Further let

B = ((c
(1)
1 )⊤, . . . , (c(1)d1,α−1)

⊤, . . . , (c(s)1 )⊤, . . . , (c(s)ds,α−1)
⊤).

Hence B ∈ Z
m×(d1,α+···+ds,α−s)
b . Now the task is to count the number of

solutions l ∈ Z
d1,α+···+ds,α−s
b of Bl = g.

As long as the columns of B are linearly independent the number of solu-

tions can at most be one. By the digital (t, α, β, n ×m, s)-net property this

is certainly the case if (we write (x)+ = max(x, 0))

(d1,α − 1)+ + · · ·+ (d1,α − α)+ + · · ·
+(ds,α − 1)+ + · · ·+ (ds,α − α)+ ≤ α(d1,α + · · · + ds,α)

≤ βn− t,

that is, as long as

d1,α + · · ·+ ds,α ≤
βn− t
α

.

Let now d1,α + · · · + ds,α > βn−t
α . Then by considering the rank of the

matrix B and the dimension of the space of solutions of Bl = 0 it fol-

lows that the number of solutions of Bl = g is smaller than or equal to

bd1,α+···+ds,α−⌊(βn−t)/α⌋.
Thus we have

|D′
∞,n(ds,α)| = 0

if
∑s

i=1

∑α
j=1 di,j ≤ βn− t, we have

|D′
∞,n(ds,α)| = (b− 1)sα

if
∑s

i=1

∑α
j=1 di,j > βn− t and ∑s

i=1 di,α ≤ βn−t
α , and finally we have

|D′
∞,n(ds,α)| ≤ (b− 1)sαbd1,α+···+ds,α−⌊(βn−t)/α⌋

if
∑s

i=1

∑α
j=1 di,j > βn− t and ∑s

i=1 di,α >
βn−t
α .

Now we are going to estimate the sum (15.10). Let S1 be the sum in

(15.10) where
∑s

i=1

∑α
j=1 di,j > βn − t and

∑s
i=1 di,α ≤ βn−t

α . Let l1 =

d1,1 + · · · + d1,α−1 + · · · + ds,1 + · · · + ds,α−1 and let l2 = d1,α + · · · + ds,α.
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For given l1, l2 let A(l1 + l2) denote the number of admissible choices of

d1,1, . . . , ds,α such that l1 + l2 =
∑s

i=1

∑α
j=1 di,j . Then we have

S1 ≤ (b− 1)sα
⌊βn−t

α
⌋∑

l2=0

1

bl2

∞∑

l1=βn−t+1−l2

A(l1 + l2)

bl1
.

We have A(l1 + l2) ≤
(l1+l2+sα−1

sα−1

)
and hence we obtain

S1 ≤ (b− 1)sα
⌊βn−t

α
⌋∑

l2=0

1

bl2

∞∑

l1=βn−t+1−l2

1

bl1

(
l1 + l2 + sα− 1

sα− 1

)
.

From Lemma 13.24, we have

(b− 1)sα
∞∑

l1=βn−t+1−l2

1

bl1

(
l1 + l2 + sα− 1

sα− 1

)

≤ bl2−βn+t−1+sα

(
βn− t+ sα

sα− 1

)

and further we have

⌊βn−t
α

⌋∑

l2=0

bl2

bl2
=

⌊
βn− t
α

⌋
+ 1.

Thus we obtain

S1 ≤
(⌊

βn− t
α

⌋
+ 1

)
b−βn+t−1+sα

(
βn− t+ sα

sα− 1

)
.

Let S2 be the part of (15.10) for which
∑s

i=1

∑α
j=1 di,j > βn − t and∑s

i=1 di,α >
βn−t
α , i.e., we have

S2 ≤ (b− 1)sα

×
∞∑

d1,1=α

· · ·
d1,α−1−1∑

d1,α=1

∞∑

ds,1=α

· · ·
ds,α−1−1∑

ds,α=1︸ ︷︷ ︸
+additional conditions

b−⌊(βn−t)/α⌋bd1,α+···+ds,α

bd1,1+···+d1,α+···+ds,1+···+ds,α ,

where the “additional conditions” are that
∑s

i=1

∑α
j=1 di,j > βn − t and∑s

i=1 di,α >
βn−t
α . As above let l1 = d1,1+· · ·+d1,α−1+· · ·+ds,1+· · ·+ds,α−1

and let l2 = d1,α + · · · + ds,α. For given l1, l2 let A(l1 + l2) denote the

number of admissible choices of di,l for 1 ≤ i ≤ s and 1 ≤ l ≤ α such
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that l1 + l2 =
∑s

i=1

∑α
j=1 di,j . Note that l1 > (α − 1)l2. Then we have

A(l1 + l2) ≤
(l1+l2+sα−1

sα−1

)
and hence we obtain

S2 ≤ (b− 1)sαb−⌊(βn−t)/α⌋
∞∑

l2=⌊βn−t
α

⌋+1

∞∑

l1=(α−1)l2+1

1

bl1

(
l1 + l2 + sα− 1

sα− 1

)
.

By using Lemma 13.24 again, we have

(b− 1)sα
∞∑

l1=(α−1)l2+1

1

bl1

(
l1 + l2 + sα− 1

sα− 1

)
≤ bsαbl2(1−α)−1

(
l2α+ sα

sα− 1

)

and also

bsα−1−⌊(βn−t)/α⌋
∞∑

l2=⌊βn−t
α

⌋+1

bl2(1−α)
(
l2α+ sα

sα− 1

)

≤ bsα−1−⌊(βn−t)/α⌋
∞∑

l2=βn−t
bl2(1−α)/α

(
l2 + sα

sα− 1

)

≤ bsα−1−⌊(βn−t)/α⌋(1− b−1)−sα
(
βn− t+ sα

sα− 1

)
b(βn−t)(1−α)/α.

Hence we have

S2 ≤
(

b2

b− 1

)sα
b−(βn−t)

(
βn− t+ sα

sα− 1

)
.

Note that we have
∑

k∈D′
∞,n

b−µα(k) = S1 + S2. Let a ∈ N and b ∈ N0,

then we have
(
a+ b

b

)
=

b∏

i=1

(
1 +

a

i

)
≤ (1 + a)b.

Therefore we obtain

S1 ≤
(⌊

βn− t
α

⌋
+ 1

)
b−βn+t−1+sα(βn− t+ 2)sα−1

≤ (βn − t+ 2)sαb−βn+t−1+sα

and

S2 ≤
(

b2

b− 1

)sα
(βn− t+ 2)sα−1b−βn+t.

Thus we have
∑

k∈D′
∞,n

b−µα(k) ≤ Cs,b,α(βn− t+ 2)sαb−βn+t,
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where

Cs,b,α = bsα
(
1

b
+

(
b

b− 1

)sα)
.

If βn is not an integer, then the same bound as in the above lemma applies

where one replaces βn with ⌊βn⌋.
The next result shows that by using digital (t, α, β, n×m, s)-nets over Zb,

one can obtain optimal convergence rates for the worst-case error of QMC

integration in the Sobolev space Hs,α,γ, see [9].

Theorem 15.21 Let s, α ∈ N, and let b ≥ 2 be a prime number. Then

the worst-case error of QMC integration in the Sobolev space Hs,α,γ using

a higher order digital (t, α, β, n ×m, s)-net P over Zb is bounded by

e(Hs,α,γ ,P) ≤ b−(⌊βn⌋−t)


 ∑

∅6=u⊆Is
γuD

′′
|u|,α,b(⌊βn⌋ − t+ 2)2|u|α




1/2

,

where

D′′
|u|,α,b = D

|u|
α,bb

2|u|α
(
1

b
+

(
b

b− 1

)|u|α)2

.

Proof The proof follows immediately from Lemmas 15.19 and 15.20.

Explicit constructions of higher order digital (t, α,min(1, α/d), dm×m, s)-
nets over Zb for all prime numbers b and α, d,m, s ∈ N were given in Sec-

tion 15.2. By choosing d = α in these constructions, Theorem 15.21 implies a

convergence of the integration error of order O(b−αmmsα), which is optimal

for the Sobolev space Hs,α,γ as it is optimal for the subspace of periodic

functions, see [239]. Theorem 15.21 is also comparable to [36, Theorem 5.2],

but with the important difference that here we do not assume that the in-

tegrand is periodic.

Theorem 15.21 also applies to digital (t, α, β, σ, s)-sequences over Zb, which

we state in the following corollary.

Corollary 15.22 Let s, α ∈ N, and let b ≥ 2 be a prime number. Then

the worst-case error of QMC integration in the Sobolev space Hs,α,γ using

the first bm points of a higher order digital (t, α, β, σ, s)-sequence S over Zb
as quadrature points, is bounded by

e(Hs,α,γ ,S) ≤ b−(⌊βσm⌋−t)


 ∑

∅6=u⊆Is
γuD

′′
|u|,α,b(⌊βσm⌋ − t+ 2)2|u|α




1/2

,
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for all m > t/(βσ), where D′′
|u|,α,b is as in Theorem 15.21.

Explicit constructions of higher order digital (t, α,min(1, α/d), d, s)-sequences

over Zb for all prime numbers b and α, d, s ∈ N were given in Section 15.2.

For such a sequence we obtain a convergence of

e(Hs,α,γ ,S)

≤ b−(min(α,d)m−t)


 ∑

∅6=u⊆Is
γuD

′′
|u|,α,b(min(α, d)m − t+ 2)2|u|α




1/2

,

for all m > t/min(α, d). By the result from Sharygin [239] this result is

optimal (up to a power of m) for all 2 ≤ α ≤ d. (The case α = 1 has been

considered in Chapter 4, where the result is also optimal up to a power ofm.)

As d is a parameter of the construction which can be chosen freely, we can

obtain arbitrarily high convergence rates for sufficiently smooth functions.

15.7 Higher order polynomial lattice point sets

In this section we use the approach of Section 10.1 (see also [137]) to prove

the existence of polynomial lattice point sets for which the figure of merit

satisfies a certain condition. This allows us to prove existence results for the

digital nets considered in this chapter.

We generalise the definition of polynomial lattice point sets from Defi-

nition 10.1 resp. Theorem 10.5 in Chapter 10 in a way which allows us to

achieve higher order convergence by embedding it into the framework of the

digital nets of the previous section. The following definition, stated first in

[52], is a slight generalisation of polynomial lattices, cf. Definition 10.1.

Definition 15.23 Let b be prime and let s,m, n ∈ N, 1 ≤ m ≤ n. Let υn
be the map from Zb((x

−1)) to the interval [0, 1) defined by

υn

( ∞∑

l=w

tlx
−l
)

=

n∑

l=max(1,w)

tlb
−l.

Choose p ∈ Zb[x] with deg(p) = n and let q = (q1, . . . , qs) ∈ Zb[x]
s. For

0 ≤ h < bm let h = h0 + h1b+ · · ·+ hm−1b
m−1 be the b-adic expansion of h.

With each such h we associate the polynomial

h(x) =
m−1∑

r=0

hrx
r ∈ Zb[x].
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Then Pm,n(q, p) is the point set consisting of the bm points

xh =

(
υn

(
h(x)q1(x)

p(x)

)
, . . . , υn

(
h(x)qs(x)

p(x)

))
∈ [0, 1)s,

for 0 ≤ h < bm. The point set Pm,n(q, p) is called a higher order polynomial

lattice point set or short again a polynomial lattice point set and a QMC rule

using the point set Pm,n(q, p) is called a higher order polynomial lattice rule

or short again a polynomial lattice rule.

Remark 15.24 The point set Pm,n(q, p) consists of the first bm points

of Pn,n(q, p) = P(q, p), i.e., the first bm points of a classical polynomial

lattice point set in the sense of Theorem 10.5. Hence the definition of a

polynomial lattice point set in Chapter 10 is covered by choosing n = m in

the definition above. Furthermore it is important to note that for dimension

s = 1 for m < n the points of Pm,n(q, p) are not equally spaced in general

(in contrary to the case where m = n).

Using similar arguments as for the classical case n = m it can be shown

that the point set Pm,n(q, p) is a digital net in the sense of Definition 4.47

(but with n×m generating matrices instead of m×m matrices). The gener-

ating matrices C1, . . . , Cs of this digital net can be obtained in the following

way: for 1 ≤ i ≤ s, consider the expansions

qi(x)

p(x)
=

∞∑

l=wi

u
(i)
l x

−l ∈ Zb((x
−1))

where wi ∈ Z. Then the elements c
(i)
j,r of the n ×m matrix Ci over Zb are

given by

c
(i)
j,r = u

(i)
r+j ∈ Zb, (15.11)

for 1 ≤ i ≤ s, 1 ≤ j ≤ n, 0 ≤ r ≤ m− 1.

We recall some notation already introduced in Chapter 10. For a vector

k = (k1, . . . , ks) ∈ Zb[x]
s and q = (q1, . . . , qs) ∈ Zb[x]

s, we define the “inner

product”

k · q =

s∑

i=1

kiqi ∈ Zb[x]

and we write q ≡ 0 (mod p) if p divides q in Zb[x]. Further, for b prime we

associate a nonnegative integer k = κ0+κ1b+ · · ·+κaba with the polynomial

k(x) = κ0 + κ1x + · · · + κax
a ∈ Zb[x] and vice versa. Let Gb,n := {q ∈

Zb[x] : deg(q) < n}, where we here and in the following use the convention

deg(0) = −1.
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For polynomial lattice point sets with n = m a connection between the

figure of merit and the quality parameter, when one views Pm,n(q, p) as a

digital (t,m, s)-net over Zb, was established, see Section 10.1. In the following

we generalise these results.

A slight generalisation of Lemma 10.6 yields the following result whose

proof is left as an exercise (see Exercise 15.6).

Lemma 15.25 Let p ∈ Zb[x] with deg(p) = n and let q ∈ Zb[x]
s be a

generating vector for a higher order polynomial lattice point set Pm,n(q, p)
with generating matrices C1, . . . , Cs ∈ Zn×mb . Then for and k1, . . . ,ks ∈
(Znb )

⊤ we have

C⊤
1 k1 + · · · + C⊤

s ks = 0 ∈ (Zmb )
⊤

if and only if there is a polynomial a ∈ Zb[x] with a ≡ q · k (mod p) and

deg(a) < n−m, where k = (k1, . . . , ks) ∈ Zb[x]
s where ki(x) = κi,0+κi,1x+

· · ·+ κi,n−1x
n−1 whenever ki = (κi,0, . . . , κi,n−1)

⊤ ∈ (Znb )
⊤ for 1 ≤ i ≤ s.

This result motivates the following definition.

Definition 15.26 The dual net for a higher order polynomial lattice point

set Pm,n(q, p) is given by

Dq,p = {k ∈ Gsb,n : q · k ≡ a (mod p) with deg(a) < n−m}.

Furthermore, let D′
q,p := Dq,p \ {0}.

Hence for m = n we obtain the usual definition of the dual net of P(q, p)
from Definition 10.7, and for m < n we obtain a superset.

Now let us generalise the figure of merit of a polynomial lattice point

set. Let k(x) = κ0 + κ1x + · · · + κax
a ∈ Zb[x] with κa 6= 0. Then the

degree of the polynomial k is defined by deg(k) = a and for k = 0 we set

deg(k) = −1. For our purposes we need to generalise this definition. Let

k(x) = κvx
dv−1 + · · · + κ1x

d1−1 with κ1, . . . , κv ∈ Zb \ {0} and 0 < dv <

· · · < d1. For α ∈ N we now set degα(k) =
∑min(v,α)

r=1 dr and for k = 0

we set degα(k) = 0. Thus we have, for example, deg1(k) = deg(k) + 1. In

what follows we call degα(k) the α-degree of the polynomial k. Using this

notation we can now generalise the classical definition of the figure of merit

from Definition 10.8.

Definition 15.27 Let p ∈ Zb[x] with deg(p) = n and let q ∈ Zb[x]
s be the

generating vector of a polynomial lattice Pm,n(q, p). For α ∈ N the figure of
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merit ρα,m,n is given by

ρα,m,n(q, p) = −1 + min
k∈D′

q,p

s∑

i=1

degα(ki),

where k = (k1, . . . , ks) ∈ Zb[x]
s.

Note that for n = m and α = 1 we obtain the classical definition of the

figure of merit ρ(q, p), see Definition 10.8.

Using Lemma 15.25, also Theorem 10.9 can be generalised to yield the

following theorem.

Theorem 15.28 Let p ∈ Zb[x] with deg(p) = n and let q ∈ Zb[x]
s be the

generating vector of a higher order polynomial lattice point set Pm,n(q, p).
Then for any α ∈ N, the point set Pm,n(q, p) is a higher order digital

(t, α, β, n×m, s)-net over Zb for any 0 < β ≤ min(1, αm/n) and 0 ≤ t ≤ βn
which satisfy

t = ⌊βn⌋ − ρα,m,n(q, p).

We see that polynomial lattices of high quality have a large value of ρα,m,n.

In the following subsection we show the existence of polynomial lattice point

sets for which ρα,m,n satisfies a certain bound.

The existence of higher order polynomial lattice point sets based

on the figure of merit

In this subsection we prove the existence of good higher order polynomial

lattice rules. The results here are based on [44].

First note that we can restrict q ∈ Zb[x]
s to the set Gsb,n where Gb,n

denotes the set of all polynomials q ∈ Zb[x] with deg(q) < n.

The following lemma gives an upper bound on the number of polynomials

in Gb,n with a given α-degree. Note that we use the convention
(n
k

)
= 0 for

negative integers n.

Lemma 15.29 Let l, α, n ∈ N, α ≥ 2, then the number of polynomials in

Gb,n with α-degree l is bounded by

#{k ∈ Gb,n : degα(k) = l} ≤ C(α, l),

where

C(α, l) =
α−1∑

v=1

(b− 1)v
(
l − v(v−1)

2 − 1

v − 1

)
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+

⌊l/α⌋∑

i=1

(b− 1)αbi−1

(
l − α · i− α(α−3)

2 − 2

α− 2

)
.

Proof Let k ∈ Gb,n, k = kdvx
dv−1 + · · · + kd1x

d1−1 with 0 < dv < · · · < d1
and kdr 6= 0 for 1 ≤ r ≤ v. The α-degree of k is then given by degα(k) =∑min(v,α)

r=1 dr. We consider two cases:

1. α ≤ v: Then we write

k = kd1x
d1−1 + · · ·+ kdαx

dα−1 + kdα−1x
dα−2 + · · ·+ k2x+ k1.

As in this case only d1, . . . , dα appear in the condition for the α-degree

of k, we can choose the part kdα−1x
dα−2 + · · · + k2x + k1 arbitrarily

and hence we have at most bdα−1 possibilities for this part. Further the

kdr need to be nonzero which yields (b − 1)α possible choices. Now we

have to count the number of d1, . . . , dα with 0 < dα < · · · < d1 and

d1 + · · ·+ dα = l or equivalently (d1 − dα) + · · ·+ (dα−1 − dα) = l−αaα.
(Note that l−αdα must be at least nonnegative.) This is the same as the

number of 0 ≤ bα−1 ≤ · · · ≤ b1 with b1 + · · · + bα−1 = l − αdα − α(α−1)
2 ;

write bi = di − dα − (α − i) for 1 ≤ i ≤ α − 1. However, this number is

surely at most
(l−αdα−α(α−1)

2
+α−2

α−2

)
.

Finally dα can run from 1 to at most ⌊l/α⌋ and hence altogether there

are at most

⌊l/α⌋∑

dα=1

(b− 1)αbdα−1

(
l − αdα − α(α−1)

2 + α− 2

α− 2

)

polynomials k = kdvx
dv−1 + · · · + kd1x

d1−1 with 0 < dv < · · · < d1 and

kdr 6= 0 for 1 ≤ r ≤ v, α ≤ v and degα(k) = l.

2. α > v: We count all k = kdvx
dv−1+ · · ·+kd1xd1−1 with 0 < dv < · · · < d1,

kdr 6= 0 for 1 ≤ r ≤ v and d1 + · · ·+ dv = l.

For kdr , 1 ≤ r ≤ v we have exactly (b − 1)v possible choices. The

number of 0 < dv < · · · < d1 with d1 + · · · + dv = l is the same as

the number of 0 ≤ bv ≤ · · · ≤ b1 with b1 + · · · + bv = l − v(v+1)
2 ; write

bi = di − (v + 1 − i) for 1 ≤ i ≤ v. This number can be bounded from

above by
(l− v(v+1)

2
+v−1

v−1

)
. As v may be chosen from {1, . . . , α−1} we have

at most
α−1∑

v=1

(b− 1)v
(
l − v(v+1)

2 + v − 1

v − 1

)



15.7 Higher order polynomial lattice point sets 521

polynomials k = kdvx
dv−1 + · · · + kd1x

d1−1 with 0 < dv < · · · < d1 and

kdr 6= 0 for 1 ≤ r ≤ v, α > v and degα(k) = l.

The result follows by adding the two sums from the above two cases.

Now we can prove a condition for the existence of a polynomial lattice

with a certain figure of merit. The following theorem is the analogue to

Theorem 10.13 for the case α = 1.

Theorem 15.30 Let s, n,m,α ∈ N, s, α ≥ 2, let b be a prime and let

p ∈ Zb[x] with deg(p) = n ≥ m be irreducible. For ρ ∈ N0 define

∆b(s, ρ, α) =

ρ∑

l=0

s∑

i=1

(
s

i

) ∞∑

l1,...,li=1
l1+···+li=l

i∏

z=1

C(α, lz),

where C(α, l) is defined in Lemma 15.29.

1. If ∆b(s, ρ, α) < bm, then there exists a q ∈ Gsb,n with

ρα,m,n(q, p) ≥ ρ.

2. If ∆b(s, ρ, α) <
bm

s−1 , then there exists a polynomial q ∈ Gb,n such that

vs(q) ≡
(
1, q, q2, . . . , qs−1

)
(mod p) satisfies

ρα,m,n(vs(q), p) ≥ ρ.

Proof We show the first part of the theorem. There are |Gsb,n| = |Gb,n|s =
bns vectors q to choose from. We estimate the number of vectors q for which

ρα,m,n(q, p) < ρ for some chosen ρ ∈ N0. If this number is smaller than the

total number of possible choices then it follows that there is at least one

vector with ρα,m,n(q, p) ≥ ρ.
For each nonzero vector k ∈ Zb[x]

s there are bns−m vectors q ∈ Gsb,n such

that k · q ≡ a (mod p) for some a ∈ Zb[x] with deg(a) < n−m.

Let now A(l, s, α) denote the number of nonzero vectors k ∈ Zb[x]
s with∑s

i=1 degα(ki) = l. The quantity C(α, l) defined in Lemma 15.29 is an upper

bound on the number of nonzero polynomials k ∈ Zb[x] with degα(k) = l.

Thus we have

A(l, s, α) ≤
s∑

i=1

(
s

i

) ∞∑

l1,...,li=1
l1+···+li=l

i∏

z=1

C(α, lz).

Now
∑ρ

l=0A(l, s, α) is a bound on the number of nonzero vectors k ∈ Zb[x]
s

with
∑s

i=1 degα(ki) ≤ ρ. Hence the number of vectors q ∈ Gsb,n for which
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ρα,m,n(q, p) < ρ is bounded by bns−m
∑ρ

l=0A(l, s, α). Hence if this number

is smaller than bns, that is if at least

bns−m
ρ∑

l=0

A(l, s, α) < bns,

then there exists a vector q ∈ Gsb,n with ρα,m,n(q, p) ≥ ρ. Hence the result

follows.

For the second part we proceed as in the first one, but we note that

there are |Gb,n| = bn polynomials q ∈ Gb,n to choose from and that for each

nonzero vector k ∈ Zb[x]
s there are at least (s−1)bn−m of these polynomials

q such that k · vs(q) ≡ a (mod p) for some a with deg(a) < n − m. If at

least

(s − 1)bn−m
ρ∑

l=0

A(l, s, α) < bn,

then there exists a q ∈ Gb,n such that vs(q) satisfies ρα,m,n(vs(q), p) ≥ ρ.

Above we have shown the existence of higher order polynomial lattice

point sets which are higher order digital (t, α, β, n ×m, s)-nets over Zb for

which the quality parameter t satisfies a certain condition. This follows from

Theorem 15.28 together with Theorem 15.30. Note that in the search for a

polynomial lattice point set we have to choose the value α up front. If we

do not know the smoothness δ of the integrand, then it can happen that

α 6= δ. Hence in order for the bound in Theorem 15.21 to apply we still need

to know the figure of merit of some order α′ of a polynomial lattice which

was constructed using the parameter α (where possibly α 6= α′; the bound

in Theorem 15.21 can then be used with ⌊βn⌋ − t = ρα′,m,n). Hence in the

following we establish a propagation rule for polynomial lattices.

Theorem 15.31 Let Pm,n(q, p) be a higher order polynomial lattice point

set with figure of merit ρα,m,n(q, p). Then for α′ ≥ α we have

ρα′m,n(q, p) ≥ ρα,m,n(q, p)

and for 1 ≤ α′ ≤ α we have

ρα′,m,n(q, p) ≥
α′

α
ρα,m,n(q, p)− 2.

Proof First let α′ ≥ α. Then degα′(k) ≥ degα(k) for all k ∈ Zb[x] and hence

the definition of the figure of merit implies the result. Let now 1 ≤ α′ ≤ α.

Theorem 15.28 implies that the polynomial lattice point set Pm,n(q, p) is

a digital (t, α, β, n × m, s)-net over Zb with t = ⌊βn⌋ − ρα,m,n(q, p). From
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Proposition 15.5 it follows that Pm,n(q, p) is also a digital (t′, α′, β′, n×m, s)-
net over Zb with β

′ = βα′/α and t′ = ⌈tα′/α⌉. Using Theorem 15.28 again

it follows that

ρα′,m,n(q, p) = ⌊β′n⌋ − t′ = ⌊βnα′/α⌋ − ⌈tα′/α⌉ ≥ α′

α
ρα,m,n(q, p)− 2.

The existence of higher order polynomial lattice rules based on

the mean square worst-case error

We consider now the mean square worst-case error of randomly b-adic digi-

tally shifted higher order polynomial lattice rules. The results here are based

on [52].

Recall that the mean square worst-case error is defined by ê2(Hs,α,γ ,P) =
E[e2(Hs,α,γ ,Pσ)], where the expectation is with respect to all digital shifts

σ which are applied in the same manner as in Section 12.1.

Lemma 15.32 Let b be a prime and let s, α ∈ N. Then the mean square

worst-case error of QMC integration in the Sobolev space Hs,α,γ using a

polynomial lattice point set P, which is randomised by a uniformly and i.i.d.

chosen random shift σ, is bounded by

ê2(Hs,α,γ ,P) ≤
∑

∅6=u⊆Is
γuD

|u|
α,b

∑

ku∈N|u|

trn((ku,0))∈Dq,p

b−2µα(ku),

where the constant Dα,b > 0 is defined in Proposition 15.18.

Proof According to Definition 15.26 for ∅ 6= u ⊆ Is we have
∑

ku∈N
|u|

(ku,0)∈D∞,n

b−µα(ku) =
∑

ku∈N
|u|

trn((ku,0))∈Dq,p

b−µα(ku),

where here we again identify integers k = κ0 + κ1b+ · · · + κab
a with poly-

nomials k(x) = κ0 + κ1x+ · · ·+ κax
a ∈ Zb[x].

For a randomly digitally shifted digital net {x0 ⊕ σ, . . . ,xbm−1 ⊕ σ} we

have

E







∑

ku∈N
|u|

trn((ku,0))∈Dq,p

b−µα(ku)




2


= E


 ∑

ku,lu∈N|u|

b−µα(ku)−µα(lu) 1

bm

bm−1∑

h,j=0

bwalku
(xh,u ⊕ σ) bwallu(xj,u ⊕ σ)
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=
∑

ku∈N
|u|

trn((ku,0))∈Dq,p

b−2µα(ku),

where xh,u is the projection of xh to the components which belong to u.

Now the result follows from Lemma 15.19.

Further, we need the following lemma.

Lemma 15.33 Let α ∈ N, then for every 1/(2α) < λ ≤ 1 there exists a

constant 0 < Bb,α,λ <∞ such that

∞∑

k=1

b−2λµα(k) ≤ Bb,α,λ,

where

Bb,α,λ := B̃b,α,λ +
(b− 1)α

b2λα − b
α−1∏

i=1

1

b2λi − 1
,

B̃b,α,λ =





0 if α = 1,

α− 1 if α ≥ 2 and λ = 1/2,
(b−1)((b−1)α−1−(b2λ−1)α−1)

(b−b2λ)(b2λ−1)α−1 if α ≥ 2 and λ 6= 1/2.

Furthermore, the series
∑∞

k=1 b
−2λµα(k) diverges to +∞ as λ tends to 1/(2α)

from the right.

Proof Let k = κ1b
d1−1 + · · ·+ κvb

dv−1 where v ∈ N, 0 < dv < · · · < d1 and

1 ≤ κi < b. We divide the sum over all k ∈ N into two parts, namely firstly

where 1 ≤ v ≤ α − 1 and secondly where v > α − 1. For the first part we

have
α−1∑

v=1

(b− 1)v
∑

0<dv<···<d1

1

b2λ(d1+···+dv)

=

α−1∑

v=1

(b− 1)v
∞∑

d1=v

1

b2λd1

d1−1∑

d2=v−1

1

b2λd2
· · ·

dv−1−1∑

dv=1

1

b2λdv

≤
α−1∑

v=1

(
b− 1

b2λ − 1

)v
=

{
α− 1 if λ = 1/2,
(b−1)((b−1)α−1−(b2λ−1)α−1)

(b−b2λ)(b2λ−1)α−1 if λ 6= 1/2,

=: B̃b,α,λ.

For the second part we have

(b− 1)α
∑

0<dα<···<d1

bdα−1

b2λ(d1+···+dα)
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=
(b− 1)α

b

∞∑

d1=α

1

b2λd1

d1−1∑

d2=α−1

1

b2λd2
· · ·

dα−1−1∑

dα=1

bdα

b2λdα

=
(b− 1)α

b

∞∑

dα=1

bdα

b2λdα

∞∑

dα−1=dα+1

1

b2λdα−1
· · ·

∞∑

d2=d3+1

1

b2λd2

∞∑

d1=d2+1

1

b2λd1

=
(b− 1)α

b

α−1∏

i=1

1

b2λi − 1

∞∑

dα=1

bdα

b2λdα
1

b2λ(α−1)dα

=
(b− 1)α

b2λα − b
α−1∏

i=1

1

b2λi − 1
.

Hence, we have shown that

(b− 1)α

b2λα − b
α−1∏

i=1

1

b2λi − 1
≤

∞∑

k=1

b−2λµα(k)

≤
(
B̃b,α,λ +

(b− 1)α

b2λα − b
α−1∏

i=1

1

b2λi − 1

)
=: Bb,α,λ.

As (b−1)α

b2λα−b
∏α−1
i=1

1
b2λi−1

→ +∞ whenever λ → 1/(2α) from the right we also

obtain the second assertion.

There is a crucial point made in the above lemma. In the averaging argu-

ment below we use Jensen’s inequality. This inequality basically works for

all 0 < λ ≤ 1, but one needs to restrict the range of λ to ensure that the

sum
∑∞

k=1 b
−2λµα(k) is finite. In our case we only need λ > 1/(2α), which is

enough to show that the convergence can be arbitrarily close to α. This is

possible because we know the essential structure of the Walsh coefficients.

The details of the averaging argument are presented in the following.

For an irreducible polynomial p in Zb[x] we denote the mean square worst-

case error using polynomial lattice rules generated from the vector q by

ê2p(q). We now define the average of ê2λp (q) over all polynomials q ∈ Gsb,n by

Am,n,s,λ(p) =
1

bns

∑

q∈Gs
b,n

ê2λp (q),

where n = deg(p) and 1/(2α) < λ ≤ 1.

With Lemma 15.32, together with Jensen’s inequality, we obtain

Am,n,s,λ(p) ≤
∑

∅6=u⊆Is
γλ
u
D
λ|u|
α,b

1

bns

∑

q∈Gs
b,n

∑

ku∈N
|u|

trn((ku,0))∈Dq,p

b−2λµα(ku).
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In the following we estimate the term

1

bns

∑

q∈Gs
b,n

∑

ku∈N
|u|

trn((ku,0))∈Dq,p

b−2λµα(ku)

=
∑

ku∈N|u|

b−2λµα(ku) 1

bn|u|
∑

q
u
∈G

|u|
b,n

trn(ku)·qu≡a (mod p)
deg(a)<n−m

1. (15.12)

The last sum is equal to the number of solutions q
u
of the equation trn(ku) ·

q
u
≡ a (mod p) for some polynomial a with deg(a) < n −m. This number

depends of course on ku.

First consider the case where all components of trn(ku) are multiples of

p. Then every q
u
trivially satisfies the equation trn(ku) · qu ≡ 0 (mod p).

Hence in this case we have

1

bn|u|
∑

q
u
∈G

|u|
b,n

trn(ku)·qu≡a (mod p)
deg(a)<n−m

1 = 1

and the sum over all ku which satisfy this condition is therefore bounded by

∑

ku∈N|u|

trn(ki)≡0 (mod p)∀i∈u

b−2λµα(ku) =




∞∑

k=1
p|trn(k)

b−2λµα(k)




|u|

.

Write k ∈ N as k = bnl+k′ with 0 ≤ k′ < bn. For k′ = 0 we obtain trn(k) = 0

and hence p|trn(k). If k′ 6= 0, then trn(k) = trn(k
′). Therefore we obtain

∞∑

k=1
p|trn(k)

b−2λµα(k) =
∞∑

l=1

b−2λµα(lbn) +
∞∑

l=0

bn−1∑

k=1
p|k

b−2λµα(k+bnl).

For 1 ≤ k ≤ bn − 1 the corresponding polynomial can never be divided by

the polynomial p, since deg(p) = n > deg(k). Furthermore, for l 6= 0 it

follows that µα(b
nl) ≥ n+ µα(l). Hence we obtain

∞∑

k=1
p|trn(k)

b−2λµα(k) ≤ b−2λn
∞∑

l=1

b−2λµα(l).

It remains to consider the case where there is at least one component of
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ku which is not a multiple of p. In this case we have

1

bn|u|
∑

q
u
∈G

|u|
b,n

ku·qu≡a (mod p)
deg(a)<n−m

1 =
1

bm

and therefore this part of (15.12) is bounded by

b−m
( ∞∑

k=1

b−2λµα(k)

)|u|

.

Altogether we now obtain that

Am,n,s,λ(p) ≤
∑

∅6=u⊆Is
γλ
u
D
λ|u|
α,b

( ∞∑

k=1

b−2λµα(k)

)|u| (
b−m + b−2λn|u|

)
.

Using Lemma 15.33 we now obtain the following result.

Proposition 15.34 Let α, s,m, n ∈ N, 1 ≤ m ≤ n, let b be a prime, let

p ∈ Zb[x] be irreducible with deg(p) = n, and let 1/(2α) < λ ≤ 1. Then

Am,n,s,λ(p) ≤
∑

∅6=u⊆Is
γλ
u
D
λ|u|
α,b B

|u|
b,α,λ

(
b−m + b−2λn|u|

)
,

where the constant Dα,b > 0 is defined in Proposition 15.18 and Bb,α,λ is

defined in Lemma 15.33.

The following theorem now establishes the existence of good shifted poly-

nomial lattice rules.

Theorem 15.35 Let α, s,m, n ∈ N, 1 ≤ m ≤ n, let b be a prime, let

p ∈ Zb[x] be irreducible with deg(p) = n. Then there exists a digitally shifted

higher order polynomial lattice point set Pσ∗(q∗, p) with generating vector

q∗ ∈ Gsb,n such that

e(Hs,α,γ ,Pσ∗(q∗, p)) ≤ 1

bmin(τm,n)


2

∑

∅6=u⊆Is
γ
1/(2τ)
u D

|u|/(2τ)
α,b B

|u|
b,α,1/(2τ)



τ

for all 1/2 ≤ τ < α.

Proof For a given irreducible polynomial p with deg(p) = n let q∗ ∈ Gsb,n
satisfy êp(q

∗) ≤ êp(q) for all q ∈ Gsb,n. Then it follows from Proposition 15.34
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that for every 1/(2α) < λ ≤ 1 we have

ê2λp (q∗) ≤ 1

bns

∑

q∈Gs
b,n

ê2λp (q) ≤
∑

∅6=u⊆Is
γλ
u
D
λ|u|
α,b B

|u|
b,α,λ

(
b−m + b−2λn|u|

)
.

By using the estimation b−m + b−2λn|u| ≤ 2max(b−m, b−2λn) we obtain

êp(q
∗) ≤ 21/(2λ) max(b−m/(2λ), b−n)


 ∑

∅6=u⊆Is
γλ
u
D
λ|u|
b,α B

|u|
b,α,λ




1/(2λ)

.

As the root mean square worst-case error êp(q
∗) taken over all digital shifts

satisfies the above bound it is clear that there must exist a shift σ∗ such that

the worst-case error using the σ∗-shifted polynomial lattice rule generated

from q∗ satisfies this bound as well.

The result now follows by a change of variables together with the fact that

max(b−τm, b−n) = b−min(τm,n).

Remark 15.36 Again it follows from the result of Sharygin [239] that the

upper bound in the above theorem is essentially best possible.

The polynomial lattice rule considered in the above theorem is only shown

to work for a fixed α ∈ N. In the following we also show the existence of

polynomial lattice rules which work well for a range of possible α’s. Notice

that we cannot use Theorem 15.31 since we do not know the figure of merit

for the higher order polynomial lattices considered in Theorem 15.35.

Let ν be the equiprobable measure on the power set of Gsb,n, i.e., ν(q) =

b−ns. For c ≥ 1 and 1/2 ≤ τ < α we define

Cb,α(c, τ) =
{
q ∈ Gsb,n : êp(q) ≤ Eb,α,γ,s,m,n(c, τ)

}
,

where

Eb,α,γ,s,m,n(c, τ) :=
cτ

bmin(τm,n)


2

∑

∅6=u⊆Is
γ
1/(2τ)
u D

|u|/(2τ)
α,b B

|u|
b,α,1/(2τ)



τ

.

Furthermore, let

Cb,α(c) =
⋂

1/2≤τ<α
Cb,α(c, τ)

=
{
q ∈ Gsb,n : êp(q) ≤ Eb,α,γ,s,m,n(c, τ) ∀1/2 ≤ τ < α

}
.

We obtain the following result.
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Lemma 15.37 Let c ≥ 1 and 1/2 ≤ τ < α. Let p ∈ Zb[x] be irreducible

with deg(p) = n. Then we have

ν(Cb,α(c, τ)) > 1− c−1.

Proof We denote Cb,α(c, τ) := Gsb,n\Cb,α(c, τ). Then for all any 1/2 ≤ τ < α

we have

Am,n,s,1/(2τ)(p) >
ν(Cb,α(c, τ))2c
bmin(m,n/τ)

∑

∅6=u⊆Is
γ
1/(2τ)
u D

|u|/(2τ)
α,b B

|u|
b,α,1/(2τ).

The result follows from Proposition 15.34 and ideas from the proof of The-

orem 15.35.

The above lemma shows that, for any given α ∈ N, there are many good

polynomial lattice point sets. Hence it is not surprising that there also exists

a polynomial lattice rule which works well for a range of α’s, say 1 ≤ α ≤ δ.
From now on we always assume that n = δm.

Lemma 15.38 Let c ≥ 1, then we have

ν(Cb,α(c)) > 1− c−1.

Proof Let 1/2 ≤ τ∗ < α be such that

Eb,α,γ,s,m,δm(c, τ∗) = inf
1/2≤τ<α

Eb,α,γ,s,m,δm(c, τ)

(note that by Lemma 15.33 we have Eb,α,γ,s,m,δm(c, τ) → +∞ whenever

τ → α− and hence we can find τ∗ with the demanded property). Then we

have

Cb,α(c, τ∗) ⊆
⋂

1/2≤τ<α
Cb,α(c, τ) = Cb,α(c)

and hence the result follows from Lemma 15.37.

If we choose c = δ in Lemma 15.38, then we obtain ν(Cb,α(δ)) > 1 − δ−1

and consequently we have

ν

(
δ⋂

α=1

Cb,α(δ)
)

= 1− ν
(

δ⋃

α=1

Cb,α(δ)
)
≥ 1−

δ∑

α=1

ν(Cb,α(δ)) > 0.

Hence we obtain the following theorem which establishes the existence of a

q∗ ∈ Gsb,δm which achieves the optimal convergence rate for a range of α’s.
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Theorem 15.39 Let s, δ,m ∈ N and let p ∈ Zb[x] be irreducible with

deg(p) = δm. Then there exists a q∗ ∈ Gsb,δm such that

êp,α(q
∗) ≤ δτα

bταm


2

∑

∅6=u⊆Is
γ
1/(2τα)
u D

|u|/(2τα)
α,b B

|u|
b,α,1/(2τα)



τα

for all 1 ≤ α ≤ δ and all 1/2 ≤ τα < α. Here êp,α(q
∗) means the root mean

square worst-case error êp(q
∗) for integration in the space Hs,α,γ.

In the following we also show the existence of deterministic quadrature

rules which work well for all spaces up to smoothness δ.

Let λs be the Lebesgue measure on the set [0, 1)s. Let q∗ be taken from

Theorem 15.35. For σ ∈ [0, 1)s let ep(q
∗,σ) denote the worst-case error of a

polynomial lattice rule with generating vector q∗ which is digitally shifted

by σ. For c ≥ 1 we define

Eb,α(c) =
{
σ′ ∈ [0, 1)s : ep(q

∗,σ′) ≤ c · êp(q∗)
}
.

Further let

Fb,α(c) =
{
σ′ ∈ [0, 1)s : ep(q

∗,σ′) ≤ c

bmin(τm,n)
×


2

∑

∅6=u⊆Is
γ
1/(2τ)
u D

|u|/(2τ)
α,b B

|u|
b,α,1/(2τ)



τ

∀1/2 ≤ τ < α

}
.

Then we have Eb,α(c) ⊆ Fb,α(c). This follows from the proof of Theo-

rem 15.35. Using Markov’s inequality from Probability Theory we obtain

the following result.

Lemma 15.40 Let c ≥ 1 and α ∈ N. Then we have

λs(Fb,α(c)) ≥ λs(Eb,α(c)) > 1− c−2.

We can now also show that there exists a digital shift which can be used

for a range of choices of α’s. The proof of the following result is given as

Exercise 15.9.

Theorem 15.41 Let s, δ,m ∈ N and let p ∈ Zb[x] be irreducible with

deg(p) = δm. Then there exists a q∗ ∈ Gsb,δm and a σ∗ ∈ [0, 1)s such that the

worst-case error for the higher order polynomial lattice rule with generating

vector q∗ and shifted by σ∗ is bounded by

ep,α(q
∗,σ∗) ≤ b−ταm

√
δ


2

∑

∅6=u⊆Is
γ
1/(2τα)
u D

|u|/(2τα)
α,b B

|u|
b,α,1/(2τα)



τα
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for all 1 ≤ α ≤ δ and all 1/2 ≤ τα < α.

Remark 15.42 Similar results can also be shown for higher order polyno-

mial lattices with generating vectors of the form (q, q2, . . . , qs) with q ∈ Gb,m,
with the difference that we have an additional factor of s − 1 in the upper

bounds of the above results. Note that we need generating vectors of the form

(q, q2, . . . , qs) rather than (1, q, . . . , qs−1) since the one-dimensional generat-

ing (1) does not necessarily yield a polynomial lattice which achieves the

optimal rate of convergence. For more information we refer to [7].

Constructions of higher order polynomial lattice point sets using a component-

by-component algorithm can be found in [7].

Exercises

15.1 Show that for a digital (t, α, β, n ×m, s)-net over Zb we have

min
k∈D′

∞,n

µb,α(k) > βn− t.

15.2 Let f(x) = x. Calculate the Walsh coefficients of f and construct

a higher order digital net with bm points such that |
∫ 1
0 f(x) dx −∑bm−1

n=0 f(xn)| is as small as possible.

15.3 Prove Theorem 15.9.

15.4 Prove Proposition 15.11.

15.5 Show that the polynomial lattice given in Definition 15.23 is a digital

net in the sense of Definition 4.47, but with n×m generating matrices

which are given by (15.11). Hint: Compare with the proof of Theo-

rem 10.5.

15.6 Prove Lemma 15.25.

15.7 Prove Theorem 15.28.

15.8 Use Theorem 15.30 to calculate values of t and β for ‘small’ values of

α, b,m, n, s. Compare the result to digital nets obtained using Theo-

rem 15.7. Hint: Parameters for classical digital nets can be found at

http://mint.sbg.ac.at/.

15.9 Prove Theorem 15.41. Hint: Use Lemma 15.40. The proof is very similar

to the proof of Theorem 15.39.)

15.10 Use Theorem 10.11 and the elaborations following it, to construct

higher order polynomial lattice point sets for s = 1. What is the value

of t and β when α = 2?
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Explicit constructions of point sets with best
possible order of L2-discrepancy

Roth’s lower bound on L2-discrepancy (see Theorem 3.20) states that for

any dimension s ∈ N there exists a cs > 0 with the following property: for

any cardinality N ≥ 2 and any point set P consisting of N points in the

s-dimensional unit cube we have

L2,N (P) ≥ cs
(logN)(s−1)/2

N
. (16.1)

This lower bound is best possible in the order of magnitude in N as shown

first by Davenport [29] for s = 2 and then by Roth [227, 228] and Frolov [82]

for arbitrary dimensions s ∈ N. Davenport used point sets consisting of the

2N elements ({±nα}, n/N) for 1 ≤ n ≤ N , where N ∈ N and α has a con-

tinued fraction expansion with bounded partial quotients. Further examples

of two-dimensional point sets with best possible order of L2-discrepancy can

be found in [74, 75, 76, 126, 140, 221]. On the other hand, Roth’s [228]

proof for arbitrary dimension s ≥ 2 is a pure existence result obtained by

averaging arguments. Since then it was a long standing open problem to

give a constructive version, i.e., to give, for any dimension s and cardinal-

ity N ≥ 2, an explicit construction of a point set consisting of N points

in the s-dimensional unit cube whose L2-discrepancy is bounded above by

Cs(logN)(s−1)/2/N with a positive Cs only depending on the dimension s.

For s = 3 a construction based on a symmetrisation of the digital (0,m, 3)-

net over Z2 from Example 4.57 has been given in [141] which leads to an

upper bound of order of magnitude logN
√
log logN/N which is nearly best

possible, up to the
√
log logN term. A breakthrough has been achieved

by Chen & Skriganov [22] who provided a complete solution to this prob-

lem. They constructed, for any dimension s and any cardinality N ≥ 2,

an s-dimensional point set of N points whose L2-discrepancy satisfies an

upper bound as given above. For N = bm these point sets are special digi-
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tal (t,m, s)-nets over Zb. Later Skriganov [242] showed that these point sets

also have best possible order of Lq-discrepancy for each 1 < q <∞. Thereby

he simplified the proof method used in [22] dramatically (see also [23] for

an overview). In this chapter we present the construction due to Chen &

Skriganov. In doing so we mainly follow the approach used in [23], but we

incorporate the simplifications of the proof method due to Skriganov [242].

The constant Cs in Chen & Skriganov’s upper bound is rather large and

not best possible. We further show an upper bound of order of magnitude

(logN)(s−1)/2/N , from which we deduce that the constant cs in (16.1) is

essentially best possible. These constructions, first presented in [51] and [28]

(see also [23]), are based on digitally shifted digital nets. As the result is

obtained by averaging over all (but finitely many) digital shifts the con-

structions are not fully constructive.

16.1 Point sets with best possible order of L2-discrepancy

The basic idea of Chen & Skriganov was to construct Zb-linear subspaces of

Zsmb for which simultaneously the NRT weight (see Section 7.1) and the usual

Hamming weight of their dual distributions are both large enough. Such Zb-

linear subspaces give rise to digital nets over Zb whose L2-discrepancy is of

best possible order with respect to Roth’s general lower bound. Starting from

such nets, one can then give, for any integer N ≥ 2, explicit constructions of

point sets PN consisting of N points in the s-dimensional unit cube, whose

L2-discrepancy satisfies L2,N (PN ) ≤ Cs,b(logN)(s−1)/2/N for some Cs,b > 0

independent of N .

Chen & Skriganov’s approach is based on duality theory as discussed in

Chapter 7. Beside the already introduced NRT weight Vm, see Definition 7.1,

and the corresponding minimal distance δm, see Definition 7.2, here also the

usual Hamming weight on Zmb plays an important role. For the following let

b be a prime number.

Definition 16.1 For a = (a1, . . . , am) in Zmb , the Hamming weight κm(a)

is the number of indices 1 ≤ i ≤ m such that ai 6= 0. For A = (a1, . . . ,as) ∈
Zsmb we define

κm(A) =
s∑

i=1

κm(ai).

One can easily show that κm defines a metric on the vector space Zsmb
(see Exercise 16.1).
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Definition 16.2 For an arbitrary subset C of Zsmb containing at least two

points the Hamming weight of C is defined by

κm(C) = min{κm(A−B) : A,B ∈ C and A 6= B}.

If C is a Zb-linear subspace of Zsmb , then this definition can be rewritten in

the form

κm(C) = min{κm(A) : A ∈ C \ {0}}.

First we are concerned with point sets whose cardinality is a power of a

prime b. From this we then deduce a construction of point sets with arbitrary

cardinalities N ≥ 2.

We recall the definition of the mapping Φm : Zsmb → [0, 1)s from Sec-

tion 7.2. For a = (a1, . . . , am) ∈ Zmb we set Φm(a) = a1b
−1 + · · · + amb

−m

and for A = (a1, . . . ,as) ∈ Zsmb we apply Φm to each component ai of A for

1 ≤ i ≤ s.

Theorem 16.3 Let b ≥ 2s2 be a prime. Let C ⊆ Zsmb be a Zb-linear

subspace with dim(C) = m such that its dual space C⊥ satisfies

κm(C⊥) ≥ 2s+ 1 and δm(C⊥) ≥ m− t+ 1.

Then the L2-discrepancy of the point set P = Φm(C) can be bounded by

L2,bm(P) < 21−sbs+t
(m+ 1)

s−1
2

bm
.

Remark 16.4 According to Theorem 7.14 the point set P from The-

orem 16.3 is a digital (t,m, s)-net over Zb. Explicit constructions of Zb-

linear subspaces satisfying the conditions from Theorem 16.3 is given in

Section 16.4.

The proof of Theorem 16.3 is based on Walsh series analysis in conjunction

with results from duality theory for digital nets. We postpone this proof to

Section 16.3.

Let us turn now to point sets of arbitrary cardinality N ≥ 2. Using The-

orem 16.3 we show how to obtain point sets of arbitrary cardinality N ≥ 2

of best possible order of the L2-discrepancy.

Theorem 16.5 Let b ≥ 2s2 be a prime and let g = 2s. Assume that for

every w ∈ N a Zb-linear subspace Cg,w ⊆ Zsgwb with dim(Cg,w) = gw can be

constructed whose dual space C⊥g,w satisfies

κgw(C⊥g,w) ≥ g + 1 and δgw(C⊥g,w) ≥ gw + 1.
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Then for any integer N ≥ 2 we can construct a point set PN consisting of

N points in [0, 1)s such that the L2-discrepancy of PN satisfies

L2,N (PN ) < 21−sb2s
(
logN

log b
+ 2s+ 1

) s−1
2 1

N
.

Proof For an integer N ≥ 2 we choose w ∈ N such that bg(w−1) < N ≤
bgw. The Zb-linear subspace Cg,w ⊆ Zsgwb with dim(Cg,w) = gw satisfies the

assumptions in Theorem 16.3 with m = gw and t = 0, and hence the L2-

discrepancy of the point set Pg,w = Φgw(Cg,w) is bounded above by

L2,bgw(Pg,w) < 21−sbs
(gw + 1)

s−1
2

bgw
. (16.2)

By Theorem 7.14 the point set Pg,w is a digital (0, gw, s)-net over Zb. Hence

the subset

P̃N := Pg,w ∩
([

0,
N

bgw

)
× [0, 1)s−1

)

contains exactly N points. We define the point set

PN :=

{(
bgw

N
x1, x2, . . . , xs

)
: (x1, x2, . . . , xs) ∈ P̃N

}
.

Then we have

(NL2,N (PN ))2 =

∫

[0,1]s
|A ([0,y), N,PN ))−Nλs([0,y))|2 dy

=

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣∣A
([

0,
N

bgw
y1

)
×

s∏

i=2

[0, yi), N, P̃N
)

− bgw N

bgw
y1 · · · ys

∣∣∣∣
2

dy1 · · · dys

=
bgw

N

∫ N/bgw

0

∫ 1

0
· · ·
∫ 1

0

∣∣∣A([0,y), N, P̃N )− bgwλs([0,y))
∣∣∣
2
dy

=
bgw

N

∫ N/bgw

0

∫ 1

0
· · ·
∫ 1

0
|A([0,y), bgw,Pg,w)− bgwλs([0,y))|2 dy

≤ bgw

N
(bgwL2,bgw(Pg,w))2 .

With (16.2) we obtain

(NL2,N (PN ))2 <
bgw

N
41−sb2s(gw + 1)s−1
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≤ bg41−sb2s
(
logN

log b
+ g + 1

)s−1

= 41−sb4s
(
logN

log b
+ 2s+ 1

)s−1

.

Taking the square root and dividing by N we finally obtain

L2,N (PN ) < 21−sb2s
(
logN

log b
+ 2s+ 1

) s−1
2 1

N
.

Hence if we have explicit constructions of Zb-linear subspaces Cg,w sat-

isfying the assumptions in Theorem 16.5, then for every integer N ≥ 2

we can explicitly construct a point set PN consisting of N points in the

s-dimensional unit-cube whose L2-discrepancy is of best possible order in

the sense of Roth’s theorem. Such constructions of Cg,w are provided in Sec-

tion 16.4. The construction of PN is then given by the proof of Theorem 16.5.

16.2 Further results from duality theory

As already mentioned, the proof of Theorem 16.3 is based on more detailed

results from duality theory for digital nets. These results are proven in this

section.

In the following we need a reflection map, which plays an important role

in the geometrical interpretation of the map Φm : Zsmb → [0, 1)s, b a prime,

which was introduced in (7.1).

Now for a = (a1, . . . , am) ∈ Zmb the reflection map R is defined by Ra :=

(am, . . . , a1) and for A = (a1, . . . ,as) ∈ Zsmb we define the reflection map Rs
by RsA := (Ra1, . . . , Ras). For a subset C of Zsmb let RsC := {RsA : A ∈
C}.
Remark 16.6 The NRT weight of the reflected element Ra ∈ Zmb gives

information on the position of the point Φm(a) in the unit-interval. More

precisely, for any nonzero a ∈ Zmb we have

bvm(Ra)−1

bm
≤ Φm(a) <

bvm(Ra)

bm
,

where vm is given in Definition 7.1. This can be seen as follows: assume that

vm(Ra) = r ∈ N, i.e., Ra = (am, . . . , am+1−r, 0, . . . , 0) and am+1−r 6= 0.

Then a = (0, . . . , 0, am+1−r , . . . , am) and Φm(a) = am+1−rb−m−1+r + · · · +
amb

−m and hence br−m−1 ≤ Φm(a) < br−m as desired.

We define a sub-class of the class of all s-dimensional, b-adic elementary

intervals (see Definition 3.8).
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Definition 16.7 For m, b, s ∈ N0, b ≥ 2, s ≥ 1 let Em,b,s to denote the

class of all s-dimensional, b-adic elementary intervals of side length at least

b−m, i.e., Em,b,s consists of all intervals of the form

s∏

i=1

[
αi
bdi
,
αi + 1

bdi

)

with integers 0 ≤ di ≤ m and 0 ≤ αi < bdi for all 1 ≤ i ≤ s.

Lemma 16.8 Let A and B be in Zsmb .

1. We have Vm(RsA) ≤ (s−k)m if and only if Φm(A) is contained in some

elementary interval of the form
∏s
i=1

[
0, 1

bdi

)
∈ Em,b,s of order at least

km.

2. We have Vm(RsA−RsB) ≤ (s − k)m if and only if Φm(A) and Φm(B)

are both contained in the same elementary interval J ∈ Em,b,s of order at

least km.

Proof 1. Let A = (a1, . . . ,as) and let us assume first that Vm(RsA) ≤
(s − k)m. It follows from Remark 16.6 that for any 1 ≤ i ≤ s we have

Φm(ai) < b−di where di = m− vm(Rai). Hence

Φm(A) ∈
s∏

i=1

[
0,

1

bdi

)
.

Clearly we have 0 ≤ di ≤ m for every 1 ≤ i ≤ s and d1 + · · · + ds =

sm −∑s
i=1 vm(Rai) = sm − Vm(RsA) ≥ km such that the elementary

interval has order at least km.

On the other hand, assume that Vm(RsA) > (s − k)m. Again from

Remark 16.6 we obtain Φm(ai) ≥ bvm(Rai)−m−1 if ai 6= 0. If Φm(A) is

contained in
∏s
i=1

[
0, b−di

)
with 0 ≤ di ≤ m for every 1 ≤ i ≤ s and

of order at least km, then we have bvm(Rai)−m−1 ≤ Φm(ai) < b−di and

hence di ≤ m− vm(Rai) for all 1 ≤ i ≤ s. It follows then that

d1 + · · ·+ ds ≤ sm− Vm(RsA) < km,

which contradicts the assumption that the order of the interval is at least

km.

2. Let a = (a1, . . . , am) ∈ Zmb and b = (b1, . . . , bm) ∈ Zmb . Then we have

Φm(a− b) ∈
[
0, b−d

)
if and only if ai = bi =: ci for all 1 ≤ i ≤ d. Hence

Φm(a) =
c1
b
+ · · ·+ cd

bd
+
ad+1

bd+1
+ · · · + am

bm
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and

Φm(b) =
c1
b
+ · · · + cd

bd
+
bd+1

bd+1
+ · · ·+ bm

bm

or equivalently

Φm(a),Φm(b) ∈
[
z

bd
,
z + 1

bd

)
,

where z = cd + cd−1b+ · · ·+ c1b
d−1.

Now the second assertion of the lemma follows from the first one in

conjunction with these considerations.

Lemma 16.9 Let C and C⊥ be mutually dual Zb-linear subspaces of Zsmb .

Then for any function f : Zsmb → C we have

∑

A∈C
f(A) =

|C|
bsm

∑

B∈C⊥

f̂(B),

where

f̂(B) =
∑

A∈Zsm
b

ωB·A
b f(A)

is the Walsh-transform of f and ωb := e2πi/b

Proof If B ∈ C⊥, then A · B = 0 for all A ∈ C and hence
∑

A∈C ω
A·B
b =∑

A∈C 1 = |C|. If B 6∈ C⊥, then there exists a A∗ ∈ C such that A∗ ·B 6= 0 ∈
Zb and hence ωA∗·B

b 6= 1. Then we have

ωA∗·B
b

∑

A∈C
ωA·B
b =

∑

A∈C
ω
(A∗+A)·B
b =

∑

A∈C
ωA·B
b ,

where the last equality holds true since C is a Zb-linear subspace andA∗ ∈ C.
As ωA

∗·B
b 6= 1 we obtain

∑
A∈C ω

A·B
b = 0. Thus we have shown that

∑

A∈C
ωA·B
b =

{ |C| if B ∈ C⊥,
0 if B 6∈ C⊥. (16.3)

(In fact, this identity is already occurred in Lemma 4.75.) Therefore we

obtain
∑

B∈C⊥

f̂(B) =
∑

B∈C⊥

∑

A∈Zsm
b

ωB·A
b f(A) =

∑

A∈Zsm
b

f(A)
∑

B∈C⊥

ωB·A
b

= |C⊥|
∑

A∈(C⊥)⊥

f(A) =
bsm

|C|
∑

A∈C
f(A).
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For integers 0 ≤ d1, . . . , ds ≤ m and α1, . . . , αs ∈ N0 with 0 ≤ αi < bdi for

all 1 ≤ i ≤ s we define Vα1,...,αs

d1,...,ds
as the preimage of the elementary interval

∏s
i=1

[
αi

bdi
, αi+1
bdi

)
under the mapping Φm, i.e.,

Vα1,...,αs

d1,...,ds
=

{
A ∈ Zsmb : Φm(A) ∈

s∏

i=1

[
αi
bdi
,
αi + 1

bdi

)}
.

If α1 = · · · = αs = 0 we write Vd1,...,ds instead of V0,...,0d1,...,ds
.

The proof of the subsequent lemma is left as an exercise (see Exercise 16.3).

Lemma 16.10 Let 0 ≤ d1, . . . , ds ≤ m be integers and let α1, . . . , αs ∈ N0

with 0 ≤ αi < bdi for all 1 ≤ i ≤ s. Then Vd1,...,ds is a linear subspace of

Zsmb . Furthermore, we can write

Vα1,...,αs

d1,...,ds
= Vd1,...,ds +Bα1,...,αs

d1,...,ds

with a vector Bα1,...,αs

d1,...,ds
∈ Zsmb which is uniquely defined up to translations in

Vd1,...,ds and hence Vα1,...,αs

d1,...,ds
is an affine subspace of Zsmb .

Lemma 16.11 Let 0 ≤ d1, . . . , ds ≤ m be integers and let d∗i = m− di for
all 1 ≤ i ≤ s. Then we have V⊥d1,...,ds = RsVd∗1,...,d∗s .
For the characteristic functions χVd1,...,ds

and χRsVd∗
1
,...,d∗s

of the sets Vd1,...,ds
and RsVd∗1,...,d∗s respectively we have the relation

χ̂Vd1,...,ds
(B) = bsm−d1−···−dsχRsVd∗1,...,d

∗
s
(B) for all B ∈ Zsmb .

Proof For each point A = (a1, . . . ,as) ∈ Vd1,...,ds we have

ai = ( 0, . . . , 0︸ ︷︷ ︸
di components

, ai,di+1, . . . , ai,m)

for all 1 ≤ i ≤ s. Hence Vd∗1,...,d∗s consists of points B = (b1, . . . ,bs) of the

form

bi = ( 0, . . . , 0︸ ︷︷ ︸
m−di components

, bi,m−di+1, . . . , bi,m)

for all 1 ≤ i ≤ s. Since m− di = d∗i the first result follows.

We have further

χ̂Vd1,...,ds
(B) =

∑

A∈Zsm
b

ωB·A
b χVd1,...,ds

(A)

=
∑

A∈Vd1,...,ds

ωB·A
b = |Vd1,...,ds |χRsVd∗

1
,...,d∗s

(B),
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where we have used (16.3). The result follows from the fact that |Vd1,...,ds | =
bsm−d1−···−ds .

Lemma 16.12 Let C and C⊥ be mutually dual Zb-linear subspaces of Z
sm
b .

Then for every set Vα1,...,αs

d1,...,ds
we have

|C ∩ Vα1,...,αs

d1,...,ds
| = |C|

bd1+···+ds

∑

B∈C⊥

ω
B·Bα1,...,αs

d1,...,ds

b χRsVd∗
1
,...,d∗s

(B).

Proof Using Lemma 16.9 we have

|C ∩ Vα1,...,αs

d1,...,ds
| =

∑

A∈C
χVα1,...,αs

d1,...,ds
(A) =

|C|
bsm

∑

B∈C⊥

χ̂Vα1,...,αs
d1,...,ds

(B). (16.4)

From Lemma 16.10 it follows that χVα1,...,αs
d1,...,ds

(A) = χVd1,...,ds
(A − Bα1,...,αs

d1,...,ds
)

and hence we have

χ̂Vα1,...,αs
d1,...,ds

(B) =
∑

A∈Zsm
b

ωB·A
b χVd1,...,ds

(A−Bα1,...,αs

d1,...,ds
)

=
∑

A∈Zsm
b

ω
B·(A+B

α1,...,αs
d1,...,ds

)

b χVd1,...,ds
(A)

= ω
B·Bα1,...,αs

d1,...,ds

b

∑

A∈Zsm
b

ωB·A
b χVd1,...,ds

(A)

= ω
B·Bα1,...,αs

d1,...,ds

b χ̂Vd1,...,ds
(B)

= ω
B·Bα1,...,αs

d1,...,ds

b bsm−d1−···−dsχRsVd∗1,...,d
∗
s
(B),

where we used Lemma 16.11. The desired result follows by inserting this

equality into (16.4).

If α1 = · · · = αs = 0 we can take B0,...,0
d1,...,ds

= 0 ∈ Zsmb and hence we obtain

the subsequent corollary.

Corollary 16.13 Let C and C⊥ be mutually dual Zb-linear subspaces of

Zsmb . Then for every integers 0 ≤ d1, . . . , ds ≤ m we have

|C ∩ Vd1,...,ds | =
|C|

bd1+···+ds |C
⊥ ∩RsVd∗1,...,d∗s |.

Lemma 16.14 We have

{A ∈ Zsmb : Vm(A) ≤ t} =
m⋃

d1,...,ds=0
d1+···+ds≤t

RsVd∗1,...,d∗s ,
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where d∗i = m− di for all 1 ≤ i ≤ s.

Proof We show the equivalent assertion

{A ∈ Zsmb : Vm(RsA) ≤ t} =
m⋃

d1,...,ds=0
d1+···+ds≤t

Vd∗1,...,d∗s ,

where d∗i = m − di for all 1 ≤ i ≤ s. Let A = (a1, . . . ,as) ∈ Zsmb with

Vm(RsA) ≤ t. Then we find from Remark 16.6 that

Φm(A) ∈
s∏

i=1

[
0,

1

bd
∗
i

)

where d∗i = m − vm(Rai) ≤ m for any 1 ≤ i ≤ s. Hence d∗1 + · · · + d∗s =

sm− Vm(RsA) ≥ sm− t and further t ≥ d1 + · · · + ds, where di = m− d∗i
for 1 ≤ i ≤ s. From this it follows that A ∈ Vd∗1,...,d∗s for some d1, . . . , ds ∈
{0, . . . ,m} with d1 + · · ·+ ds ≤ t.
On the other hand, let A ∈ Vd∗1,...,d∗s with d1, . . . , ds ∈ {0, . . . ,m} and

d1 + · · ·+ ds ≤ t. Assume that Vm(RsA) > t. Using Remark 16.6 we obtain

d∗i ≤ m− vm(Rai) for all 1 ≤ i ≤ s. Hence d∗1 + · · ·+ d∗s ≤ sm−Vm(RsA) <

sm− t and further t < d1+ · · ·+ds ≤ t, a contradiction. Thus we must have

Vm(RsA) ≤ t.

The following lemma is a generalisation of Theorem 7.8 which can be

obtained by choosing d = m.

Lemma 16.15 Let C and C⊥ be mutually dual Zb-linear subspaces of Zsmb
of dimensions d and sm − d respectively and let 0 ≤ t ≤ d be an integer.

Then each elementary interval in the class Em,b,s of order d − t contains

exactly bt points of Φm(C) if and only if we have δm(C⊥) ≥ d− t+ 1.

Proof Suppose that each elementary interval in the class Em,b,s of order d−t
contains exactly bt points of Φm(C). This means that for each d1, . . . , ds ∈
{0, . . . ,m} with d1 + · · · + ds ≤ d − t and any α1, . . . , αs with 0 ≤ αi < bdi

for all 1 ≤ i ≤ s we have |C ∩Vα1,...,αs

d1,...,ds
| ≤ bt. Using Corollary 16.13 we obtain

bt ≥ |C ∩ Vd1,...,ds | =
bd

bd1+···+ds |C
⊥ ∩RsVd∗1,...,d∗s | ≥ b

t|C⊥ ∩RsVd∗1,...,d∗s |

with d∗1 + · · · + d∗s ≥ sm− d + t. Therefore we have C⊥ ∩ RsVd∗1,...,d∗s = {0}
whenever d1 + · · ·+ ds ≤ d− t. From Lemma 16.14 it follows then that the

set

{A ∈ Zsmb : Vm(A) ≤ d− t}
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contains no point from C⊥ except the point 0. But this means that δm(C⊥) ≥
d− t+ 1.

Now suppose that we have δm(C⊥) ≥ d−t+1. Again from Lemma 16.14 we

find that C⊥∩RsVd∗1,...,d∗s contains only the point 0 whenever d∗1+ · · ·+d∗s =
sm− d + t. For any 0 ≤ d1, . . . , ds ≤ m with d1 + · · · + ds = d− t and any

0 ≤ αi < bdi for 1 ≤ i ≤ s we therefore obtain from Lemma 16.12,

|C ∩ Vα1,...,αs

d1,...,ds
| = bd

bd−t
∑

B∈C⊥

ω
B·Bα1,...,αs

d1,...,ds

b χRsVd∗
1
,...,d∗s

(B)

=
bd

bd−t
χRsVd∗

1
,...,d∗s

(0) = bt.

In other words, each elementary interval in the class Em,b,s of order d − t
contains exactly bt points of Φm(C).

For later use we introduce a further notation, given in [22] as generalisation

of [241, Definition 1.2], and we derive a consequence of Lemma 16.15.

Definition 16.16 Let s ∈ N and m,k ∈ N0 with 0 ≤ k ≤ s. A set P
consisting of bkm points in [0, 1)s is called an optimum [s, k,m]-distribution

in base b if every elementary interval in Em,b,s of order km contains exactly

one point of P.

Every optimum [s, k,m]-distribution in base b is also a ((k − 1)m,km, s)-

net in base b (see Exercise 16.2). In particular, for k = 1 we obtain that

every optimum [s, 1,m]-distribution in base b is a (0,m, s)-net in base b.

Lemma 16.17 Let C be a subset of Zsmb consisting of bkm elements, where

1 ≤ k ≤ s. Then Φm(RsC) is an optimum [s, k,m]-distribution in base b if

and only if δm(C) = (s− k)m+ 1.

Proof Suppose first that Φm(RsC) is an optimum [s, k,m]-distribution in

base b. Then every elementary interval in Em,b,s of order km contains exactly

one point of Φm(RsC). It follows from the second part of Lemma 16.8 that

δm(C) ≥ (s − k)m + 1. Since by Proposition 7.3 we must have δm(C) ≤
(s− k)m+ 1 it follows that δm(C) = (s− k)m+ 1.

On the other hand, assume that δm(C) = (s − k)m+ 1. From the second

part of Lemma 16.8 it follows that any elementary interval in Em,b,s of order
km contains at most one element of Φm(RsC). For fixed 0 ≤ d1, . . . , ds ≤ m
with d1 + · · · + ds = km there are exactly bkm elementary intervals of the

form
∏s
i=1

[
αi

bdi
, αi+1
bdi

)
in Em,b,s and these intervals form a partition of [0, 1)s.

But C and hence also Φm(RsC) contains exactly bkm elements and therefore
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each of these elementary intervals contains exactly one point of Φm(RsC).
Thus, Φm(RsC) is an optimum [s, k,m]-distribution in base b.

Now we can prove the following corollary to Lemma 16.15. This result is

used later in Section 16.4.

Corollary 16.18 Let C and C⊥ be mutually dual Zb-linear subspaces of

Zsmb . Then Φm(C) is an optimum [s, k,m]-distribution in base b if and only

if Φm(RsC⊥) is an optimum [s, s− k,m]-distribution in base b.

Proof From Lemma 16.15 with d = km and t = 0 it follows that Φm(C) is
a optimum [s, k,m]-distribution in base b if and only if δm(C⊥) ≥ km + 1.

Invoking Proposition 7.3 we find that this is equivalent to δm(C⊥) = km+1.

By Lemma 16.17 this is equivalent to the fact that Φm(RsC⊥) is an optimum

[s, s− k,m] distribution in base b.

Now we have collected all results from duality theory which are necessary

for the proof of Theorem 16.3 and for the explicit construction of suitable

Zb-linear subspaces of Z
sm
b in Section 16.4.

16.3 The proof of Theorem 16.3

We start with the consideration of the Walsh series expansion of the char-

acteristic function of intervals and we approximate these Walsh series with

truncated versions thereof. This leads to an approximation for the discrep-

ancy function ∆P . The error of this approximation is small whenever the

NRT weight of the dual of the Zb-linear subspace C is large enough, or in view

of Theorem 7.14, when the Zb-linear subspace C gives rise to a (t,m, s)-net

over Zb with small t.

In detail, we consider the Walsh series expansion of the characteristic

function χ[0,y) of the interval [0, y) of the form

χ[0,y)(x) =

∞∑

k=0

χ̂[0,y)(k) bwalk(x),

where for k ∈ N0 the kth Walsh coefficient is given by

χ̂[0,y)(k) =

∫ 1

0
χ[0,y)(x) bwalk(x) dx =

∫ y

0
bwalk(x) dx.

For given m ∈ N0 we approximate χ[0,y) by the truncated series

χ
(m)
[0,y)(x) =

bm−1∑

k=0

χ̂[0,y)(k) bwalk(x).
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Note that χ
(m)
[0,y) is a Walsh polynomial and hence a piecewise constant func-

tion. The subsequent lemma gives the error of the approximation of χ[0,y).

Lemma 16.19 For any m ∈ N we have

χ[0,y)(x) = χ
(m)
[0,y)(x) + r(m)

y (x),

where

0 ≤ χ(m)
[0,y)(x) ≤ 1 and 0 ≤ |r(m)

y (x)| ≤ χBm(y)(x).

Here for y ∈ [0, 1) we denote by Bm(y) =
[
a
bm ,

a+1
bm

)
the unique elementary

interval of order m containing y.

Proof Note first that we can write

χ
(m)
[0,y)(x) = bm

∫

Bm(x)
χ[0,y)(t) dt. (16.5)

The proof of this fact is left to the reader as an exercise (see Exercise 16.4).

From (16.5) we obtain immediately that 0 ≤ χ(m)
[0,y)(x) ≤ 1.

Write r
(m)
y (x) = χ[0,y)(x)− χ(m)

[0,y)(x) and let Bm(y) =
[
a
bm ,

a+1
bm

)
. Then we

consider three cases:

1. If x < ab−m, then we have χ[0,y)(x) = 1 and χ
(m)
[0,y)(x) = 1 and hence

r
(m)
y (x) = 0 = χBm(y)(x).

2. If x ≥ (a+1)b−m, then we have χ[0,y)(x) = 0 and χ
(m)
[0,y)(x) = 0 and hence

r
(m)
y (x) = 0 = χBm(y)(x).

3. If ab−m ≤ x < (a+ 1)b−m. Then we have Bm(y) = Bm(x) and

χ
(m)
[0,y)(x) = bm

∫

Bm(x)
χ[0,y)(t) dt = bmy − a.

If x < y, then we have r
(m)
y (x) = 1− bmy + a and hence

0 = 1− bm a+ 1

bm
+ a < r(m)

y (x) ≤ 1− bm a

bm
+ a = 1 = χBm(y)(x).

If x ≥ y, then we have r
(m)
y (x) = a− bmy and we get

0 = a− bm a

bm
≥ r(m)

y (x) > a− bma+ 1

bm
= −1 = −χBm(y)(x).

In any case we have 0 ≤ |r(m)
y (x)| ≤ χBm(y)(x) and we are done.
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Next we transfer these results to the higher dimensional case. For y =

(y1, . . . , ys) we approximate the characteristic function χ[0,y) =
∏s
i=1 χ[0,yi)

of the s-dimensional interval [0,y) by the product

χ
(m)
[0,y)(x) =

s∏

i=1

χ
(m)
[0,yi)

(xi) where x = (x1, . . . , xs).

Lemma 16.20 For any y = (y1, . . . , ys) and x = (x1, . . . , xs) in [0, 1)s

and any m ∈ N we have

χ[0,y)(x) = χ
(m)
[0,y)(x) +

s∑

i=1

r
(i,m)
y (x),

with

0 ≤ |r(i,m)
y (x)| ≤ χBm(yi)(xi).

Proof The lemma is shown by induction on the dimension s. The instance

s = 1 is clear by Lemma 16.19. Now assume that the result holds true for a

particular value of s. For x = (x1, . . . , xs) and y = (y1, . . . , ys) in [0, 1)s we

write (x, xs+1) = (x1, . . . , xs, xs+1) and (y, ys+1) = (y1, . . . , ys, ys+1). Then

(x, xs+1) and (y, ys+1) are contained in [0, 1)s+1 and we have

χ[0,(y,ys+1))((x, xs+1)) = χ[0,y)(x)χ[0,ys+1)(xs+1)

=

(
χ
(m)
[0,y)(x) +

s∑

i=1

r
(i,m)
y (x)

)
χ[0,ys+1)(xs+1)

= χ
(m)
[0,y)(x)χ[0,ys+1)(xs+1) +

s∑

i=1

r
(i,m)
y (x)χ[0,ys+1)(xs+1)

= χ
(m)
[0,y)(x)χ

(m)
[0,ys+1)

(xs+1) + χ
(m)
[0,y)(x)r

(m)
ys+1

(xs+1)

+
s∑

i=1

r
(i,m)
y (x)χ[0,ys+1)(xs+1)

= χ
(m)
[0,(y,ys+1))

((x, xs+1)) +
s+1∑

i=1

r
(i,m)
(y,ys+1)

((x, xs+1)),

where

r
(s+1,m)
(y,ys+1)

((x, xs+1)) = χ
(m)
[0,y)(x)r

(m)
ys+1

(xs+1),

and for 1 ≤ i ≤ s,

r
(i,m)
(y,ys+1)

((x, xs+1)) = r
(i,m)
y (x)χ[0,ys+1)(xs+1).
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From the induction hypothesis we conclude that 0 ≤ |r(i,m)
(y,ys+1)

((x, xs+1))| ≤
χBm(yi)(xi) for any 1 ≤ i ≤ s and from Lemma 16.19 we obtain 0 ≤
|r(s+1,m)
(y,ys+1)

((x, xs+1))| ≤ χBm(ys+1)(xs+1).

Now we use the approximation for characteristic function as introduced

above to define an approximation for the discrepancy function of a point

set. For a point set P = {x0, . . . ,xN−1} in [0, 1)s define

ΘP(y) :=
1

N

N−1∑

n=0

χ
(m)
[0,y)(xn)− λs([0,y)).

The function ΘP is used as an approximation of the discrepancy function

∆P of the point set P. In the following lemma we give a bound on the

approximation error when the point set P comes from a Zb-linear subspace

such that the NRT weight of its dual space is large enough.

Lemma 16.21 Let C ⊆ Zsmb be a Zb-linear subspace of dimension m with

dual space C⊥ satisfying δm(C⊥) ≥ m− t+ 1. Let P = Φm(C) be the corre-

sponding digital (t,m, s)-net over Zb. Then for every y ∈ [0, 1]s we have

|∆P(y)−ΘP(y)| ≤ sbt−m.
Proof For y ∈ [0, 1]s we obtain from Lemma 16.20 that

∆P(y) = ΘP(y) +
1

bm

s∑

i=1

∑

x∈P
r
(i,m)
y (x)

with

0 ≤
∑

x∈P
|r(i,m)
y (x)| ≤

∑

x∈P
χBm(yi)(xi) = A(J

(i,m)
y , bm,P),

where J
(i,m)
y = [0, 1)i−1 ×Bm(yi)× [0, 1)s−i. Clearly, J (i,m)

y is an elementary

interval of order m which in turn is contained in an elementary interval J of

order m− t. By Theorem 7.14, the point set P is a digital (t,m, s)-net over

Zb and hence J contains exactly bt points from P. Therefore we have

A(J
(i,m)
y , bm,P) ≤ A(J, bm,P) = bt

and the result follows.

In the following we investigate the approximation ΘP for the discrepancy

function ∆P in more detail. If the dual space C⊥ of the Zb-linear subspace

C = Φ−1
m (P) satisfies certain conditions, then we can show a representa-

tion of the mean square of ΘP in terms of the mean square of the Walsh

coefficients of characteristic functions of intervals anchored in zero. This is
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the assertion of the subsequent Lemma 16.22. The key point then is that

these conditions on the dual distribution C⊥ are satisfied whenever the Ham-

ming weight κm of C⊥ is large enough. Good bounds on the mean square

of the characteristic functions of intervals anchored in zero then lead to the

assertion of Theorem 16.3.

Define the one-to-one mapping τm : {0, . . . , bm−1} → Zmb , k = κ0+κ1b+

· · · + κm−1b
m−1 7→ (κ0, . . . , κm−1) =: k⊤. For vectors k = (k1, . . . , ks) ∈

{0, . . . , bm − 1}s the mapping τm is defined component wise.

Let C be a Zb-linear subspace of Zsmb of dimension m, let C⊥ denote its

dual space and let P = Φm(C) denote the corresponding digital (t,m, s)-net

over Zb with generating matrices C1, . . . , Cs. Using the above notation we

have

C⊥ = {A ∈ Zsmb : CA⊤ = 0}
= τm({k ∈ {0, . . . , bm − 1}s : C⊤

1 k1 + · · ·+ C⊤
s ks = 0})

= τm(D(C1, . . . , Cs)), (16.6)

where D(C1, . . . , Cs) is the dual net as defined in Definition 4.76. Hence

τ−1
m (C⊥) = D(C1, . . . , Cs). Recall the definition D′ = D \ {0}.

Lemma 16.22 Let C be a Zb-linear subspace of Zsmb of dimension m, let

C⊥ denote its dual space and let P = Φm(C) denote the corresponding digital

(t,m, s)-net over Zb with generating matrices C1, . . . , Cs. Assume that for

any distinct k,k′ ∈ D′(C1, . . . , Cs) the functions χ̂[0,y)(k) and χ̂[0,y)(k
′) are

mutually orthogonal. Then we have
∫

[0,1]s
|ΘP(y)|2 dy =

∑

k∈D′(C1,...,Cs)

∫

[0,1]s

∣∣χ̂[0,y)(k)
∣∣2 dy.

Proof For k = (k1, . . . , ks) ∈ Ns0 and y = (y1, . . . , ys) ∈ [0, 1]s we have

χ̂[0,y)(k) = χ̂[0,y1)(k1) · · · χ̂[0,ys)(ks).

Then we have

ΘP(y) =
1

bm

∑

x∈P

bm−1∑

k1,...,ks=0

χ̂[0,y)(k) bwalk(x)− χ̂[0,y)(0)

=

bm−1∑

k1,...,ks=0
(k1,...,ks) 6=0

χ̂[0,y)(k)
1

bm

∑

x∈P
bwalk(x)

=
∑

k∈D′(C1,...,Cs)

χ̂[0,y)(k),
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where for the last identity we used Lemma 4.75. Then we have
∫

[0,1]s
|ΘP(y)|2 dy =

∫

[0,1]s

∑

k,k′∈D′(C1,...,Cs)

χ̂[0,y)(k)χ̂[0,y)(k
′) dy

=
∑

k,k′∈D′(C1,...,Cs)

∫

[0,1]s
χ̂[0,y)(k)χ̂[0,y)(k

′) dy.

Now the result follows from the orthogonality of χ̂[0,y)(k) and χ̂[0,y)(k
′), i.e.,

∫

[0,1]s
χ̂[0,y)(k)χ̂[0,y)(k

′) dy = 0

whenever k 6= k′.

Now we are going to provide bounds on the mean square of the Walsh

coefficients of the characteristic function of intervals anchored in zero. First

we prove exact formulas for the one-dimensional case which then lead to

good estimates for the case of arbitrary dimensions.

Lemma 16.23 We have
∫ 1

0

∣∣χ̂[0,y)(0)
∣∣2 dy =

1

3

and for any nonzero integer k = κ0 + κ1b+ · · ·+ κa−1b
a−1 with κi ∈ Zb for

all 0 ≤ i < a and κa−1 6= 0 we have
∫ 1

0

∣∣χ̂[0,y)(k)
∣∣2 dy =

1

b2a

(
1

2 sin2 (πκa−1/b)
− 1

6

)
.

Proof By Lemma A.22 we have

χ̂[0,y)(0) = y =
1

2
+

∞∑

c=1

b−1∑

κ=1

1

bc
(
ω−κ
b − 1

) bwalκbc−1(y). (16.7)

Hence

∣∣χ̂[0,y)(0)
∣∣2 = 1

4
+

1

2

∞∑

c=1

b−1∑

κ=1

1

bc
(
ω−κ
b − 1

) bwalκbc−1(y)

+
1

2

∞∑

c=1

b−1∑

κ=1

1

bc
(
ωκb − 1

) bwalκbc−1(y)

+
∞∑

c=1

b−1∑

κ=1

∞∑

c′=1

b−1∑

κ′=1

1

bc
(
ω−κ
b − 1

) bwalκbc−1(y)
1

bc′
(
ωκb − 1

) bwalκbc′−1(y).
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Integration with respect to y and invoking Proposition A.9, Proposition A.10

and Corollary A.23 we obtain

∫ 1

0

∣∣χ̂[0,y)(0)
∣∣2 dy =

1

4
+

∞∑

c=1

b−1∑

κ=1

1

b2c
∣∣ωκb − 1

∣∣2

=
1

4
+

1

4(b2 − 1)

b−1∑

κ=1

1

sin2 (πκ/b)

=
1

4
+

1

4(b2 − 1)

b2 − 1

3
=

1

3
.

Now let k = κ0 + κ1b+ · · · + κa−1b
a−1 with κi ∈ Zb for all 0 ≤ i < a and

κa−1 6= 0. Define k′ = k − κa−1b
a−1. From Lemma 14.8 we know that

χ̂[0,y)(k) =
1

ba

(
b−1∑

z=0

cz bwalzba−1+k′(y) +
1

2
bwalk(y)

+
∞∑

c=1

b−1∑

κ=1

1

bc(ωκb − 1)
bwalκba+c−1+k(y)

)
, (16.8)

where c0 = (1− ω−κa−1

b )−1, cκa−1 = (ω
−κa−1

b − 1)−1 and cz = 0 for z 6= 0 or

z 6= κa−1. Using Proposition A.9 and Proposition A.10 again we obtain

∫ 1

0

∣∣χ̂[0,y)(k)
∣∣2 dy =

∫ 1

0
χ̂[0,y)(k)χ̂[0,y)(k) dy

=
1

b2a

(
b−1∑

z=0

|cz|2 +
cκa−1 + cκa−1

2
+

1

4
+

∞∑

c=1

b−1∑

κ=1

1

b2c|ωκb − 1|2

)
.

We have

b−1∑

z=0

|cz|2 =
1

2 sin2 (πκa−1/b)
and

cκa−1 + cκa−1

2
= −1

2
.

Hence, again with Corollary A.23,

∫ 1

0

∣∣χ̂[0,y)(k)
∣∣2 dy

=
1

b2a

(
1

2 sin2 (πκa−1/b)
− 1

4
+

1

4(b2 − 1)

b−1∑

κ=1

1

sin2 (πκ/b)

)

=
1

b2a

(
1

2 sin2 (πκa−1/b)
− 1

6

)
.



550 Constructions of point sets with best possible L2-discrepancy

For convenience we introduce the Hamming weight and the NRT weight

also for nonnegative integers.

Definition 16.24 For k ∈ N with b-adic expansion k = κ0 + κ1b + · · · +
κa−1b

a−1 where κa−1 6= 0 we define the NRT weight by ρ(k) = a. Further-

more we define ρ(0) = 0. The Hamming weight κ(k) of k is the number

of nonzero digits κi. For k = (k1, . . . , ks) ∈ Ns0 let ρ(k) =
∑s

i=1 ρ(ki) and

κ(k) =
∑s

i=1 κ(ki).

We clearly have ρ(k) = 0 if and only if k = 0 and also the triangle

inequality holds true. Hence ρ defines a norm on N0. The same is true for

the Hamming weight.

Note that the norms ρ and κ on N0 defined above are intimately related to

the NRT weight and the Hamming weight defined in Definition 7.1 and Def-

inition 16.1 respectively. In fact, if k ∈ {0, . . . , bm−1} with b-adic expansion
k = κ0 + κ1b+ · · ·+ κa−1b

a−1 where κa−1 6= 0, then we have

ρ(k) = vm(τm(k)) and κ(k) = κm(τm(k)).

Lemma 16.25 For every k ∈ Ns0 we have
∫

[0,1]s

∣∣χ̂[0,y)(k)
∣∣2 dy ≤ b2s−2ρ(k)

8s
.

Proof It suffices to show that the result holds in dimension s = 1, i.e., for

every k ∈ N0 we have
∫ 1

0

∣∣χ̂[0,y)(k)
∣∣2 dy ≤ b2−2ρ(k)

8
.

Assume that k 6= 0. For every κ ∈ {1, . . . , b−1} we have sin−2(πκ/b) ≤ b2/4
and from Lemma 16.23 we obtain

∫ 1

0

∣∣χ̂[0,y)(k)
∣∣2 dy ≤ 1

b2ρ(k)

(
b2

8
− 1

6

)
≤ b2−2ρ(k)

8
.

For k = 0 (note that ρ(0) = 0) we have from Lemma 16.23
∫ 1

0

∣∣χ̂[0,y)(0)
∣∣2 dy =

1

3
≤ b2

8
.

Lemma 16.26 Let C be a Zb-linear subspace of Zsmb of dimension m.

Suppose that its dual space C⊥ satisfies δm(C⊥) ≥ m+1−t. Let C1, . . . , Cs be

the generating matrices of the corresponding digital (t,m, s)-net P = Φm(C)
over Zb. Then we have

∑

k∈D′(C1,...,Cs)

b2m−2ρ(k) ≤ b2t(m+ 1)s−1.
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Proof Using (16.6) we have
∑

k∈D′(C1,...,Cs)

b2m−2ρ(k) =
∑

A∈C⊥\{0}
b2m−2Vm(A)

=

m∑

d1,...,ds=0
d1+···+ds≥m+1−t

b2(m−d1−···−ds)µd1,...,ds ,

where

µd1,...,ds =
∣∣∣
{
A = (a1, . . . ,as) ∈ C⊥ : vm(ai) = di for 1 ≤ i ≤ s

}∣∣∣

≤
∣∣∣
{
A = (a1, . . . ,as) ∈ C⊥ : vm(ai) ≤ di for 1 ≤ i ≤ s

}∣∣∣ .

Assume that A = (a1, . . . ,as) ∈ Zsmb and vm(ai) ≤ di for every 1 ≤ i ≤ s.

Then by Remark 16.6 we have

Φm(Rai) <
bvm(ai)

bm
≤ bdi

bm
=

1

bd
∗
i
,

where we set d∗i = m−di for 1 ≤ i ≤ s. Hence Φm(RsA) ∈∏s
i=1

[
0, b−d

∗
i

)
or

equivalently RsA ∈ Vd∗1,...,d∗s . This however is equivalent to A ∈ RsVd∗1,...,d∗s
and hence it follows that

µd1,...,ds ≤
∣∣∣C⊥ ∩RsVd∗1,...,d∗s

∣∣∣ = bd1+···+ds−m |C ∩ Vd1,...,ds | ,

where for the last equality we used Corollary 16.13.

Now note that the elementary interval J :=
∏s
i=1

[
0, b−di

)
has volume

b−d1−···−ds ≤ bt−m−1 < bt−m. Hence it is contained in an elementary interval

of volume bt−m. But since by Theorem 7.14 the point set Φm(C) is a digital

(t,m, s)-net over Zb it follows that J contains at most bt points from Φm(C).
Hence |C ∩ Vd1,...,ds | ≤ bt and further

µd1,...,ds ≤ bd1+···+ds−m+t.

Now we obtain

∑

k∈D′(C1,...,Cs)

b2m−2ρ(k) ≤ bt
m∑

d1,...,ds=0
d1+···+ds≥m+1−t

bm−d1−···−ds

= bt
sm∑

r=m+1−t
bm−rνr,s,

where

νr,s := |{(d1, . . . , ds) ∈ Ns0 : d1 + · · ·+ ds = r and di ≤ m for 1 ≤ i ≤ s}| .
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We show that νr,s ≤ (m + 1)s−1 for all r, s ∈ N. Clearly this holds true for

s = 1 since νr,1 = 1. By induction we have

νr,s =

m∑

i=0

νr−i,s−1 ≤
m∑

i=0

(m+ 1)s−2 = (m+ 1)s−1.

Now we obtain

∑

k∈D′(C1,...,Cs)

b2m−2ρ(k) ≤ bt(m+ 1)s−1
sm∑

r=m+1−t

bm

br

< b2t−1(m+ 1)s−1
∞∑

r=0

1

br

< b2t(m+ 1)s−1.

It remains to show that the condition on C⊥ from Lemma 16.22 is satisfied

whenever the Hamming weight of C⊥ is large enough.

Lemma 16.27 Suppose that C is an m-dimensional Zb-linear subspace

of Zsmb and let C⊥ denote its dual space satisfying κm(C⊥) ≥ 2s + 1. Let

C1, . . . , Cs be the generating matrices of the corresponding digital net over

Zb. Then for any distinct k,k′ ∈ D′(C1, . . . , Cs) the functions χ̂[0,y)(k) and

χ̂[0,y)(k
′) are mutually orthogonal.

Proof We have
∫

[0,1]s
χ̂[0,y)(k)χ̂[0,y)(k

′) dy =

s∏

i=1

∫ 1

0
χ̂[0,yi)(ki)χ̂[0,yi)(k

′
i) dyi, (16.9)

where ki, k
′
i and yi denotes the ith component of k, k′ and y respectively.

Since k,k′ ∈ D′(C1, . . . , Cs) = τ−1
m (C⊥) \ {0} and since κm(C⊥) ≥ 2s+1 we

obtain κm
(
τm(k)− τm(k′)

)
≥ 2s+1 and hence by the pigeonhole principle

it follows that there exists an index 1 ≤ i ≤ s such that

κm(τm(ki)− τm(k′i)) ≥ 3.

In the following we omit the index i for simplicity. We rewrite (16.7) and

(16.8). For every k ∈ N0 we have

χ̂[0,y)(k) =
1

bρ(k)
bwalk(y)vk(y),

where

v0(y) :=
1

2
bwal0(y) +

∞∑

c=1

1

bc

b−1∑

κ=1

ωκb
1− ωκb

bwalκbc−1(y), (16.10)
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and where for k ∈ N, with k = κ0+κ1b+ · · ·+κa−1b
a−1 and hence ρ(k) = a,

we have

vk(y) :=
1

1− ωκa−1

b
bwal⊖κa−1ba−1(y) +

(
1

2
− 1

1− ωκa−1

b

)
bwal0(y)

+
∞∑

c=1

1

bc

b−1∑

κ=1

ωκb
1− ωκb

bwalκba+c−1(y). (16.11)

From (16.10) and (16.11) we find that for every k ∈ N0 there exists a set

K(k) of nonnegative integers, depending only on k, such that

vk(y) =
∑

l∈K(k)

ul bwall(y),

where for every l ∈ K its b-adic expansion has at most one nonzero digit.

Suppose now that the nonnegative integers k and k′ are distinct. Let

k = κ0 + κ1b + · · · + κa−1b
a−1 and k′ = κ′0 + κ′1b + · · · + κ′a′−1b

a′−1. Then

there exist two sets of nonnegative integers K = K(k) and K′ = K(k′) such
that

vk(y)vk′(y) =
∑

l∈K

∑

l′∈K′

ulul′ bwall⊖l′(y).

For every l ∈ K and every l′ ∈ K′ the b-adic expansion of l ⊖ l′ has at most

two nonzero digits.

Now we obtain

χ̂[0,y)(k)χ̂[0,y)(k
′) =

1

ba+a′
bwalk⊖k′(y)

∑

l∈K

∑

l′∈K′

ulul′ bwall⊖l′(y)

=
1

ba+a′
∑

l∈K

∑

l′∈K′

ulul′ bwall⊖l′⊕k⊖k′(y).

The condition κm(τm(k) − τm(k′)) ≥ 3 ensures that the b-adic expansion

of k⊖ k′ has at least three nonzero digits. Therefore the b-adic expansion of

l ⊖ l′ ⊕ k ⊖ k′ has at least one nonzero digit and hence l ⊖ l′ ⊕ k ⊖ k′ 6= 0.

Thus it follows from Proposition A.9 that

∫ 1

0
χ̂[0,y)(k)χ̂[0,y)(k

′) dy

=
1

ba+a′
∑

l∈K

∑

l′∈K′

ulul′

∫ 1

0
bwall⊖l′⊕k⊖k′(y) dy = 0

and hence the result follows from (16.9).
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Proof of Theorem 16.3 Let b ≥ 2s2 be a prime. Let C be an m-dimensional

Zb-linear subspace of Zsmb such that its dual space C⊥ satisfies

κm(C⊥) ≥ 2s+ 1 and δm(C⊥) ≥ m− t+ 1.

Let P = Φm(C) be the corresponding digital (t,m, s)-net over Zb with gener-

ating matrices C1, . . . , Cs. From Lemma 16.27 we obtain that for any distinct

k,k′ ∈ D′(C1, . . . , Cs) the functions χ̂[0,y)(k) and χ̂[0,y)(k
′) are mutually or-

thogonal. Hence we may apply Lemmas 16.22, 16.25 and 16.26 to obtain
∫

[0,1]s
|ΘP(y)|2 dy =

∑

k∈D′(C1,...,Cs)

∫

[0,1]s

∣∣χ̂[0,y)(k)
∣∣2 dy

≤
∑

k∈D′(C1,...,Cs)

b2s−2ρ(k)

8s

≤ b2(s+t)

8s
(m+ 1)s−1

b2m
. (16.12)

From Lemma 16.21 we obtain |∆P(y)| ≤ |ΘP(y)| + sbt−m and hence

together with (16.12) we get

∫

[0,1]s
|∆P(y)|2 dy ≤ 2

∫

[0,1]s
|ΘP(y)|2 dy + 2s2

b2t

b2m

≤ 2
b2(s+t)

8s
(m+ 1)s−1

b2m
+ 2s2

b2t

b2m

≤ 4b2s

4s
b2t

(m+ 1)s−1

b2m
.

The result of Theorem 16.3 follows on taking square roots.

16.4 Explicit constructions

So far we have shown that Theorem 16.3 holds and that this implies Theo-

rem 16.5. It remains to give explicit constructions of Zb-linear subspaces Cg,w
which satisfy the conditions of Theorem 16.5. This is done in this section.

The construction of these Zb-linear subspaces Cg,w, first given by Chen &

Skriganov [22], can be seen as generalisations of the digital net construction

due to Faure; see Section 8.1.

Let

f(z) = f0 + f1z + · · ·+ fr−1z
r−1

be a polynomial in Zb[x], where r = deg(f)+1. For every j ∈ N, we consider
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the jth hyper-derivative

∂jf(z) =
r−1∑

i=0

(
i

j

)
fiz

i−j ,

where
(
i
j

)
denotes a binomial coefficient modulo b and where we use the

usual convention that
(i
j

)
= 0 whenever j > i.

Let b ≥ gs be a prime, where g is a fixed positive integer. Then there exist

gs distinct elements βi,l ∈ Zb for 1 ≤ i ≤ s and 1 ≤ l ≤ g.
We define Cg,w ⊆ Zsgwb as

Cg,w := {A(f) = (a1(f), . . . ,as(f)) : f ∈ Zb[z] and deg(f) < gw} ,
where for every 1 ≤ i ≤ s we have

ai(f) =
((
∂j−1f(βi,l)

)w
j=1

)g
l=1
∈ Zgwb .

(If we write ai(f) = (ηi,1(f), . . . , ηi,gw(f)) then for 1 ≤ l ≤ g and 1 ≤ j ≤ w,
we have ηi,(l−1)w+j = ∂j−1f(βi,l).)

Clearly Cg,w has exactly bgw elements. Since the collection of polynomials

in Zb[z] with deg(f) < gw is closed under addition and scalar multiplication

over Zb it follows that Cg,w is a Zb-linear subspace of Zsgwb .

The following theorem states that the set Cg,w satisfies all the conditions

that are demanded in Theorem 16.5. Hence, for everyN ≥ 2 we can explicitly

construct a point set PN consisting of N points in the s-dimensional unit

cube whose L2-discrepancy is best possible with respect to the general lower

bound due to Roth.

Theorem 16.28 For every g,w ∈ N satisfying b ≥ gs, the set Cg,w ∈ Zsgwb
is a Zb-linear subspace of Zsgwb of dimension gw. Its dual space C⊥g,w is of

dimension (s− 1)gw and it satisfies

κgw(C⊥g,w) ≥ g + 1 and δgw(C⊥g,w) ≥ gw + 1.

Corollary 16.29 For every g,w ∈ N satisfying b ≥ gs, the point set

Pg,w = Φgw(Cg,w) is a digital (0, gw, s)-net over Zb. The gw× gw generating

matrices C1, . . . , Cs over Zb are given by

Ci = (c(i)u,v)
gw
u,v=1

with

c
(i)
(l−1)w+j,k =

(
k − 1

j − 1

)
βk−ji,l

for 1 ≤ j ≤ w, 1 ≤ l ≤ g, 1 ≤ k ≤ gw and 1 ≤ i ≤ s.
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Proof It follows from Theorem 16.28 in conjunction with Theorem 7.14 that

Pg,w is a digital (0, gw, s)-net over Zb. The form of the generating matrices

can be easily read of from the definition of Cg,w.

For g = 1 the digital (0, w, s)-net P1,w can also be obtained with the

construction of Faure; see Section 8.1.

Example 16.30 For s = g = w = 2 we may choose b = 5, i.e., we obtain a

(0, 4, 2)-net P2,2 over Z5. We choose different β1,1, β1,2, β2,1, β2,2 ∈ Z5. Then

the ith generating matrix, i ∈ {1, 2} is given by

Ci =




(0
0

)
β0i,1

(1
0

)
β1i,1

(2
0

)
β2i,1

(3
0

)
β3i,1

0
(1
1

)
β0i,1

(2
1

)
β1i,1

(3
1

)
β2i,1(0

0

)
β0i,2

(1
0

)
β1i,2

(2
0

)
β2i,2

(3
0

)
β3i,2

0
(
1
1

)
β0i,2

(
2
1

)
β1i,2

(
3
1

)
β2i,2


 .

For example, when we choose β1,1 = 0, β1,2 = 1, β2,1 = 2 and β2,2 = 3, then

C1 =




1 0 0 0

0 1 0 0

1 1 1 1

0 1 2 3


 and C2 =




1 2 4 3

0 1 4 2

1 3 4 2

0 1 1 2


 .

The digital (0, 4, 2)-net P2,2 over Z5 generated by C1 and C2 is shown in

Figure 16.1.

Figure 16.1 The digital (0, 4, 2)-net P2,2 over Z5 generated by C1 and C2.

To prove Theorem 16.28 we follow Chen & Skriganov [22] again.

In the following we study Zb-linear subspaces of Zsgwb . For a vector A =

(a1, . . . ,as) ∈ Zsgwb with ai = (ai,1, . . . ,ai,g) and with ai,j ∈ Zwb for 1 ≤ i ≤ s
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and 1 ≤ j ≤ g we define κw(A) :=
∑s

i=1

∑g
j=1 κw(ai,j) and Vw(A) :=∑s

i=1

∑g
j=1 vw(ai,j). Furthermore, κgw(A) :=

∑s
i=1 κgw(ai) and Vgw(A) :=∑s

i=1 vgw(ai).

Lemma 16.31 1. For every A = (a1, . . . ,as) ∈ Zsgwb , we have κgw(A) =

κw(A) and Vgw(A) ≥ Vw(A).

2. For every C ⊆ Zsgwb , we have κgw(C) = κw(C) and δgw(C) ≥ δw(C).

Proof The result for the Hamming weight is clear as the number of nonzero

elements remains unchanged. Suppose now that a = (a1, . . . ,ag) ∈ Zgwb
satisfies ag = (0, . . . , 0), . . . ,ag−l+2 = (0, . . . , 0) and ag−l+1 6= (0, . . . , 0) for

some 1 ≤ l ≤ g. Then we have vw(ag) = · · · = vw(ag−l+2) = 0 and

vgw(a) = (g − l)w + vw(ag−l+1) ≥ vw(a1) + · · ·+ vw(ag−l+1) = Vw(a).

Hence the results for the NRT weight follow as well.

Now let Φw : Zsgwb → [0, 1)sg , where for A = (a1, . . . ,as) ∈ Zsgwb with

ai = (ai,1, . . . ,ai,g) and ai,l = (αi,l,1, . . . , αi,l,w) for all 1 ≤ i ≤ s and 1 ≤ l ≤
g, we define

Φw(A) =
((αi,l,1

b
+ · · · + αi,l,w

bw

)g
l=1

)s
i=1

.

Lemma 16.32 Let C and C⊥ be mutually dual Zb-linear subspaces of Z
sgw
b

such that Φw(C) is an optimum [gs, gk,w]-distribution in base b. Then we

have

δgw(C⊥) ≥ kgw + 1 and κgw(C⊥) ≥ kg + 1.

Proof Let C ⊆ Zsgwb be such that Φw(C) is an optimum [gs, gk,w]-distribution

in base b. Then it follows from Corollary 16.18 that Φw(RgsC⊥) is an opti-

mum [gs, g(s−k), w]-distribution in base b. Hence we obtain from Lemma 16.31

and Lemma 16.17 that

δgw(C⊥) ≥ δw(C⊥) = kgw + 1.

It remains to show the result for the Hamming weight. First let a ∈ Zwb . If

a 6= (0, . . . , 0), then we have wκw(a) ≥ w ≥ vw(a). But for a = (0, . . . , 0)

we trivially have wκw(a) = 0 = vw(a). Hence, for all a ∈ Zwb we have

wκw(a) ≥ vw(a) and hence for all A ∈ Zsgwb we have κw(A) ≥ 1
wδw(A).

From this and Lemma 16.31 and Lemma 16.17 it follows that

κgw(C⊥) = κw(C⊥) ≥
1

w
δw(C⊥) = kg +

1

w
.

But since κgw(C⊥) is an integer we finally obtain κgw(C⊥) ≥ kg + 1.
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Now we show that Φw(Cg,w) is an optimum [gs, g, w]-distribution in base

b. An application of Lemma 16.32 with k = 1 gives then the proof of Theo-

rem 16.28.

Lemma 16.33 The point set Φw(Cg,w) is an optimum [gs, g, w]-distribution

in base b.

Proof We have to show that every elementary interval in Ew,b,gs of order

gw contains exactly one point of Φw(Cg,w). To this end let J in Ew,b,gs of

order gw, i.e., of volume b−gw. Hence J is of the form

J =
s∏

i=1

g∏

l=1

[
αi,l

bdi,l
,
αi,l + 1

bdi,l

)
,

with integers 0 ≤ αi,l < bdi,l , 0 ≤ di,l < w for all 1 ≤ i ≤ s and 1 ≤ l ≤ g and∑s
i=1

∑g
l=1 di,l = gw. We write αi,l = αi,l,di,l +αi,l,di,l−1b+ · · ·+αi,l,1b

di,l−1.

For A(f) ∈ Cg,w we have

Φw(A(f)) =

((
f(βi,l)

b
+ · · · + ∂w−1f(βi,l)

bw

)g

l=1

)s

i=1

.

Hence Φw(A(f)) ∈ J if and only if for all 1 ≤ i ≤ s and 1 ≤ l ≤ g we

have
f(βi,l)

b
+ · · ·+ ∂w−1f(βi,l)

bw
∈
[
αi,l

bdi,l
,
αi,l + 1

bdi,l

)
.

This is equivalent to the system

∂j−1f(βi,l) = αi,l,j (16.13)

for all 1 ≤ j ≤ di,l and all 1 ≤ i ≤ s and 1 ≤ l ≤ g. It remains to show that

this system has a unique solution f ∈ Zb[z] with deg(f) < gw.

To this end we consider for all 1 ≤ i ≤ s and 1 ≤ l ≤ g the polynomials

ri,l(z) :=

di,l∑

j=1

αi,l,j(z − βi,l)j−1 ∈ Zb[z].

Assume that f(z) = f0+f1z+ · · ·+fgw−1z
gw−1 is a solution of the system

(16.13). Then we have

ri,l(z) =

di,l∑

j=1

αi,l,j(z − βi,l)j−1

=

di,l∑

j=1

gw−1∑

i=0

(
i

j − 1

)
fiβ

i−j+1
i,l (z − βi,l)j−1
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≡
gw−1∑

i=0

fi

gw−1∑

j=0

(
i

j

)
βi−ji,l (z − βi,l)j (mod (z − βi,l)di,l)

≡
gw−1∑

i=0

fiz
i (mod (z − βi,l)di,l)

= f(z).

Hence for all 1 ≤ i ≤ s and 1 ≤ l ≤ g we have

f(z) ≡ ri,l(z) (mod (z − βi,l)di,l). (16.14)

On the other hand, if f(z) is a solution of (16.14) then it is easy to see that

it is also a solution of (16.13).

Thus the system (16.13) is equivalent to the system of congruences (16.14).

Since the polynomials (z−βi,l)di,l , for 1 ≤ i ≤ s and 1 ≤ l ≤ g are pairwise
coprime, it follows from the Chinese remainder theorem in Zb[x] that the

system (16.14) has a solution which is uniquely determined modulo all poly-

nomials f with deg(f) < gw. This completes the proof of Lemma 16.33.

To summarise, Lemma 16.33 implies that Cg,w, defined at the beginning

of this section, satisfies the assumptions in Lemma 16.32. Choosing k = 1

in Lemma 16.32 in turn implies that Cg,w also satisfies the assumptions in

Theorem 16.5. Then choose Pg,w = Φgw(Cg,w), set

P̃N := Pg,w ∩
([

0,
N

bgw

)
× [0, 1)s−1

)

and

PN :=

{(
bgw

N
x1, x2, . . . , xs

)
: (x1, x2, . . . , xs) ∈ P̃N

}
,

as in the proof of Theorem 16.5. Then the proof of Theorem 16.5 shows that

PN is the desired point set which achieves the optimal rate of convergence

of the L2-discrepancy. We have shown the following corollary.

Corollary 16.34 Let b ≥ 2s2 be a prime, let g = 2s, and let PN ⊂ [0, 1)s

be defined as above. For any integer N ≥ 2 the point set PN consisting of N

points satisfies

L2,N (PN ) < 21−sb2s
(
logN

log b
+ 2s+ 1

) s−1
2 1

N
.
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16.5 Mean square weighted L2-discrepancy of digitally shifted

digital nets

In the following we are concerned with the L2-discrepancy of — in some

sense — randomised digital nets. These considerations lead to further exis-

tence results for point sets with best possible order of L2-discrepancy in the

sense of Roth’s lower bound. The constructions presented here are based on

digitally shifted digital nets where we average over all possible shifts. Hence

they contain a random element which means that they are not fully explicit

as the construction given by Chen & Skriganov is. Nevertheless, it can be

shown that a large portion from a finite class of digital shifts leads to the

best possible order. As a by-product these results show that the constant cs
in Roth’s lower bound is essentially best possible.

In more detail, we consider digital (t,m, s)-nets over Zb, b a prime, ran-

domised by a digital shift of depth m as introduced in Definition 4.69 or by

a simplified digital shift as introduced in Definition 4.70. Here, in dimension

one, for a digital (t,m, 1)-net over Zb, say Pbm = {x0, . . . , xbm−1} with xn =
xn,1

b + · · ·+ xn,m

bm , the randomised point set is given by P̃bm = {z0, . . . , zbm−1},
where zn =

zn,1

b + · · · + zn,m

bm + δn and zn,i = xn,i + ςi ∈ Zb for 1 ≤ i ≤ m.

The digits ς1, . . . , ςm ∈ Zb are chosen uniformly i.i.d. and for 0 ≤ n < bm the

δn ∈ [0, b−m) are chosen uniformly i.i.d. in the case of a digital shift of depth

m and δn = 1/(2bm) for all 0 ≤ n < bm in the case of the simplified digital

shift. For higher dimensions each coordinate is randomised independently

and therefore one just needs to apply the one-dimensional randomisation

method to each coordinate independently.

The aim of this section is to prove a formula for the mean square L2-

discrepancy of randomised digital nets. This formula depends on the gener-

ating matrices of the digital net. The following result was first shown in [51,

Theorem 1] for b = 2 and later generalised in [28, Theorem 1] to arbitrary

prime bases b.

Theorem 16.35 Let Pbm be a digital (t,m, s)-net over Zb with generating

matrices C1, . . . , Cs.

1. Let P̃bm be the point set obtained after applying a random digital shift of

depth m independently to each coordinate of each point of Pbm . Then the

mean square L2-discrepancy of P̃bm is given by

E
[
(L2,bm(P̃bm))2

]
=

1

bm2s

(
1−

(
1− 1

3bm

)s)
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+
1

3s

∑

∅6=v⊆Is

(
3

2

)|v|
B(v),

where for v = {v1, . . . , ve} ⊆ Is we put

B(v) =
bm−1∑

k1,...,ke=1

C⊤
v1

k1+···+C⊤
veke=0

e∏

i=1

ψ(ki),

with

ψ(k) =
1

b2ρ(k)

(
1

sin2(κa−1π/b)
− 1

3

)

and k = κ0+κ1b+ · · ·+κa−1b
a−1, κa−1 6= 0, and where ρ(k) = a denotes

the NRT weight of k.

2. Let P̂bm be the point set obtained after applying a random simplified digital

shift of depth m independently to each coordinate of each point of Pbm .
Then the mean square L2-discrepancy of P̂bm is given by

E
[
(L2,bm(P̂bm))2

]
= 2

(
1

3s
−
(
1

3
+

1

24b2m

)s)

+
1

bm2s

(
1−

(
1− 1

3bm

)s)

+
1

3s

∑

∅6=v⊆Is

(
3

2

)|v|
B(v),

where B(v) is as above.

Note that for 1 ≤ k < bm we have ψ(k) = rsob,b(k, 1) with rsob,b defined

as in Proposition 12.2.

From Theorem 16.35 we immediately obtain the following result.

Corollary 16.36 Let Pbm be a digital (t,m, s)-net over Zb. Let P̃bm be the

point set obtained after applying a random digital shift of depth m indepen-

dently to each coordinate of each point of Pbm and let P̂bm be the point set

obtained after applying a random simplified digital shift of depth m indepen-

dently to each coordinate of each point of Pbm . Then we have

E
[
(L2,bm(P̂bm))2

]
≤ E

[
(L2,bm(P̃bm))2

]
.

The proof of Theorem 16.35 is based on the Walsh series representation

of the formula for the weighted L2-discrepancy given in Proposition 2.15.

As we shall see later, the function ψ in the theorem above is related to



562 Constructions of point sets with best possible L2-discrepancy

Walsh coefficients of a certain function appearing in the formula for the

L2-discrepancy. We need two lemmas.

Lemma 16.37 Let x1, x2 ∈ [0, 1) and let z1, z2 ∈ [0, 1) be the points ob-

tained after applying a random digital shift of depth m to x1 and x2. Then

we have

E
[
bwalk(z1) bwall(z2)

]
=

{
bwalk(x1 ⊖ x2) if 0 ≤ k = l < bm,

0 otherwise.

Proof Let xn =
xn,1

b +
xn,2

b2 + · · · for n ∈ {1, 2}. Further let ς1, . . . , ςm ∈ Zb

uniformly and i.i.d. and for n ∈ {1, 2} let δn =
δn,m+1

bm+1 +
δn,m+2

bm+2 + · · · ∈ [0, 1
bm )

be uniformly and i.i.d.. Then define zn,j = xn,j + ςj ∈ Zb for 1 ≤ j ≤ m and

zn =
zn,1

b + · · ·+ zn,m

bm + δn for n ∈ {1, 2}.
First let k, l ∈ N, more precisely, let k = κ0 + κ1b + · · · + κa−1b

a−1 and

l = λ0 + λ1b + · · · + λc−1b
c−1 be the b-adic expansion of k and l with

κa−1, λc−1 6= 0. Further we set κa = κa+1 = · · · = 0 and also λc = λc+1 =

· · · = 0. Then

E
[
bwalk(z1) bwall(z2)

]

= ω
κ0x1,1+···+κm−1x1,m
b ω

−λ0x2,1−···−λm−1x2,m
b

× 1

b

b−1∑

ς1=0

ω
(κ0−λ0)ς1
b · · · 1

b

b−1∑

ςm=0

ω
(κm−1−λm−1)ςm
b

× 1

b

b−1∑

δ1,m+1=0

ω
κmδ1,m+1

b

1

b

b−1∑

δ1,m+2=0

ω
κm+1δ1,m+2

b · · ·

× 1

b

b−1∑

δ2,m+1=0

ω
−λmδ2,m+1

b

1

b

b−1∑

δ2,m+2=0

ω
−λm+1δ2,m+2

b · · · . (16.15)

The product above consists only of finitely many factors as κa = κa+1 =

· · · = 0 and for j ≥ max(m,a) we have 1
b

∑b−1
δ1,j+1=0 ω

κjδ1,j+1

b = 1. The same

argument holds for the last line in the equation above.

First we consider the case where a > m. We have 1
b

∑b−1
δ1,a=0 ω

κa−1δ1,a
b = 0

and therefore E[ bwalk(z1) bwall(z2)] = 0. The same holds if c > m. Now

assume that there is an 1 ≤ j ≤ m such that κj−1 6= λj−1. Then we have

κj−1 − λj−1 6≡ 0 (mod b) and 1
b

∑b−1
ςj=0 ω

(κj−1−λj−1)ςj
b = 0. Therefore we ob-

tain in this case E[ bwalk(z1) bwall(z2)] = 0. Now let k = l and 0 ≤ k < bm.

It follows from (16.15) that

E
[
bwalk(z1) bwalk(z2)

]
= ω

κ0(x1,1−x2,1)+···+κm−1(x1,m−x2,m)
b
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= bwalk(x1 ⊖ x2).

Lemma 16.38 Let x, x1, x2 ∈ [0, 1) and let z, z1, z2 ∈ [0, 1) be the points

obtained after applying a random digital shift of depth m to x, x1 and x2
respectively.

1. We have E[z] = 1/2 and E[z2] = 1/3.

2. We have

E[|z1 − z2|] =
bm−1∑

k=0

τb(k) bwalk(x1 ⊖ x2),

where τb(0) = 1
3 and τb(k) = b−2ρ(k)

(
1
3 − sin−2(κa−1π/b)

)
for k > 0.

Here k = κ0 + κ1b+ · · ·+ κa−1b
a−1, κa−1 6= 0, and ρ(k) = a is the NRT

weight of k.

3. We have

E[min(1− z1, 1− z2)] =
1

2

(
1−

bm−1∑

k=0

τb(k) bwalk(x1 ⊖ x2)
)
.

Proof 1. We have E[z] =
∫ 1
0 z dz = 1/2 and E[z2] =

∫ 1
0 z

2 dz = 1/3.

2. As |z1 − z2| ∈ L2([0, 1]
2) and continuous it follows that the function

|z1 − z2| can be represented by its Walsh series (see Theorem A.11 and

Section A.3). We have |z1−z2| =
∑∞

k,l=0 τb(k, l) bwalk(z1) bwall(z2), where

τb(k, l) =

∫ 1

0

∫ 1

0
|z1 − z2| bwalk(z1) bwall(z2) dz1 dz2.

In the proof of Proposition 12.5 (see Eq. (12.15)) it was shown that

τb(k) := τb(k, k) =
1

b2a

(
1

3
− 1

sin2(κa−1π/b)

)
,

for k > 0 and τb(0, 0) =
1
3 . (We do not need to know τb(k, l) for k 6= l for

our purposes here.) From the linearity of the expectation value and from

Lemma 16.37 we obtain

E[|z1 − z2|] =
∞∑

k,l=0

τb(k, l)E
[
bwalk(z1) bwall(z2)

]

=
bm−1∑

k=0

τb(k) bwalk(x1 ⊖ x2).

3. This result follows from the first two parts of the lemma together with

the formula min(z1, z2) =
1
2(z1 + z2 − |z1 − z2|).
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Proof of Theorem 16.35 First we prove the formula for a random digital

shift of depth m. Let P̃bm = {z0, . . . ,zbm−1} and zn = (zn,1, . . . , zn,s). From

the formula for the weighted L2-discrepancy given in Proposition 2.15, from

Lemma 16.38 and from the linearity of expectation we get

E
[
(L2,bm(P̃bm))2

]

=
1

3s
− 2

bm

bm−1∑

n=0

s∏

i=1

1− E[z2n,i]

2
+

1

b2m

bm−1∑

n,h=0

s∏

i=1

E[min(1− zn,i, 1− zh,i)]

= − 1

3s
+

1

b2m

bm−1∑

n=0

s∏

i=1

E[1− zn,i] +
1

b2m

bm−1∑

n,h=0
n6=h

s∏

i=1

E[min(1− zn,i, 1− zh,i)].

Now we use Lemma 16.38 again to obtain

E
[
(L2,bm(P̃bm))2

]
= − 1

3s
+

1

bm
1

2s

+
1

b2m

bm−1∑

n,h=0
n6=h

s∏

i=1

1

2

(
1−

bm−1∑

k=0

τb(k) bwalk(xn,i ⊖ xh,i)
)
.

We have

s∏

i=1

(
1−

bm−1∑

k=0

τb(k) bwalk(xn,i ⊖ xh,i)
)

= 1 +
∑

∅6=w⊆Is
w={w1,...,wd}

(−1)|w|
bm−1∑

k1,...,kd=0

d∏

i=1

τb(ki) bwalki(xn,wi ⊖ xh,wi
).

Thus

E
[
(L2,bm(P̃bm))2

]
= − 1

3s
+

1

bm
1

2s
+

1

b2m

bm−1∑

n,h=0
n6=h

1

2s

+
1

2s
1

b2m

bm−1∑

n,h=0
n6=h

∑

∅6=w⊆Is
w={w1,...,wd}

(−1)d
bm−1∑

k1,...,kd=0

d∏

i=1

τb(ki) bwalki(xn,wi ⊖ xh,wi
).

We have

bm−1∑

k=0

τb(k) =
1

3
+

m∑

a=1

ba−1∑

k=ba−1

1

b2a

(
1

3
− 1

sin2(κa−1π/b)

)
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=
1

3
+

m∑

a=1

1

ba+1

b−1∑

r=1

(
1

3
− 1

sin2(rπ/b)

)
.

From Corollary A.23 we know that
∑b−1

r=1 sin
−2(rπ/b) = (b2−1)/3 and hence

we get
∑bm−1

k=0 τb(k) = 1/(3bm). Therefore,

∑

∅6=w⊆Is
(−1)|w|

bm−1∑

k1,...,k|w|=0

|w|∏

i=1

τb(ki) =
∑

∅6=w⊆Is

(
− 1

3bm

)|w|

=

s∑

r=1

(
s

r

)(
− 1

3bm

)r

=

(
1− 1

3bm

)s
− 1.

Now we add and substract 1
2s

1
bm

[(
1− 1

3bm

)s − 1
]
in the above expression in

order to obtain

E
[
(L2,bm(P̃bm))2

]
=

1

2s
− 1

3s
+

(
1−

(
1− 1

3bm

)s) 1

bm
1

2s

+
1

2s
1

b2m

bm−1∑

n,h=0

∑

∅6=w⊆Is
w={w1,...,wd}

(−1)d
bm−1∑

k1,...,kd=0

d∏

i=1

τb(ki) bwalki(xn,wi ⊖ xh,wi
).

Since τb(0) = 1/3 we have

1

2s
1

b2m

bm−1∑

n,h=0

∑

∅6=w⊆Is
(−1)|w|τb(0)

|w| =
1

3s
− 1

2s
.

Hence

E
[
(L2,bm(P̃bm))2

]
=

1

2s
− 1

3s
+

(
1−

(
1− 1

3bm

)s) 1

bm
1

2s
+

1

3s
− 1

2s

+
1

2s
1

b2m

∑

∅6=w⊆Is
w={w1,...,wd}

(−1)d
bm−1∑

k1,...,kd=0

(k1,...,kd) 6=(0,...,0)

bm−1∑

n,h=0

d∏

i=1

τb(ki) bwalki(xn,wi ⊖ xh,wi
)

]
.

From the group structure of digital nets (see Lemma 4.72) and from

Lemma 4.75 it follows that for any digital net generated by the m × m

matrices C1, . . . , Cs, we have

1

b2m

bm−1∑

n,h=0

bwalk1,...,ks(xn ⊖ xh) =
1

bm

bm−1∑

n=0

bwalk1,...,ks(xn)
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=

{
1 if C⊤

1 k1 + · · ·+ C⊤
s ks = 0,

0 otherwise.

Since we have that the d-dimensional projection of a digital (t,m, s)-net is

again a digital (t,m, d)-net we get (with w = {w1, . . . , wd})
bm−1∑

k1,...,kd=0

(k1,...,kd) 6=(0,...,0)

bm−1∑

n,h=0

d∏

i=1

τb(ki) bwalki(xn,wi ⊖ xh,wi
)

= b2m
bm−1∑

k1,...,kd=0

(k1,...,kd) 6=(0,...,0)

C⊤
w1

k1+···+C⊤
wd

kd=0

d∏

i=1

τb(ki)

= b2m
∑

∅6=v⊆w

v={v1,...,ve}

1

3|w|−|v|

bm−1∑

k1,...,ke=1

C⊤
v1

k1+···+C⊤
veke=0

e∏

i=1

τb(ki).

As
∏e
i=1 τb(ki) = (−1)e∏e

i=1 ψ(ki) we have

bm−1∑

k1,...,kd=0

(k1,...,kd) 6=(0,...,0)

bm−1∑

n,h=0

d∏

i=1

τb(ki) bwalki(xn,wi ⊖ xh,wi
) =

b2m

3|w|
∑

∅6=v⊆w

(−3)|v|B(v).

Thus we obtain

E
[
(L2,bm(P̃bm))2

]

=
1

bm2s

(
1−

(
1− 1

3bm

)s)
+

1

2s

∑

∅6=w⊆Is

(
−1

3

)|w|∑

v⊆w

v6=∅

(−3)|v|B(v).

Let now v, with ∅ 6= v ⊆ Is, be fixed. Then v ⊆ w ⊆ Is is equivalent to

(w \ v) ⊆ (Is \ v), provided that v ⊆ w. Therefore, for |v| ≤ w ≤ s, there

are
( s−|v|
w−|v|

)
sets w such that |w| = w and v ⊆ w ⊆ Is. Hence

∑

∅6=w⊆Is

(
−1

3

)|w| ∑

∅6=v⊆w

(−3)|v|B(v)

=
∑

∅6=v⊆Is

s∑

w=|v|

(
s− |v|
w − |v|

)(
−1

3

)w
(−3)|v|B(v)

=
∑

∅6=v⊆Is

s−|v|∑

w=0

(
s− |v|
w

)(
−1

3

)w
B(v)
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=
∑

∅6=v⊆Is

(
2

3

)s−|v|
B(v),

and the first result follows.

It remains to prove the formula for the mean square weighted L2-discrepancy

for the case that the randomisation method is a simplified digital shift of

depth m. Here the starting point is again the formula for the weighted L2-

discrepancy given in Proposition 2.15.

Trivially we have

bm
∫ 1/bm

0
[1− (xn,i + δn)] dδn = 1−

(
xn,i +

1

2bm

)
.

For 1 ≤ i ≤ s the ith components of the points xn ∈ Pbm are a one-

dimensional digital net and hence their base b representation has at most the

first m digits unequal zero. Therefore if xn,i > xh,i then we have xn,i+ δn >

xh,i + δh for arbitrary δn, δh ∈ [0, 1/bm). Hence we obtain

b2m
∫ 1/bm

0

∫ 1/bm

0
min(1− (xn,i + δn), 1 − (xh,i + δh)) dδn dδh

= min

(
1−

(
xn,i +

1

2bm

)
, 1−

(
xh,i +

1

2bm

))
.

Further we have

bm
∫ 1/bm

0

1− (xn,i + δn)
2

2
dδn =

1

2

(
1−

(
xn,i +

1

2bm

)2
)
− 1

24b2m
.

From these considerations, together with Proposition 2.15 and Lemma 16.38,

we find that

E
[
(L2,bm(P̂bm))2

]
= 2

(
1

3s
−
(
1

3
+

1

24b2m

)s)
+ E

[
(L2,bm(P̃bm))2

]
,

and hence the results follows from the first part of this proof.

We derive an upper bound on the formulas shown in Theorem 16.35. Due

to Corollary 16.36 it is enough to consider in the following only the case

where the randomisation method is a digital shift of depth m. We have the

following theorem.

Theorem 16.39 Let Pbm be a digital (t,m, s)-net over Zb with t < m. Let

P̃bm be the point set obtained after applying a random digital shift of depth

m independently to each coordinate of each point of Pbm . Then the mean
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square L2-discrepancy of P̃bm is bounded by

E
[
(L2,bm(P̃bm))2

]
≤ 1

b2m

(
1

6
+ b2t

(
b2 − b+ 3

6

)s
(m− t)s−1

)
.

Note that using digital (t, s)-sequences over Zb it follows that for fixed s

and b there always exists a digital (t,m, s)-net over Zb, where t ≤ T (s, b)

is bounded for some natural number T (s, b) independent of m, and m can

be chosen arbitrarily large. Hence the above theorem shows that we can

obtain a convergence rate of the root mean square L2-discrepancy of order

O((log bm)(s−1)/2b−m).
We need the following lemma for the proof of the above theorem.

Lemma 16.40 Let C1, . . . , Cs be the generating matrices of a digital (t,m, s)-

net over Zb. Further define B as in Theorem 16.35. Then for any v ⊆ Is we
have

B(v) ≤ b2t

b2m

(
b3

3(b+ 1)

)|v|(
m− t+ 1

b3

)|v|−1

.

Proof To simplify the notation we show the result only for v = Is. The
other cases follow by the same arguments. For ki = κi,0 + κi,1b + · · · +
κi,ai−1b

ai−1 where κi,ai−1 6= 0, for 1 ≤ i ≤ s, we have

B(Is) =
bm−1∑

k1,...,ks=1

C⊤
1

k1+···+C⊤
s ks=0

s∏

i=1

1

b2ai

(
1

sin2(κi,ai−1π/b)
− 1

3

)

=

m∑

a1,...,as=1

1

b2(a1+···+as)

ba1−1∑

k1=ba1−1

· · ·
bas−1∑

ks=bas−1

︸ ︷︷ ︸
C⊤

1 k1+···+C⊤
s ks=0

s∏

i=1

(
1

sin2(κi,ai−1π/b)
− 1

3

)
.

(16.16)

For 1 ≤ i ≤ s and 1 ≤ j ≤ m let c
(i)
j denote the jth row vector of the

matrix Ci. Hence the condition in the sum from (16.16) can be written as

c
(1)
1 κ1,0 + · · ·+ c

(1)
a1−1κ1,a1−2 + c(1)a1 κ1,a1−1+

c
(2)
1 κ2,0 + · · ·+ c

(2)
a2−1κ2,a2−2 + c(2)a2 κ2,a2−1+

... (16.17)

c
(s)
1 κs,0 + · · ·+ c

(s)
as−1κs,as−2 + c(s)as κs,as−1 = 0.

Since C1, . . . , Cs generate a digital (t,m, s)-net over Zb, it follows from
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Lemma 4.52 that the vectors

c
(1)
1 , . . . , c(1)a1 , . . . , c

(s)
1 , . . . , c(s)as

are linearly independent as long as a1+ · · ·+as ≤ m− t, and hence we must

have

a1 + · · ·+ as ≥ m− t+ 1. (16.18)

Let now A denote the m× ((a1−1)+ · · ·+(as−1)) matrix with the column

vectors given by c
(1)
1

⊤
, . . . , c

(1)
a1−1

⊤
, . . . , c

(s)
1

⊤
, . . . , c

(s)
as−1

⊤
, i.e.,

A :=

(
c
(1)
1

⊤
, . . . , c

(1)
a1−1

⊤
, . . . , c

(s)
1

⊤
, . . . , c

(s)
as−1

⊤
)
∈ Z

m×((a1−1)+···+(as−1))
b .

Further let

fκ1,a1−1,...,κs,as−1 := −
(
c(1)a1

⊤
κ1,a1−1 + · · ·+ c(s)as

⊤
κs,as−1

)
∈ (Zmb )

⊤

and

k := (κ1,0, . . . , κ1,a1−2, . . . , κs,0, . . . , κs,as−2)
⊤ ∈ (Z

(a1−1)+···+(as−1)
b )⊤.

Then the linear equation system (16.17) can be written as

Ak = fκ1,a1−1,...,κs,as−1 (16.19)

and hence

ba1−1∑

k1=ba1−1

· · ·
bas−1∑

ks=bas−1

︸ ︷︷ ︸
C⊤

1 k1+···+C⊤
s ks=0

s∏

i=1

(
1

sin2(κi,ai−1π/b)
− 1

3

)

=

b−1∑

κ1,a1−1,...,κs,as−1=1

s∏

i=1

(
1

sin2(κi,ai−1π/b)
− 1

3

) ∑

k∈Z
(a1−1)+···+(as−1)
b

Ak=fκ1,a1−1,...,κs,as−1

1

=

b−1∑

κ1,a1−1,...,κs,as−1=1

s∏

i=1

(
1

sin2(κi,ai−1π/b)
− 1

3

)

×
∣∣∣
{
k ∈ Z

(a1−1)+···+(as−1)
b : Ak = fκ1,a1−1,...,κs,as−1

}∣∣∣ .

By the definition of the matrix A and since C1, . . . , Cs are the generating

matrices of a digital (t,m, s)-net over Zb we have

rank(A) =

{
(a1 − 1) + · · · + (as − 1) if a1 + · · ·+ as ≤ m− t+ s,

≥ m− t else.



570 Constructions of point sets with best possible L2-discrepancy

Let L denote the linear space of solutions of the homogeneous system Ak = 0

and let dim(L) denote the dimension of L. Then it follows that

dim(L) =

{
0 if a1 + · · ·+ as ≤ m− t+ s,

≤ a1 + · · ·+ as − s−m+ t else.

Hence if a1 + · · · + as ≤ m − t + s we find that the system (16.19) has at

most 1 solution and if a1 + · · · + as > m − t + s the system (16.19) has at

most ba1+···+as−s−m+t solutions, i.e.,

ba1−1∑

k1=ba1−1

· · ·
bas−1∑

ks=bas−1

︸ ︷︷ ︸
C⊤

1 k1+···+C⊤
s ks=0

s∏

i=1

(
1

sin2(κi,ai−1π/b)
− 1

3

)

≤
b−1∑

κ1,a1−1,...,κs,as−1=1

s∏

i=1

(
1

sin2(κi,ai−1π/b)
− 1

3

)

×
{

1 if a1 + · · · + as ≤ m− t+ s,

ba1+···+as−s−m+t if a1 + · · · + as > m− t+ s.

Again we use
∑b−1

k=1 sin
−2(kπ/b) = (b2−1)/3 from Corollary A.23. Therefore

together with condition (16.18) we obtain

B(Is) ≤
(
b2 − b

3

)s m∑

a1,...,as=1
m−t+1≤a1+···+as≤m−t+s

1

b2(a1+···+as) +

+

(
b2 − b

3

)s m∑

a1,...,as=1
a1+···+as>m−t+s

1

b2(a1+···+as) b
a1+···+as−s−m+t

=: Σ1 +Σ2. (16.20)

Now we have to estimate the sums Σ1 and Σ2. First we have

Σ2 =

(
b− 1

3

)s bt
bm

sm∑

l=m−t+s+1

1

bl

m∑

a1,...,as=1
a1+···+as=l

1

≤
(
b− 1

3

)s bt
bm

∞∑

l=m−t+s+1

(
l − 1

s− 1

)
1

bl

=

(
b− 1

3b

)s bt
bm

∞∑

l=m−t+1

(
l + s− 1

s− 1

)
1

bl
,

where we used the fact that for fixed l the number of positive integer solu-

tions of a1 + · · ·+ as = l is given by
(
l−1
s−1

)
. Now we apply Lemma 13.24 and
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obtain

Σ2 ≤
(
b− 1

3b

)s bt
bm

1

bm−t+1

(
m− t+ s

s− 1

)(
b− 1

b

)−s

=
1

3s
b2t

b2m
1

b

(
m− t+ s

s− 1

)
. (16.21)

Finally, since
(
m− t+ s

s− 1

)
=

(m− t+ 2)(m− t+ 3) · · · (m− t+ s)

1 · 2 · · · (s − 1)
≤ (m− t+ 2)s−1,

we obtain

Σ2 ≤
1

3s
b2t

b2m
1

b
(m− t+ 2)s−1.

Now we estimate Σ1. If m − t + 1 ≥ s we proceed similarly to above and

obtain

Σ1 =

(
b− 1

3b

)s m−t∑

l=m−t−s+1

(
l + s− 1

s− 1

)
1

b2l

≤
(
b− 1

3b

)s 1

b2(m−t−s+1)

(
m− t
s− 1

)(
1− 1

b2

)−s

=
1

3s
b3s

(b+ 1)s
b2t

b2m
1

b2

(
m− t
s− 1

)
(16.22)

≤ 1

3s
b3s

(b+ 1)s
b2t

b2m
1

b2
(m− t)s−1

(s− 1)!
.

For this case we obtain

B(Is) ≤
(

b3

3(b+ 1)

)s
b2t

b2m

(
1

b2
(m− t)s−1

(s− 1)!
+

1

b

(b+ 1)s

b3s
(m− t+ 2)s−1

)

=
b3s

3s(b+ 1)s
b2t

b2m

×
(

1

b2
(m− t)s−1

(s− 1)!
+
b+ 1

b4

(
b+ 1

b3
(m− t) + 2(b+ 1)

b3

)s−1
)
.

As b+1
b3

(m− t) + 2(b+1)
b3
≤ m− t+ 1

b3
, provided that m− t > 0, we have

B(Is) ≤
b2t

b2m
b3s

3s(b+ 1)s

(
m− t+ 1

b3

)s−1

,

which is the desired bound.



572 Constructions of point sets with best possible L2-discrepancy

Now we consider the case where m− t+ 1 < s. We have

Σ1 =

(
b− 1

3b

)s m−t∑

l=0

(
l + s− 1

s− 1

)
1

b2l

≤
(
b− 1

3b

)s ∞∑

l=0

(
l + s− 1

s− 1

)
1

b2l

=
1

3s
bs

(b+ 1)s
≤ 1

b4
b3s

3s(b+ 1)s
b2t

b2m
. (16.23)

Thus we obtain

B(Is) ≤
1

b4
b3s

3s(b+ 1)s
b2t

b2m
+

1

3s
b2t

b2m
1

b
(m− t+ 2)s−1

=
b3s

3s(b+ 1)s
b2t

b2m

(
1

b4
+
b+ 1

b4

(
b+ 1

b3
(m− t) + 2(b+ 1)

b3

)s−1
)
.

Using same arguments as above we again obtain the desired result.

Proof of Theorem 16.39 We use the formula of Theorem 16.35 together

with Lemma 16.40 to obtain

E
[
(L2,bm(P̃bm))2

]
≤ 1

bm2s

(
1−

(
1− 1

3bm

)s)

+
b2t

b2m
1

3s

∑

∅6=v⊆Is

(
b3

2(b+ 1)

)|v|(
m− t+ 1

b3

)|v|−1

.

Since for x < y we have ys − xs = sζs−1(y − x) for a x < ζ < y we have

1−
(
1− (3bm)−1

)s ≤ s/(3bm). As s2−s ≤ 1/2 for s ≥ 1 we obtain

1

bm2s

(
1−

(
1− 1

3bm

)s)
≤ 1

6b2m
.

Furthermore, we have

1

3s

∑

∅6=v⊆Is

(
b3

2(b+ 1)

)|v|(
m− t+ 1

b3

)|v|−1

≤ (m− t)−1

(
1

3
+

b3

6(b+ 1)

(
m− t+ 1

b3

))s

≤
(
b2 − b+ 3

6

)s
(m− t)s−1,

provided that m− t > 0 and the result follows.
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We close this section with a result concerning the proportion of simplified

digital shifts of depth m which yield a digitally shifted net with weighted

L2-discrepancy bounded above by a constant times the bound from Theo-

rem 16.39.

Corollary 16.41 Let Pbm be a digital (t,m, s)-net over Zb with t < m.

Let P̂bm,σm be the point set obtained after applying the simplified digital shift

σm ∈ Zsmb of depth m to each point of Pbm . For any 0 ≤ α < 1 there are

more than α|Zsmb | shifts σm ∈ Zsmb such that

L2,bm(P̂bm,σm) ≤
1

bm
√
1− α

(
1

6
+ b2t

(
b2 − b+ 3

6

)s
(m− t)s−1

)1/2

.

Proof Using Markov’s inequality, Corollary 16.36, the upper bound from

Theorem 16.39, and the notation ft,m,s,b :=
1
b2m

(
1
6 + b2t

(
b2−b+3

6

)s
(m− t)s−1

)
,

we have for c ≥ 1 that

ft,m,s,b ≥ E
[
(L2,bm(P̂bm,σm))

2
]

> c2ft,m,s,b

∣∣∣
{
σm ∈ Zsmb : L2,bm(P̂bm,σm) > c

√
ft,m,s,b

}∣∣∣
|Zsmb |

.

From this the result follows by substituting α = 1− c−2.

16.6 Asymptotics

In this section we investigate the asymptotic behaviour of the L2-discrepancy.

In the following let for s,m ∈ N the point set Pt,s,2m,σm,s be a digital (t,m, s)-

net over Z2 shifted by the dyadic digital shift σm,s of depth m. We obtain

the following theorem.

Theorem 16.42 Let s > 3, 0 ≤ t < m and m− t ≥ s be such that a digital

(t,m, s)-net over Z2 exists. Then there exists a dyadic digital shift σm,s of

depth m such that for the shifted net Pt,s,2m,σm,s we have

L2,2m(Pt,s,2m,σm,s) ≤
2t

2m

√(
m− t+ s

s− 1

)(
2

3

)s
+O

(
m(s−2)/2

2m

)
.

Proof We obtain from Theorem 16.35 with b = 2,

E
[
(L2,2m(P̃2m))2

]
=

1

2m+s

(
1−

(
1− 1

3 · 2m
)s)

+
1

3s

∑

∅6=v⊆Is

(
3

2

)|v|
B(v).
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Lemma 16.40 shows that, in order to find the constant of the leading term,

we only need to consider B(Is). From (16.20), (16.21) and (16.22) we obtain

B(Is) ≤
22t

22m

(
1

2

1

3s

(
m− t+ s

s− 1

)
+

1

4

8s

9s

(
m− t
s− 1

))
.

As the bound in Theorem 16.35 was obtained by averaging over all shifts it

follows that there exists a shift which yields an L2-discrepancy smaller than

or equal to this bound.

Observe that the bound in Theorem 16.42 is for large m, apart from

the t, similar to Roth’s general lower bound on L2-discrepancy given in

Theorem 3.20.

We consider now digital (t, s)-sequences over Z2. From [192, Theorem 4] it

follows that for every dimension s there exists a digital (t, s)-sequence over

Z2 such that t ≤ 5s. Thus it follows that for all s ∈ N and m > 5s there is a

digital (5s,m, s)-net over Z2. (Note that if there is a digital (t,m, s)-net then

it follows that also a digital (t+1,m, s)-net exists.) Let Ps,5s,2m,σm,s denote a

digital (5s,m, s)-net over Z2 shifted by the digital shift σm,s of depth m. We

are interested in the asymptotic behaviour of the L2-discrepancy. Therefore,

for m much larger than s and t = 5s, we have
(
m− t+ s

s− 1

)
≤
(

m

s− 1

)
≤ ms−1

(s− 1)!
.

Further let N = 2m, then m = (logN)/ log 2. The following corollary follows

now from Theorem 16.42.

Corollary 16.43 For every s ∈ N and m ≥ 5s there exists a shifted digital

(5s,m, s)-net P5s,s,2m,σm,s over Z2 shifted by the dyadic digital shift σm,s of

depth m such that

L2,N (P5s,s,2m,σm,s) ≤ Cs
(logN)(s−1)/2

N
+O

(
(logN)(s−2)/2

N

)
,

where N = 2m and where

Cs :=
22s

(log 2)(s−1)/2
√
(s − 1)!

depends only on the dimension s.

We note that the convergence of order O((logN)(s−1)/2N−1) is best pos-

sible with respect to Roth’s lower bound and that the constant Cs tends

faster than exponentially to zero as s approaches infinity.

Although Cs is until now smallest known constant of the leading term
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of an upper bound, compared to cs from Theorem 3.20, Cs is not quite as

good. Indeed, we have Cs/cs = 16 · 88s. Nevertheless we show later that the

constant cs Theorem 3.20 cannot be improved by much.

It is known that for digital (t, s)-sequences over Z2 we always have t >

s log2
3
2−4 log2(s−2)−23 for all s ≥ 3 by a result of Schmid [232, Corollary 1].

Hence for digital (t,m, s)-nets obtained from digital (t, s)-sequences over Z2,

Theorem 16.42 cannot yield a constant of the form a−s/2((s − 1)!)−1/2 for

some a > 1. On the other hand it is possible that for special choices of m

and s the quality parameter t of a digital (t,m, s)-net can be considerably

lower than the quality parameter of the best (t, s)-sequence.

We derive an upper bound on the classical L2-discrepancy of shifted

Niederreiter-Xing nets [191] (see Section 8.3 and see also [266] for a survey

article). This enables us to show that Theorem 3.20 is also in the dimension

s essentially best possible.

Niederreiter & Xing [191, Corollary 3] showed that for every integer d ≥ 2

there exists a sequence of digital (tk, tk + d, sk)-nets over Z2 with sk → ∞
as k →∞ such that

lim
k→∞

tk
log2 sk

=

⌊
d

2

⌋
, (16.24)

and that this is best possible. (We remark that the sequence of digital nets

from the result of Niederreiter & Xing can be constructed explicitly.) There-

fore, for any d ∈ N, there exists a sequence of digital (tk, tk+d, sk)-nets over

Z2 and a kd such that
⌈

tk
log2 sk

⌉
= d and sk ≥ 2d+ 2 for all k ≥ kd. (16.25)

(Note that if a digital (tk, tk + d, sk)-net exists, then there exists also a

digital (tk + 1, tk + d + 1, sk)-net. Further, for d = 1 there exists a digital

(t, t + 1, s)-net for all t, s ∈ N.) For a point set P in [0, 1)s with 2m points

let

Dm,s(P) :=
2mL2,2m(P)√(m+s+1

s−1

) . (16.26)

The bound in Theorem 16.39 was obtained by averaging over all shifts.

Hence for any digital (t,m, s)-net there is always a shift σ∗ which yields an

L2-discrepancy smaller or equal to this bound. Let Pk(d) denote a shifted

digital (tk, tk + d, sk)-net over Z2 satisfying (16.25), which is shifted by such

a shift σ∗. We prove an upper bound on Dtk+d,sk(Pk(d)) for fixed d.
In the following let k ≥ kd. Let v ⊆ {1, . . . , sk} and l := |v|. First we
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consider the case where l ≥ d+2. Note thatm−t = d for the nets considered

here. Then (16.21) and (16.23) yield

B(v) ≤ 1

3l
1

4d
1

2

(
d+ l

d+ 1

)
+

2l

9l
.

For 0 < l ≤ d+ 1 we obtain from (16.21) and (16.22) that

B(v) ≤ 1

3l
1

4d
1

2

(
d+ l

d+ 1

)
+

8l

9l
1

4d
1

4

(
d

l − 1

)
.

Therefore we obtain

1

3sk

∑

∅6=v⊆Is

(
3

2

)|v|
B(v)

≤ 1

3sk

d+1∑

l=1

(
3

2

)l(sk
l

)(
1

3l
1

4d
1

2

(
d+ l

d+ 1

)
+

8l

9l
1

4d
1

4

(
d

l − 1

))

+
1

3sk

sk∑

l=d+2

(
3

2

)l(sk
l

)(
1

3l
1

4d
1

2

(
d+ l

d+ 1

)
+

2l

9l

)
.

Now we have

1

3sk

sk∑

l=1

(
3

2

)l(sk
l

)
1

3l
1

4d
1

2

(
d+ l

d+ 1

)
≤ 1

2

1

3sk
1

4d

(
d+ sk
d+ 1

) sk∑

l=0

1

2l

(
sk
l

)

=
1

2

1

2sk
1

4d

(
d+ sk
sk − 1

)

and

1

3sk

d+1∑

l=1

(
3

2

)l(sk
l

)
8l

9l
1

4d
1

4

(
d

l − 1

)
+

1

3sk

sk∑

l=d+2

(
3

2

)l(sk
l

)
2l

9l

=
1

3sk
1

4d+1

d+1∑

l=1

(
sk
l

)(
4

3

)l( d

l − 1

)
+

1

3sk

sk∑

l=d+2

(
sk
l

)
1

3l

≤ 1

3

(
7

12

)d 1

3sk

(
sk
d+ 1

)
+

(
4

9

)sk
,

as max1≤l≤d+1

(
sk
l

)
=
(
sk
d+1

)
for sk ≥ 2d+ 2. Thus we obtain

1

3sk

∑

∅6=v⊆Is

(
3

2

)|v|
B(v) ≤ 1

2

1

2sk
1

4d

(
d+ sk
sk − 1

)
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+
1

3

(
7

12

)d 1

3sk

(
sk

d+ 1

)
+

(
4

9

)sk
.

Further we have 1−
(
1− (3 · 2m)−1

)s ≤ s/(3 ·2m). Hence it follows from the

definition of Pk(d) and (16.24) that

L2
2,2tk+d(Pk(d)) ≤

1

2

1

2sk
1

4d

(
d+ sk
sk − 1

)
+

1

3

(
7

12

)d 1

3sk

(
sk
d+ 1

)
(16.27)

+

(
4

9

)sk
+

sk
3 · 22(tk+d)+sk .

In order to get a bound on D2
tk+d,sk

(Pk(d)) we need to multiply the inequality

above by 4tk+d
[(tk+d+sk+1

sk−1

)]−1
. For the first term in the bound of (16.27)

we get

1

2

1

2sk
1

4d

(
d+ sk
sk − 1

)
4tk+d

[(
tk + d+ sk + 1

sk − 1

)]−1

=
1

2

1

2sk
4tk

(d+ sk) · · · (d+ 2)

(tk + d+ sk + 1) · · · (tk + d+ 3)
.

Let r ≥ 1 be an integer which will be chosen later. From (16.24) follows that

for large enough k we have rtk < sk. Further we have tk > 0. We get

(tk + d+ sk + 1) · · · (tk + d+ 3)

(d+ sk) · · · (d+ 2)
=

(
1 +

tk + 1

d+ sk

)
· · ·
(
1 +

tk + 1

d+ 2

)

≥
r∏

j=1

(
1 +

tk + 1

jtk + d+ 1

)tk
.

Now we have
r∏

j=1

(
1 +

tk + 1

jtk + d+ 1

)
→

r∏

j=1

(
1 +

1

j

)
= (r + 1) as tk →∞.

Therefore, for large enough k, we obtain

rtk ≤ (tk + d+ sk + 1) · · · (tk + d+ 3)

(d+ sk) · · · (d+ 2)

and

1

2

1

2sk
1

4d

(
d+ sk
sk − 1

)
4tk+d

[(
tk + d+ sk + 1

sk − 1

)]−1

≤ 1

2

1

2sk

(
4

r

)tk

for all k ≥ K1(r, d), for some well chosen K1(r, d). Further one can show

that the other terms on the right hand side of (16.27) decay faster than
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1
sk

1
4d

(d+sk
sk−1

)
as k →∞. From (16.25) it follows that tk ≥ (d−1) log2 sk for all

k ≥ K2(d). Let r = 8, then we have (4/r)tk ≤ s1−dk . Therefore there exists a

Kd such that for all k ≥ Kd we have

D2
tk+d,sk

(Pk(d)) ≤
1

2sk
1

sd−1
k

.

We summarise the result in the following theorem.

Theorem 16.44 For any d ∈ N there exists an integer Kd > 0 and a

sequence of shifted digital (tk, tk+d, sk)-nets over Z2, (Pk(d))k≥1, with sk →
∞ as k →∞ and ⌈

tk
log2 sk

⌉
= d for all k ≥ Kd,

such that for all k ≥ Kd we have

L2,2tk+d(Pk(d)) ≤
1

2tk+d
1

2sk/2
1

s
(d−1)/2
k

√(
tk + d+ sk + 1

sk − 1

)
.

We use (16.26) again. Then by using Theorem 3.20 and the result above

we obtain that for any d ∈ N and for all k ≥ Kd we have

1

16

1

22sk
≤ Dtk+d,sk(Pk(d)) ≤

1

2sk/2
1

s
(d−1)/2
k

. (16.28)

This shows that the lower bound of Roth is also in s of the best possible

form. The small remaining gap in the constant is not surprising as the result

in Theorem 16.44 was obtained by averaging over well distributed point sets.

Some attempts have been made in improving the lower bound of Roth, but

no considerable progress has been made (see [158]). For small point sets

there exist other lower bounds which yield numerically better results than

the bound of Roth, but do not show the higher convergence rate (see [158]).

We note that the results in this section are, apart from the digital shift,

constructive as they are based on Niederreiter-Xing constructions of digital

nets and sequences.

Exercises

16.1 Show that the Hamming weight κm as given in Definition 16.1, defines

a metric on the vector space Zsmb .

16.2 Show that any optimum [s, k,m]-distribution in base b is also a ((k −
1)m,km, s)-net in base b. Hint: See [241, Proposition 1.1].

16.3 Prove Lemma 16.10.
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16.4 With the notation from Lemma 16.19, show that

χ
(m)
[0,y)(x) = bm

∫

Bm(x)
χ[0,y)(t) dt.

16.5 Show that for 0 ≤ k = κ0 + κ1b + · · · + κa−1b
a−1 < bm we have

a = vm(τm(k)) and κ(k) = κm(τm(k)).

16.6 Assume for every m ∈ N we have a (0,m, s)-net Pm in base b such that

bmL2,bm(Pm) ≤ fs,b(m)

where fs,b : R
+ → R+ is an increasing function. Construct for any car-

dinality N ≥ 2 a point set P consisting of N points in the s-dimensional

unit cube whose L2-discrepancy satisfies

NL2,N (P) ≤
√
bfs,b (⌊logbN⌋+ 1) .

16.7 Assume for every m ∈ N we have a (0,m, s)-net Pm in base b such that

bmD∗
bm(Pm) ≤ fs,b(m)

where fs,b : R
+ → R+ is an increasing function. Construct for any car-

dinality N ≥ 2 a point set P consisting of N points in the s-dimensional

unit cube whose star discrepancy satisfies

ND∗
N (P) ≤ bfs,b (⌊logbN⌋+ 1) .

16.8 Let s = 2, g = 3, w = 2 and choose b = 7. Find generating matrices of

a digital (0, 6, 2)-net P3,2 over Z7 and write them down explicitly.

16.9 Generalise Theorem 16.35 to the case of weighted L2-discrepancy. With

the notation from Theorem 16.35, show that

E
[
(L2,bm,γ(P̃bm))2

]

=
∑

u⊆Is
u6=∅

γu

[
1

bm2|u|

(
1−

(
1− 1

3bm

)|u|)
+

1

3|u|
∑

∅6=v⊆u

(
3

2

)|v|
B(v)

]
,

and

E
[
(L2,bm,γ(P̂bm))2

]
=
∑

u⊆Is
u6=∅

γu

[
2

(
1

3|u|
−
(
1

3
+

1

24b2m

)|u|)

+
1

bm2|u|

(
1−

(
1− 1

3bm

)|u|)
+

1

3|u|
∑

∅6=v⊆u

(
3

2

)|v|
B(v)

]
,

where B(v) is as in Theorem 16.35. Hint: Proceed as in the proof of

Theorem 16.35, but use Proposition 3.60.
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16.10 Let Pbm be a digital (t,m, s)-net over Zb with t < m. With the nota-

tion from Theorem 16.35, show that

E[(L2,bm,γ(P̂bm))2] ≤ E
[
(L2,bm,γ(P̃bm))2

]

and

E
[
(L2,bm,γ(P̃bm))2

]

≤ 1

b2m

∑

∅6=u⊆Is
γu

[
1

6
+ b2t

(
b2 − b+ 3

6

)|u|
(m− t)|u|−1

]
.

16.11 Let Pbm be a digital ((tu)∅6=u⊆Is ,m, s)-net over Zb, i.e., for ∅ 6= u ⊆ Is
the projected point set Pbm,u is a (tu,m, |u|)-net over Zb; see Exer-

cise 5.3. Assume that max∅6=u⊆Is tu < m. Show that then

E
[
(L2,bm,γ(P̃bm))2

]

≤ 1

b2m

∑

∅6=u⊆Is
γu

[
1

6
+ b2tu

(
b2 − b+ 3

6

)|u|
(m− tu)|u|−1

]
.

16.12 Let b ≥ 2, s > 3, 0 ≤ t < m and m − t ≥ s be such that a digital

(t,m, s)-net over Zb exists. Show that there exists a digital shift σm,s
of depth m such that for the shifted net Pb,t,s,bm,σm,s we have

L2,bm(Pb,t,s,bm,σm,s) ≤
bt

bm

√(
m− t+ s

s− 1

)(
b3

6(b+ 1)

)s/2 √
2

b

+O

(
m(s−2)/2

2m

)
.

16.13 For s = 2 let P2m be a digital (0,m, 2)-net over Z2. Let P̃2m be the

point set obtained after applying a random digital shift of depth m

independently to each coordinate of each point of P2m . Show that the

mean square L2-discrepancy of P̃2m is given by

E
[
(L2,2m(P̃2m))2

]
=

m

24 · 22m .

Hint: Use Theorem 16.35. A proof can also be found in [51, Theorem 2].

16.14 The two-dimensional Hammersley netHbm over Zb is the digital (0,m, 2)-
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net over Zb generated by the matrices

C1 =




1 0 . . . 0 0

0 1
. . . 0

...
. . .

. . .
. . .

...

0
. . . 1 0

0 0 . . . 0 1




and C2 =




0 0 . . . 0 1

0 . .
.

1 0
... . .

.
. .
.

. .
. ...

0 1 . .
.

0

1 0 . . . 0 0



.

Let H̃bm be the point set obtained after applying a random digital shift

of depth m independently to each coordinate of each point of Hbm .
Show that the mean square L2-discrepancy of H̃bm is given by

E
[
(L2,bm(H̃bm))2

]
=
b4 + 5b2 − 6

180b2
m

b2m
.

Hint: Use Theorem 16.35 and the formula
∑b−1

κ=1 sin
−4(κπ/b) = (b4 +

10b2 − 11)/45. A proof can also be found in [28, Theorem 3].

16.15 Determine the mean square L2-discrepancy of Ĥbm , where Hbm is as

in Exercise 16.14.



Appendix A

Walsh functions

Walsh functions play a very important role in the analysis of digital nets

over Zb. In this Appendix we recall the definition of Walsh functions and

we provide some important and useful results concerning these functions.

Many of these results are used within this book without further comment.

A standard reference for the theory of Walsh functions is the book of Schipp,

Wade & Simon [230]. This overview here is mainly based on [214].

A.1 Definition of Walsh functions

In 1923 Walsh [258] introduced a system of functions which is in some way

similar to the trigonometric function system {e2πikx : k ∈ Z} which is

connected to the well known Fourier theory. (However, the differences will

become clear in a moment.)

For b ≥ 2 we denote by ωb the primitive bth root of unity e2πi/b.

Definition A.1 Let k ∈ N0 with b-adic expansion k = κ0+κ1b+κ2b
2+· · ·

(this expansion is obviously finite). The kth b-adic Walsh function bwalk :

R→ C, periodic with period one, is defined as

bwalk(x) = ωκ0ξ1+κ1ξ2+κ2ξ3+···
b ,

for x ∈ [0, 1) with b-adic expansion x = ξ1b
−1 + ξ2b

−2 + ξ3b
−3 + · · · (unique

in the sense that infinitely many of the digits ξi must be different from b−1).
We call the system { bwalk : k ∈ N0} the b-adic Walsh function system.

In the literature the function system defined above is often called the

generalised Walsh function system. Only in the case b = 2 one speaks of

Walsh functions. However, within this book we also speak of Walsh functions

in the more general b-adic case.
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One of the main differences between Walsh functions and the trigonomet-

ric functions is that Walsh functions are only piecewise continuous. This is

clear, since Walsh functions are step functions as we show now.

Let k ∈ N0 with b-adic expansion k = κ0 + κ1b + · · · + κr−1b
r−1. Let

J = [a/br, (a+1)/br), with an integer 0 ≤ a < br, be a so-called elementary

b-adic interval of order r. Let a have b-adic expansion of the form a =

α0+α1b+· · ·+αr−1b
r−1. Then any x ∈ J has b-adic expansion x = αr−1b

−1+

αr−2b
−2 + · · · + α0b

−r + ξr+1b
−(r+1) + ξr+2b

−(r+2) + · · · with some digits

0 ≤ ξi ≤ b− 1 for i ≥ r + 1 and hence

bwalk(x) = ω
κ0αr−1+···+κr−1α0

b = bwalk(a/b
r).

We summarise this result in the following proposition.

Proposition A.2 Let k ∈ N with br−1 ≤ k < br. Then the kth Walsh

function bwalk is constant on elementary b-adic intervals of order r of the

form [a/br, (a+1)/br) with value bwalk(a/b
r). Further, bwal0 = 1 identical.

Now we generalise the definition of Walsh functions to higher dimensions.

Definition A.3 For dimension s ≥ 2, and k1, . . . , ks ∈ N0 we define the

s-dimensional b-adic Walsh function bwalk1,...,ks : R
s → C by

bwalk1,...,ks(x1, . . . , xs) :=

s∏

j=1

bwalkj(xj).

For vectors k = (k1, . . . , ks) ∈ Ns0 and x = (x1, . . . , xs) ∈ [0, 1)s we write,

with some abuse of notation,

bwalk(x) := bwalk1,...,ks(x1, . . . , xs).

The system { bwalk : k ∈ Ns0} is called the s-dimensional b-adic Walsh

function system.

As any s-dimensional Walsh function is a product of one-dimensional

Walsh functions, it is clear that s-dimensional Walsh functions are step

functions too.

A.2 Basic properties of Walsh functions

We introduce some notation. By ⊕ we denote the digit-wise addition modulo

b, i.e., for x =
∑∞

i=w ξib
−i and y =

∑∞
i=w ηib

−i we define

x⊕ y :=

∞∑

i=w

ζib
−i, where ζi ≡ ξi + ηi (mod b),
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provided that infinitely many ζi are different from b − 1. By ⊖ we denote

the digit-wise subtraction modulo b, i.e.,

x⊖ y :=

∞∑

i=w

ζib
−i, where ζi ≡ ξi − ηi (mod b),

provided that infinitely many ζi are different from b − 1. Correspondingly,

we define ⊖x := 0⊖ x. For vectors x and y we define x⊕ y, x⊖ y, and ⊖x
component wise. Note that all these operations depend on the base b.

Proposition A.4 For all k, l ∈ N0 we have

bwalk · bwall = bwalk⊕l and
1

bwalk
= bwalk = bwal⊖k.

Proof Let k = κ0 + κ1b + κ2b
2 + · · · and l = λ0 + λ1b+ λ2b

2 + · · · . Then
we have

bwalk(x) bwall(x) = ω
∑

i≥0 κiξi+1

b ω
∑

i≥0 λiξi+1

b = ω
∑

i≥0(κi+λi)ξi+1

b

= ω
∑

i≥0(κi⊕λi)ξi+1

b = bwalk⊕l(x),

where we used the periodicity of z 7→ ωzb , and also

1

bwalk(x)
= ω

−∑
i≥0 κiξi+1

b = ω
∑

i≥0(⊖κi)ξi+1

b = bwal⊖k(x).

As corollary to Proposition A.4 we get its multi-dimensional analogue.

Corollary A.5 For all k, l ∈ Ns0 we have

bwalk · bwall = bwalk⊕l and
1

bwalk
= bwalk = bwal⊖k.

Proposition A.6 Let k ∈ N0, then for all x, y ∈ [0, 1) for which x⊕y and

x⊖ y respectively is defined we have

bwalk(x) bwalk(y) = bwalk(x⊕ y) and bwalk(x) bwalk(y) = bwalk(x⊖ y),

respectively.

Proof Let k = κ0+κ1b+κ2b
2+ · · · and assume that x = ξ1b

−1+ξ2b
−2+ · · ·

and y = η1b
−1 + η2b

−2 + · · · satisfy the condition from the statement of the

proposition. Then we have

bwalk(x) bwalk(y) = ω
∑

i≥0 κiξi+1

b ω
∑

i≥0 κiηi+1

b

= ω
∑

i≥0 κi(ξi+1+ηi+1)

b = bwalk(x⊕ y),
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and

bwalk(x) bwalk(y) = ω
∑

i≥0 κiξi+1

b ω
−∑

i≥0 κiηi+1

b

= ω
∑

i≥0 κi(ξi+1−ηi+1)

b = bwalk(x⊖ y).

Again, as corollary to Proposition A.6 we get its multi-dimensional ana-

logue.

Corollary A.7 Let k ∈ Ns0, then for all x,y ∈ [0, 1)s, for which x⊕y and

x⊖ y respectively is defined we have

bwalk(x)· bwalk(y) = bwalk(x⊕y) and bwalk(x)· bwalk(y) = bwalk(x⊖y),

respectively.

Lemma A.8 For 1 ≤ k < br we have
∑br−1

a=0 bwalk(a/b
r) = 0.

Proof Let k = κ0 + κ1b + · · · + κr−1b
r−1. For κ ∈ {1, . . . , b − 1} we have∑b−1

a=0 ω
κa
b = 0 by the formula for a geometric sum and hence

br−1∑

a=0

bwalk(a/b
r) =

b−1∑

a0,...,ar−1=0

ω
κ0ar−1+···+κr−1a0
b =

r−1∏

i=0

b−1∑

a=0

ωκiab = 0,

as there is an i ∈ {0, 1, . . . , r − 1} such that κi 6= 0.

Proposition A.9 We have
∫ 1

0
bwalk(x) dx =

{
1 if k = 0,

0 if k 6= 0.

Proof We have bwal0 ≡ 1 and hence the integral is 1 for k = 0. Let now

k = κ0+κ1b+ · · ·+κr−1b
r−1 with κr−1 6= 0. From Proposition A.2 we know

that bwalk is constant on the elementary intervals of order r. Then we have

∫ 1

0
bwalk(x) dx =

br−1∑

a=0

∫ (a+1)/br

a/br
bwalk(x) dx =

1

br

br−1∑

a=0

bwalk(a/b
r)

and the result follows from Lemma A.8.

The next result shows that the s-dimensional Walsh function system is

orthonormal in L2([0, 1]
s).

Proposition A.10 For all k, l ∈ Ns0 we have
∫

[0,1]s
bwalk(x) bwall(x) dx =

{
1 if k = l,

0 if k 6= l.
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Proof By Corollary A.5 we have bwalk · bwall = bwalk⊖l. Hence
∫

[0,1]s
bwalk(x) bwall(x) dx =

∫

[0,1]s
bwalk⊖l(x) dx

and the result follows from Proposition A.9.

Theorem A.11 For fixed b, s ∈ N, b ≥ 2, the s-dimensional b-adic Walsh

function system is a complete orthonormal basis in L2([0, 1]
s).

For the proof of this fundamental result we need some preparation.

Lemma A.12 Let b ≥ 2 be an integer. Then the one-dimensional Lebesgue

measure λ is invariant under digit wise addition modulo b. In other words,

for all M ⊆ [0, 1) which is Lebesgue measurable and for all x ∈ [0, 1) we

have λ(M) = λ(M ⊕ x), where M ⊕ x := {y ⊕ x : y ∈M}.

Proof Let x ∈ [0, 1) and y ∈ M with x = ξ1b
−1 + ξ2b

−2 + · · · and y =

η1b
−1 + η2b

−2 + · · · . Then x⊕ y is not defined, if ξj + ηj ≡ b− 1 (mod b) or

equivalently ηj ≡ b− 1− ξj (mod b) for all indices j ≥ j0. Hence, the subset
{y ∈M : y ⊕ x not defined} is countable.
Consider an elementary interval J = [a/br, (a+1)/br) with a = α0+α1b+

· · ·+αr−1b
r−1. Each y ∈ I has the b-adic expansion y = αr−1b

−1+αr−2b
−2+

· · ·+ α0b
−r + ηr+1b

−(r+1) + ηr+2b
−(r+2) + · · · with digits 0 ≤ ηj ≤ b− 1 for

all j ≥ r + 1.

Now for y ∈ J we have

y ⊕ x =
αr−1 ⊕ ξ1

b
+ · · · + α0 ⊕ ξr

br
+
ηr+1 ⊕ ξr+1

br+1
+
ηr+2 ⊕ ξr+2

br+2
+ · · · .

Hence, y 7→ y ⊕ x maps all but countably many points from J to the ele-

mentary interval

J ′ =
[
αr−1 ⊕ x1

b
+ · · ·+ α0 ⊕ xr

br
,
αr−1 ⊕ x1

b
+ · · ·+ α0 ⊕ xr

br
+

1

br

)
.

Furthermore, for all but countably many points y ∈ J ′ we can define the

inverse mapping y 7→ y ⊖ x. Hence ⊕x preserves the measure of elementary

intervals.

Since every open subset from [0, 1] can be written as a countable union of

elementary intervals it follows that y 7→ y⊕x preserves the measure of every

open subset of [0, 1) and hence the result follows for all Lebesgue measurable

subsets from [0, 1).



A.2 Basic properties of Walsh functions 587

Corollary A.13 Let c ∈ [0, 1)s, then for all f ∈ L2([0, 1]
s) we have

∫

[0,1]s
f(x) dx =

∫

[0,1]s
f(x⊕ c) dx.

Proof It is enough to show the result for s = 1. Let c ∈ [0, 1) and let

f ∈ L2([0, 1]). Define g(x) = f(x ⊕ c). For each M ⊆ f([0, 1]) we have

g−1(M) = f−1(M) ⊖ c and hence, by Lemma A.12, we have λ(g−1(M)) =

λ(f−1(M)). Now the result follows from the definition of the Lebesgue-

integral.

Definition A.14 An s-dimensional b-adic Walsh series is a function f :

[0, 1]s → C of the form

f =
∑

k∈Ns
0

f̂(k) bwalk

for certain f̂(k) ∈ C which are called theWalsh coefficients orWalsh-Fourier

coefficients of the function f . Furthermore, a Walsh polynomial is a finite

Walsh series.

Remark A.15 For uniformly convergent Walsh series f one can compute

the kth Walsh coefficient by

f̂(k) =

∫

[0,1]s
f(x) bwalk(x) dx.

We introduce very special Walsh polynomials, the so-called Walsh-Dirichlet

kernels.

Definition A.16 For k = (k1, . . . , ks) ∈ Ns the kth Walsh-Dirichlet kernel

is defined as

Dk =

k1−1∑

l1=0

· · ·
ks−1∑

ls=0

bwall1,...,ls .

Lemma A.17 For n ∈ N0 let bn = (bn, . . . , bn) ∈ Ns, then we have

Dbn(x) = bnsχ[0,b−n)s(x) for x ∈ [0, 1)s.

Proof For s = 1 we show the result by induction on n ∈ N0. Let x ∈ [0, 1).

We have D1(x) = bwal0(x) = 1 = b0·sχ[0,b−0)(x) and hence the result

holds for n = 0. Assume the formula holds for Dbn−1(x). Then we have

Dbn(x) =

bn−1∑

l=0

bwall(x) =

b−1∑

i=0

bn−1−1∑

l=0

bwall⊕i·bn−1(x)
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=
b−1∑

i=0

bwali·bn−1(x)
bn−1−1∑

l=0

bwall(x)

= Dbn−1(x)

b−1∑

i=0

bwali·bn−1(x) = Dbn−1(x)

b−1∑

i=0

(ωξnb )i,

where ξn is the nth digit of x in its base b expansion. The last sum is equal

to bn−1b = bn if x ∈ [0, b−n+1) and ξn = 0 which is equivalent to x ∈ [0, b−n)
and equal to 0 in all other cases. Hence the result follows for s = 1.

For s > 1 the result follows immediately from the identity

Dbn(x) =

bn−1∑

l1,...,ls=0

bwall1,...,ls(x) =

s∏

i=1

bn−1∑

li=0

bwalli(xi) =

s∏

i=1

Dbn(xi)

together with the result for the case s = 1.

Proof of Theorem A.11 We know already from Proposition A.10 that Walsh

functions are orthonormal in L2([0, 1]
s). Hence it remains to show that the

Walsh polynomials are dense in L2([0, 1]
s).

For n = (n1, . . . , ns) ∈ Ns denote by Sn(x, f) the nth partial sum of the

form

Sn(x, f) =

n1−1∑

l1=0

· · ·
ns−1∑

ls=0

f̂(l) bwall1,...,ls(x),

with f̂(l) =
∫
[0,1]s f(t) bwall(t) dt. Then we have

Sn(x, f) =

n1−1∑

l1=0

· · ·
ns−1∑

ls=0

(∫

[0,1]s
f(t) bwall1,...,ls(t) dt

)
bwall1,...,ls(x)

=

∫

[0,1]s
f(t)

n1−1∑

l1=0

· · ·
ns−1∑

ls=0

bwall1,...,ls(x⊖ t) dt

=

∫

[0,1]s
f(t)Dn(x⊖ t) dt =

∫

[0,1]s
f(x⊖ t)Dn(t) dt.

With the help of this formula we can now estimate the approximation error

for certain partial sums. With Lemma A.17 we obtain

|Sbn(x, f)− f(x)| =
∣∣∣∣∣

∫

[0,1]s
f(x⊖ t)Dbn(t) dt− bns

∫

[0,b−n)s
f(x) dt

∣∣∣∣∣
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= bns

∣∣∣∣∣

∫

[0,b−n)s
(f(x⊖ t)− f(x)) dt

∣∣∣∣∣

= bns

∣∣∣∣∣

∫

x⊖[0,b−n)s
(f(t)− f(x)) dt

∣∣∣∣∣
≤ sup

{
|f(t)− f(x)| : x, t ∈ x⊖ [0, b−n)s

}
bnsλs(x⊖ [0, b−n)s).

Assume now that f ∈ C([0, 1]s). Hence f is also uniformly continuous

on [0, 1]s and thus for every ε > 0 there exists an N0 = N0(ε) such that

for all n > N0 and for all x,y ∈ [0, 1]s with |x − y|∞ < b−n we have

|f(x)− f(y)| < ε.

Obviously λs (x⊖ [0, b−n)s) = b−ns and hence we obtain

|Sbn(x, f)− f(x)| < ε

for all n > N0(ε) and this holds independently from x as f is uniformly

continuous. Hence

‖Sbn(x, ·)− f‖∞ < ε

for all n > N0(ε). This means that the Walsh polynomials are dense in

C([0, 1]s) with respect to the sup-norm ‖ · ‖∞ which in turn is dense in

L2([0, 1]
s) with respect to the L2-norm ‖ · ‖2. Hence the Walsh polynomials

are dense also in L2([0, 1]
s).

Since L2([0, 1]
s) is a Hilbert space, we have now that the Walsh functions

are a complete orthonormal system in L2([0, 1]
s).

Note that Bessel’s inequality

∑

k∈Ns
0

|f̂(k)|2 ≤
∫

[0,1]s
|f(x)|2 dx (A.1)

holds for functions f ∈ L2([0, 1]
s). Since

0 ≤
∫

[0,1]s
|f(x)− Sn(x, f)|2 dx

=

∫

[0,1]s
|f(x)|2 dx−

∫

[0,1]s
f(x)Sn(x, f) dx

−
∫

[0,1]s
f(x)Sn(x, f) dx+

∫

[0,1]s
|Sn(x, f)|2 dx

=

∫

[0,1]s
|f(x)|2 dx−

n1−1∑

l1=0

· · ·
ns−1∑

ls=0

|f̂(l1, . . . , ls)|2, (A.2)
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we have
∑n1−1

l1=0 · · ·
∑ns−1

ls=0 |f̂(l1, . . . , ls)|2 ≤
∫
[0,1]s |f(x)|2 dx, and by consid-

ering n1, . . . , ns →∞ the result follows. We also have the following lemma.

Lemma A.18 Let {ak ∈ C : k ∈ Ns0} be a set of complex numbers such

that
∑

k∈Ns
0
|ak|2 <∞. Then the Walsh series

∑
k∈Ns

0
ak bwalk converges in

L2([0, 1]
s).

Proof Since L2([0, 1]
s) is complete, we only need to show that the partial

sums Sn =
∑n1−1

l1=0 · · ·
∑ns−1

ls=0 al1,...,ls bwall1,...,ls , where n = (n1, . . . , ns) ∈ Ns,

form a Cauchy sequence in L2([0, 1]
s).

Indeed, for any n,n′ ∈ Ns0 with n = (n1, . . . , ns) and n′ = (n′1, . . . , n
′
s),

where we assume that n1 > n′1, . . . , ns > n′s, we have

∫

[0,1]s
|Sn(x, f)− Sn′(x, f)|2 dx =

n1−1∑

l1=n′
1

· · ·
ns−1∑

ls=n′
s

|al1,...,ls |2 → 0

as n′1, . . . , n
′
s →∞. Thus the partial sums Sn form a Cauchy sequence and

hence the result follows as L2([0, 1]
s) is complete.

The completeness of the Walsh function system shown in Theorem A.11

is equivalent to the statement that Plancherel’s identity
∫

[0,1]s
|f(x)|2 dx =

∑

k∈Ns
0

|f̂(k)|2

holds. This is shown in the following theorem (see for example [117, Sec-

tion I.5] for a more general statement).

Theorem A.19 The following statements are equivalent:

(a) The Walsh function system is complete in L2([0, 1]
s).

(b) For every f ∈ L2([0, 1]
s) we have
∫

[0,1]s
|f(x)|2 dx =

∑

k∈Ns
0

|f̂(k)|2.

(c) For every f ∈ L2([0, 1]
s) we have

lim
n1,...,ns→∞

∫

[0,1]s
|f(x)− Sn1,...,ns(x, f)|2 dx = 0.

Proof The equivalence of (b) and (c) follows from (A.2).

Assume now that (b) holds. Let 〈g, h〉L2 =
∫
[0,1]s g(x)h(x) dx denote the

inner product in L2([0, 1]
s). If a function f ∈ L2([0, 1]

s) is orthogonal to

bwalk for all k ∈ Ns0 it follows that f̂(k) = 〈f, bwalk〉L2 = 0 for all k ∈ Ns0
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and (b) implies that
∫
[0,1]s |f(x)|2 dx = 0. Thus the Walsh function system

is complete in L2([0, 1]
s) and hence (b) implies (a).

Assume now that (a) holds. We complete the proof by showing that (c)

follows. From Bessel’s inequality and Lemma A.18 it follows that for every

f ∈ L2([0, 1]
s) we have S(·, f) :=

∑
k∈Ns

0
f̂(k) bwalk ∈ L2([0, 1]

s). Hence

〈f − S(·, f), bwalk〉 = 0 for all k ∈ Ns0. Thus, if the Walsh function system

{ bwalk : k ∈ Ns0} is complete, it follows that
∫
[0,1]s |f(x) − S(x, f)|2 dx =

0.

A.3 Convergence of the Walsh series

For our purposes here we need strong assumptions on the convergence of the

Walsh series
∑∞

k=0 f̂(k) bwalk(x) to the function f , i.e., we require that the

partial series
∑L

k=0 f̂(k) bwalk(x) converges to f(x) at every point x ∈ [0, 1)

as L→∞.

For continuous functions f : [0, 1)→ R we can use the argument in [77, p.

373] to show that certain partial sums of the Walsh series converge at every

point x ∈ [0, 1) to the function value f(x). Indeed, for a given x ∈ [0, 1) we

have

bℓ−1∑

k=0

f̂(k) bwalk(x) =

∫ 1

0
f(y)

bℓ−1∑

k=0

bwalk(x) bwalk(y) dy

= bℓ
∫ b−ℓ⌊bℓx⌋+b−ℓ

b−ℓ⌊bℓx⌋
f(y) dy.

As the function f is continuous it follows that
∑bl−1

k=0 f̂(k) bwalk(x) converges

to f(x) as l → ∞. Hence, if the partial sums
∑L

k=0 f̂(k) bwalk(x) are a

Cauchy sequence, then we also have that
∑L

k=0 f̂(k) bwalk(x) converges to

f(x) as L→∞.

For instance, if
∑∞

k=0 |f̂(k)| <∞, then the partial sums
∑L

k=0 f̂(k) bwalk(x)

are a Cauchy sequence and hence
∑bl−1

k=0 f̂(k) bwalk(x) converges to f(x) as

l→∞. In this case the convergence is even uniformly in x.

We have shown the following result which is sufficient for our purposes.

For more elaborate results in this direction see [230].

Theorem A.20 Let f : [0, 1] → R be a continuous function and assume

that
∑∞

k=0 |f̂(k)| < ∞. Then
∑L

k=0 f̂(k) bwalk(x) converges uniformly to
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f(x) as L→∞ and we have

f(x) =

∞∑

k=0

f̂(k) bwalk(x) for all x ∈ [0, 1).

Remark A.21 We remark that in [258] it was shown that there are con-

tinuous functions f for which
∑L

k=0 f̂(k) bwalk(x) does not converge at some

given point x as L → ∞. Therefore continuity is not a sufficient condition

to ensure that
∑L

k=0 f̂(k) bwalk(x) is a Cauchy sequence.

However, Walsh [258] already proved the following result. If the function

f is not merely continuous, but has bounded variation (for instance, if f

has a derivative which is square integrable, i.e.,
∫ 1
0 |f ′(y)|2 dy < ∞, then f

has bounded variation), then it follows that
∑L

k=0 f̂(k) bwalk(x) is a Cauchy

sequence for every x. Hence, in this case we have
∑L

k=0 bwalk(x)→ f(x) as

L→∞ for all x.

The argument above can also be extended to continuous functions f :

[0, 1)s → R, see Exercise A.9.

A.4 Walsh series expansions of a certain function

In this section we provide the b-adic Walsh series representations of a func-

tions which is used throughout this book.

Lemma A.22 For b ≥ 2 an integer and x ∈ [0, 1) we have

x− 1

2
=

∞∑

a=1

b−1∑

κ=1

1

ba(ω−κ
b − 1)

bwalκba−1(x). (A.3)

Proof Let x = ξ1b
−1+ ξ2b

−2+ · · · and k = κa−1b
a−1+ · · ·+κ1b+κ0, where

κa−1 6= 0. Then we have

∫ 1

0

(
x− 1

2

)
bwalk(x) dx

=

b−1∑

ξ1=0

· · ·
b−1∑

ξa=0

ω
−(ξ1κ0+···+ξaκa−1)
b

∫ ξ1
b
+···+ ξa

ba
+ 1

ba

ξ1
b
+···+ ξa

ba

(
x− 1

2

)
dx

=
1

ba

b−1∑

ξ1=0

ω−ξ1κ0
b · · ·

b−1∑

ξa=0

ω
−ξaκa−1

b

(
ξ1
b
+ · · ·+ ξa

ba

)
, (A.4)
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where we used the facts that
∫ ξ1

b
+···+ ξa

ba
+ 1

ba

ξ1
b
+···+ ξa

ba

(
x− 1

2

)
dx =

1

ba

(
ξ1
b
+ · · ·+ ξa

ba

)
+

1

2 · ba
(

1

ba
− 1

)

and
∑b−1

ξa=0 ω
−ξaκa−1

b = 0 for κa−1 6= 0. For any digits 0 ≤ ξ1, . . . , ξa−1 ≤ b−1
we have

b−1∑

ξa=0

(
ξ1
b
+ · · ·+ ξa−1

ba−1
+
ξa
ba

)
ω
−ξaκa−1

b =
b−1∑

ξa=0

ξa
ba
ω
−ξaκa−1

b

=
b

ba(ω
−κa−1

b − 1)
,

as for κa−1 6= 0 we have

b−1∑

ξa=0

ω
−ξaκa−1

b = 0 and
b−1∑

ξa=0

ξaω
−ξaκa−1

b =
b

ω
−κa−1

b − 1
. (A.5)

Therefore we obtain from (A.4)

∫ 1

0

(
x− 1

2

)
bwalk(x) dx =

b

b2a(ω
−κa−1

b − 1)

b−1∑

ξ1=0

ω−ξ1κ0
b · · ·

b−1∑

ξa−1=0

ω
−ξa−1κa−2

b .

For an integer 0 ≤ κ ≤ b− 1 we use

b−1∑

ξ=0

ω−ξκ
b =

{
b if κ = 0,

0 if κ 6= 0,

and obtain
∫ 1

0

(
x− 1

2

)
bwalk(x) dx =

{
1

ba(ω
−κa−1
b −1)

if κ0 = · · · = κa−2 = 0,

0 otherwise.

Thus, for x ∈ [0, 1), we have

x− 1

2
=

∞∑

a=1

b−1∑

κ=1

1

ba(ω−κ
b − 1)

bwalκba−1(x).

With Lemma A.22 we can prove a formula for a trigonometric sum which

is often used throughout this book.

Corollary A.23 For b ≥ 2 and for l ∈ {−(b− 1), . . . , b− 1} we have

b−1∑

κ=1

ωκlb
sin2(κπ/b)

= 2(|l|(|l| − b) + b2 − 1

3
.
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In particular,
∑b−1

κ=1 sin
−2(κπ/b) = (b2 − 1)/3.

Proof Using Lemma A.22 and the orthogonality properties of the Walsh

functions (see Proposition A.10) we obtain (see also (12.8))

2

∞∑

a=1

b−1∑

κ=1

1

b2a|ωκb − 1|2 =

∫ 1

0

∫ 1

0
|x− y|2 dxdy =

1

6

and hence

b−1∑

κ=1

1

|ωκb − 1|2 =
b2 − 1

12
.

For 1 ≤ l ≤ b − 1 we use (12.7), which states that for any x, y ∈ [0, 1) we

have
∫ 1

0
|(x⊕ σ)− (y ⊕ σ)|2 dσ

=
1

6
− 2

∞∑

a=1

b−1∑

κ=1

1

b2a|ωκb − 1|2 bwalκba−1(x) bwalκba−1(y).

Take x = l/b and y = 0, then the left hand side of the equation yields

∫ 1

0
|(x⊕ σ)− (y ⊕ σ)|2 dσ =

∫ 1

0

∣∣∣∣
(
l

b
⊕ σ

)
− σ

∣∣∣∣
2

dσ

=

∫ b−l
b

0

∣∣∣∣
(
l

b
+ σ

)
− σ

∣∣∣∣
2

dσ +

∫ 1

b−l
b

∣∣∣∣
(
l − b
b

+ σ

)
− σ

∣∣∣∣
2

dσ

=

∫ b−l
b

0

l2

b2
dσ +

∫ 1

b−l
b

(l − b)2
b2

dσ

=
b− l
b

l2

b2
+

(
1− b− l

b

)
(l − b)2
b2

=
l(b− l)
b2

,

and for the right hand side we obtain

1

6
− 2

∞∑

a=1

b−1∑

κ=1

1

b2a|ωκb − 1|2 bwalκba−1(x) bwalκba−1(y)

=
1

6
− 2

b−1∑

κ=1

ωlκb
b2|ωκb − 1|2 − 2

∞∑

a=2

1

b2a

b−1∑

κ=1

1

|ωκb − 1|2
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=
b2 − 1

6b2
− 2

b2

b−1∑

κ=1

ωlκb
|ωκb − 1|2 .

Thus, for 0 ≤ l ≤ b− 1 we have

b−1∑

κ=1

ωκlb
|ωκb − 1|2 =

|l|(|l| − b)
2

+
b2 − 1

12
. (A.6)

To show that (A.6) holds for −(b− 1) ≤ l ≤ −1, use x = 0 and y = −l/b
in the argument above. The details are omitted.

Further observe that |ωκb −1|2 = |eπiκ/b|2|eπiκ/b−e−πiκ/b|2 = 4 sin2(κπ/b)

and therefore we have the desired result for −(b− 1) ≤ l ≤ b− 1.

Exercises

A.1 Show that a Walsh function can only take finitely many function values,

namely the bth roots of unity.

A.2 For k ∈ N0, the kth Rademacher function rk : R → R, periodic with

period one, is defined by r0(x) = 1 for all x ∈ [0, 1) and for k ∈ N,

rk(x) = (−1)j if x ∈ [j/2k, (j +1)/2k) for some integer 0 ≤ j ≤ 2k − 1.

1. Show that the system of Rademacher functions is a sub-class of the

dyadic (i.e., b = 2) Walsh function system.

2. For b = 2, give a definition of Walsh functions in terms of Rademacher

functions.

A.3 Let k = (k1, . . . , ks) ∈ Ns0 with bri ≤ ki < bri+1 for all 1 ≤ i ≤ s. Show

that bwalk is constant on an elementary interval of the form

s∏

i=1

[
ai
bri
,
ai + 1

bri

)

where 0 ≤ ai < bri are integers for all 1 ≤ i ≤ s.
A.4 Show that we have

1

bwalk(x)
= bwalk(x) = bwalk(⊖x)

whenever ⊖x is defined.

A.5 Let f : [0, 1]s → R be a function which is constant on any interval of

the form
∏s
i=1[aib

−n, (ai+1)b−n) with integers 0 ≤ ai < bn. Show that

f is a Walsh polynomial.

A.6 Show that for all k ∈ Ns we have
∫
[0,1]s Dk(x) dx = 1.

A.7 Verify Bessel’s inequality (A.1) for the function f(x) = x2.



596 Walsh functions

A.8 Show that the Rademacher functions, defined in Exercise A.2, are not

complete.

A.9 Show that the result on the convergence of Walsh series in Section A.3

also holds for s-dimensional continuous functions f : [0, 1]s → R for

which
∑

k∈Ns
0
|f̂(k)| <∞. Hint: See [37, Section 3.3] for the result.

A.10 Define a function f : [0, 1)→ R for which
∑∞

k=0 |f̂(k)| =∞.

A.11 Let b = 2 and f(x) = x. Draw the graphs of f and of
∑2l−1

k=0 f̂(k) bwalk(x)

for l = 0, 1, 2, 3.



Appendix B

Algebraic Function Fields

Many important digital constructions as, for example, Niederreiter-Xing nets

and sequences are based on the theory of algebraic function fields. In this

appendix we give a brief summary of the basic definitions and facts of this

field that are necessary for the construction of digital nets and sequences.

The following survey is based on Niederreiter’s overview article [178] and on

the first chapter of Stichtenoth’s book [252]. A recent introduction to the

subject can also be found in [195]. Further information can also be found in

the books of Weiss [262] or of Niederreiter & Xing [193]. For the proofs of

the results we refer to these references.

B.1 Valued Fields

Definition B.1 LetK be an arbitrary field. A (nonarchimedean) valuation

of K is a map ν : K → R ∪ {+∞} which satisfies the properties

1. ν(x) =∞ if and only if x = 0, the zero element of K;

2. for all x, y ∈ K we have ν(xy) = ν(x) + ν(y);

3. for all x, y ∈ K we have ν(x+ y) ≥ min(ν(x), ν(y)); and

4. ν(K∗) 6= {0}.

If furthermore ν(K∗) is a discrete set, then ν is called a discrete valuation.

Especially, when ν(K∗) = Z, then we call ν a normalised valuation. A pair

(K, ν) is called a normalised field.

Throughout this overview we only consider discrete valuations.

Example B.2 Let K = Q and let p be an arbitrary prime number. For

each x ∈ Q \ {0} =: Q∗ there exists a unique integer m ∈ Z such that

x = pma
b where p is neither a divisor of a nor of b. Then define |x|p := p−m
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and set further |0|p := 0. The map | · |p : Q → R+
0 , called the (normalised)

p-adic absolute value on Q, satisfies

1. |x|p = 0 if and only if x = 0;

2. for all x, y ∈ Q we have |xy|p = |x|p|y|p; and
3. for all x, y ∈ Q we have |x+ y|p ≤ max(|x|p, |y|p) ≤ |x|p + |y|p.
Any map defined in Q that satisfies the properties 1.,2. and 3. in the wider

sense and that has at least one value different from 1 on Q∗ is called an

absolute value on Q. A further example is the ordinary absolute value | · |.
It follows from the unique prime factorisation of integers that for any

x ∈ Q∗ we have the identity

|x| ·
∏

p

|x|p = 1,

where
∏
p denotes the product over all prime numbers p. Now for x ∈ Q∗,

x = pma
b such that p ∤ a and p ∤ b we set

νp(x) := − logp |x|p = m

where logp is the logarithm to the base p. Furthermore we set νp(0) := +∞.

Then it is easy to check that for any prime number p the map νp : Q →
Z ∪ {+∞} is a normalised valuation of Q, the so-called p-adic valuation of

Q.

The proof of the following proposition is an easy exercise, or can alterna-

tively be found in [178].

Proposition B.3 Let (K, ν) be a valued field. Then we have

1. ν(1) = ν(−1) = 0;

2. for all x ∈ K we have ν(−x) = ν(x);

3. for all x, y ∈ K, y 6= 0 we have ν(xy−1) = ν(x)− ν(y);
4. for all x, y ∈ K with ν(x) 6= ν(y) we have ν(x + y) = min(ν(x), ν(y));

and

5. ν(K∗) is a nonzero discrete subgroup of (R,+).

We illustrate item 4 of the above proposition with an example.

Example B.4 Let K = Q and ν = νp, the p-adic valuation of Q for a

given prime p. Let x, y ∈ Z \ {0} and write them in the form x = pma,

y = pnb with a, b ∈ Z, p ∤ a, p ∤ b and m,n ∈ N0. If we suppose m < n, then

we have x+ y = pm(a+ pn−mb) with a+ pn−mb ≡ a 6≡ 0 (mod p). Hence

ν(x+ y) = m = min(ν(x), ν(y)).
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B.2 Places and Valuation Rings

Two valuations ν and µ of a field K are called equivalent, if there exists a

constant c > 0 such that ν(x) = cµ(x) for all x ∈ K. This definition yields

an equivalence relation between valuations of a field.

Definition B.5 An equivalence class P of valuations of a field K is called

a place of K.

Since ν(K∗) is a nonzero discrete subgroup of (R,+) we have ν(K∗) = αZ

for some positive α ∈ R. Thus, there exists a uniquely determined normalised

valuation of K that is equivalent to ν. This means that every place P of K

contains a uniquely determined normalised valuation of K which is denoted

by νP . Hence, places of K can be identified with normalised valuations of

K.

Definition B.6 Let P be a place of K. Then

OP := {x ∈ K : νP (x) ≥ 0}

is called the valuation ring of P .

It follows easily from Definition B.1 and Proposition B.3 that OP is an

integral domain with 1 ∈ OP .

Proposition B.7 Let P be a place of K. The valuation ring OP of P has

a unique maximal ideal which is given by

MP := {x ∈ K : νP (x) > 0}.

Especially, OP /MP is a field.

A proof of this result can be found in [178]. The ideal MP is even a

principal ideal which can be seen as follows. Take any t ∈ OP with νP (t) = 1.

For x ∈ OP we have νP (tx) = νP (t) + νP (x) = 1 + νP (x) > 0 and hence

tOP ⊆MP . On the other hand, let x ∈MP . Since νP (t) = 1 it follows that

t 6= 0. Hence x = tt−1x and νP (t
−1x) = νP (x) − 1 ≥ 0. Thus MP ⊆ tOP .

Together we have MP = tOP . Such a t is called a local parameter at P .

Definition B.8 The field OP /MP is called the residue class field of P .

The ring homomorphism OP → OP /MP , x 7→ x+MP , is called the residue

class map of P .

Example B.9 For a given prime p let νp be the p-adic valuation of Q

(which is obviously normalised). Write all rationals a
b in reduced form, i.e.,
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gcd(a, b) = 1. Then we have

Op =
{a
b
∈ Q : gcd(b, p) = 1

}
and Mp =

{a
b
∈ Q : p|a

}
.

For any b ∈ Z write b for the residue class of bmodulo p. If gcd(b, p) = 1, then

b ∈ Zp := Z/pZ has a multiplicative inverse b
−1 ∈ Zp. The map ψ : Op → Zp

given by ψ
(
a
b

)
= ab

−1
is a well defined ring homomorphism with kernel Mp

and so, by the homomorphism theorem we find that Op/Mp is isomorphic

to the field Zp.

B.3 Rational Function Fields

Let k be an arbitrary field and let k(x) be the rational function field over

k in the variable x. In this context, k is called the constant field of k(x).

We always assume that the constant field k is a finite field. The elements of

k(x) can be represented in the form f(x)
g(x) with f(x), g(x) ∈ k[x], g(x) 6= 0

and gcd(f(x), g(x)) = 1.

Valuations of k(x) can be constructed in the same way as for Q with

primes p replaced by irreducible polynomials. Fix a monic irreducible poly-

nomial p(x) ∈ k[x]. Using unique factorisation in k[x], every nonzero rational

function r(x) ∈ k(x) can be written in the form

r(x) = p(x)m
f(x)

g(x)

with a unique m ∈ Z, where p(x) ∤ f(x) and p(x) ∤ g(x). Then we put

νp(x)(r(x)) = m

and furthermore we define νp(x)(0) = ∞. One can easily check that νp(x) is

a normalised valuation of k(x).

Another normalised valuation of k(x) can be obtained from the degree

map. If r(x) = f(x)
g(x) 6= 0, then we set

ν∞(r(x)) := deg(g(x)) − deg(f(x))

and furthermore, ν∞(0) = ∞. Again it is easy to check that ν∞ is a nor-

malised valuation of k(x).

The valuations νp(x), with monic and irreducible p(x) ∈ k[x] and ν∞ are

pairwise nonequivalent, since νp(x)(p(x)) = 1, whereas νq(x)(p(x)) = 0 for

monic irreducible polynomials q(x) 6= p(x), and ν∞(p(x)) < 0. Thus we get

a set of places of k(x) by

{p(x) ∈ k[x] : p(x) ∈ k[x] monic and irreducible} ∪ {∞}.
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In the case that the constant field k is finite (we always assume this within

this overview), then the above defined set of places gives already all places

of the rational function field k(x). The proof of the following result can be

found in [178].

Theorem B.10 If the constant field k is finite, then the set of all places

of k(x) is given by

{p(x) ∈ k[x] : p(x) ∈ k[x] monic and irreducible} ∪ {∞}.

The places p(x) are called the finite places of k(x) and the place ∞ is

called the infinite place of k(x).

Remark B.11 If the field k is algebraically closed, which means that every

polynomial f(x) ∈ k[x] of positive degree has a root in k, then the monic

irreducible polynomials over k are exactly the monomials x− a with a ∈ k.
Thus, the set of places can be identified with k ∪ {∞}.
Example B.12 As for Q (see Example B.9) one can show that the residue

class field of the place p(x) is isomorphic to k[x]/(p(x)) where (p(x)) denotes

the principal ideal defined by p(x). That is, Op(x)/Mp(x)
∼= k[x]/(p(x)) and

[Op(x)/Mp(x) : k] = deg(p(x)).

For the place ∞ we have

O∞ =

{
f(x)

g(x)
∈ k(x) : deg(f(x)) ≤ deg(g(x))

}

and

M∞ =

{
f(x)

g(x)
∈ k(x) : deg(f(x)) < deg(g(x))

}
.

Every r(x) ∈ O∞ can be written in the form

r(x) =
adx

d + ad−1x
d−1 + · · · + a0

xd + bd−1xd−1 + · · · + b0

with ai, bj ∈ k. Hence the map ψ : O∞ → k, ψ(r(x)) = ad, is a well defined

surjective ring homomorphism with kernelM∞. Hence the residue class field

of the place ∞ is isomorphic to k, i.e., O∞/M∞ ∼= k and [O∞/M∞ : k] = 1.

Remark B.13 For every nonzero r(x) ∈ k(x) we have

ν∞(r(x)) +
∑

p(x)

νp(x)(r(x)) deg(p(x)) = 0,

where the sum is extended over all monic irreducible polynomials p(x) ∈
k[x]. Note that the sum makes sense since νp(x)(r(x)) = 0 for all but finitely
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many polynomials p(x). Because of the properties of valuations, it suffices

to show the formula for nonzero monic polynomials f(x) ∈ k[x]. Assume

that f(x) =
∏n
i=1 pi(x)

mi is the canonical factorisation of f(x) into powers

of irreducible polynomials. Then we have

∑

p(x)

νp(x)(f(x)) deg(p(x)) =
n∑

i=1

mi deg(pi(x)) = deg(f(x)) = −ν∞(f(x)).

For the next assertion we refer to [178, Remark 5.4].

Proposition B.14 Every valuation of a rational function field k(x) with

finite constant field k is discrete.

B.4 Algebraic Function Fields and Their Valuations

An algebraic function field (in one variable) is a finite extension of a field of

rational functions (in one variable). More rigorously:

Definition B.15 A field F is an algebraic function field over the finite

field k, if there exists a transcendental element z ∈ F over k such that F is

a finite extension of the rational function field k(z).

An example of an algebraic function field is of course a rational function

field over a finite field.

Now we consider valuations of algebraic function fields. The proof of the

subsequent proposition is implicitly given in [178, Proof of Proposition 6.2].

Proposition B.16 The restriction µ of a valuation ν of an algebraic func-

tion field F to k(z) yields a valuation of k(z).

By the above proposition, µ is a valuation of k(z) and hence by Proposi-

tion B.14 discrete. Since [F : k(z)] <∞ we obtain the following result.

Corollary B.17 Every valuation of an algebraic function field is discrete.

Obviously, for equivalent valuations of F the restrictions to k(z) are equiv-

alent as well. Thus a place Q of F corresponds by restriction to a unique

place P of k(z). In this context one says Q lies over P or P lies under Q.

Hence, by Theorem B.10, every place of F lies either over a place of k(z)

that corresponds to a monic irreducible polynomial from k[z] or over the

infinite place of k(z).

Proposition B.18 Let F be an algebraic function field over the finite

field k. Then the residue class field OP /MP of every place P of F is a finite

extension of an isomorphic copy of k.
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In some sense also the converse of Proposition B.16 is true. Every valuation

of a rational function field can be extended to a valuation of an algebraic

function field. For a proof of the following result see [252, Section III.1] or

[262, Section 2–4].

Theorem B.19 Let F be a finite extension of the rational function field

k(z). Then every place of k(z) lies under at least one and at most [F : k(z)]

places of F .

Let k̃ be the algebraic closure of k in F , i.e.,

k̃ = {x ∈ F : x is algebraic over k}.
Then k̃ is a field with k ⊆ k̃ ⊆ F , called the full constant field of F . It can

be shown (see [178, Proposition 6.5]) that k̃ is a finite extension of the finite

field k and hence k̃ is a finite field too. Note that hence also k(z) ⊆ k̃(z) ⊆ F
and so F is a finite extension of k̃(z). Furthermore, z is also transcendental

over k̃. Therefore F is also an algebraic function field over k̃.

In the following we usually assume that k is already the full constant field

of F . We stress this by using the notation F/k for an algebraic function field

with full constant field k.

Definition B.20 The degree deg(P ) of a place P of F/k is defined to

be the degree of the residue class field OP /MP of P over k, i.e., deg(P ) =

[OP /MP : k]. A place of F/k of degree 1 is called a rational place of F/k.

Example B.21 Let F = k(x) be a rational function field over k. For any

nonconstant rational function r(x) ∈ F there exists a place P of F such that

νP (r(x)) 6= 0. Let r(x) ∈ F be algebraic over k, hence r(x) ∈ k̃. By means

of the minimal polynomial we get

r(x)d + cd−1r(x)
d−1 + · · · + c0 = 0

with c0, . . . , cd−1 ∈ k and c0 6= 0. Assume that r(x) is nonconstant. Then

there is a place P such that νP (r(x)) 6= 0. Then we have νP (r(x)
d +

cd−1r(x)
d−1 + · · · + c0) = νP (0) =∞. If νP (r(x)) < 0, then

νP (r(x)
d + cd−1r(x)

d−1 + · · ·+ c0) = νP (r(x)
d) = dνP (r(x)) < 0,

a contradiction. If on the other hand νP (r(x)) > 0, then

νP (r(x)
d + cd−1r(x)

d−1 + · · ·+ c0) = νP (c0) = 0

since c0 6= 0 (see Exercise B.6), again a contradiction. Hence r(x) must be

constant and so k̃ = k or in other words, the full constant field of F is k.

By Example B.12 the degree of a finite place p(x) of F is deg(p(x)) and the
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degree of the place ∞ of F is 1. If k = Fb, then F has thus exactly b + 1

rational places.

For an algebraic function field F/k we denote by PF the set of all places

of F . We remark that PF is a denumerable set.

Remark B.22 If k = Fb, then for all a ∈ k∗ we have ab−1 = 1, and so for

any place P ∈ PF we have

0 = νP (1) = νP (a
b−1) = (b− 1)νP (a)

and hence νP (a) = 0 for all P ∈ PF .

For a place P ∈ PF and a function f ∈ F/k with νP (f) ≥ 0, we denote by

f(P ) the residue class of f+MP of f in OP /MP . Thus, by Proposition B.18

f(P ) ∈ OP /MP can be viewed as an element of a finite extension of k.

Now choose a sequence (tr)r∈Z of elements in F such that νP (tr) = r for

all r ∈ Z.

For a given function f ∈ F/k we can find an integer v such that νP (f) ≥ v
and hence we have

νP

(
f

tv

)
= νP (f)− v ≥ 0.

Put

av :=

(
f

tv

)
(P ),

i.e., av is the value of the function f/tv at the place P and hence av ∈
OP /MP . Since νP is a normalised valuation it follows that

νP

(
f

tv
− av

)
≥ 1,

or equivalently νP (f − avtv) ≥ v + 1 and from this we obtain that

νP

(
f − avtv
tv+1

)
≥ 0.

Now put

av+1 :=

(
f − avtv
tv+1

)
(P ).

Again av+1 ∈ OP /MP and νP (f − avtv − av+1tv+1) ≥ v + 2.

We can proceed by induction. Assume that we have obtained a sequence
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(ar)
m
r=v, m > v, of elements of OP /MP such that

νP

(
f −

k∑

r=v

artr

)
≥ k + 1

for all v ≤ k ≤ m. Put

am+1 :=

(
f −∑m

r=v artr
tm+1

)
(P ).

Again am+1 ∈ OP /MP and νP

(
f −∑m+1

r=v artr

)
≥ m+ 2.

In this way we obtain an infinite sequence (ar)
∞
r=v of elements of OP /MP

such that

νP

(
f −

m∑

r=v

artr

)
≥ m+ 1

for all m ≥ v.
The above construction can be summarised in the formal expansion

f =

∞∑

r=v

artr.

This expansion is called the local expansion of the function f at P . A typical

choice for the tr is tr = tr with t being a local parameter at P (and hence

νP (tr) = νP (t
r) = r by Proposition B.3).

The local expansion shows that for a given f ∈ F/k and a place P of F ,

there exists a sequence (fn)
∞
n=v of special elements fn :=

∑n
r=v artr of F/k

such that fn tends to f at P , i.e., νP (f − fn)→∞ as n→∞.

B.5 Divisors

Definition B.23 A divisor D of F is a formal sum

D =
∑

P∈PF

mPP

with all mP ∈ Z and mP 6= 0 for at most finitely many P ∈ PF .

A place P ∈ PF is also a divisor (put mP = 1 and mQ = 0 for all Q ∈ PF ,

Q 6= P ). In this context, a place P is called a prime divisor.

The divisors of F form a group under the addition law

D + E =
∑

P∈PF

mPP +
∑

P∈PF

nPP =
∑

P∈PF

(mP + nP )P.
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The zero element is the zero divisor

0 :=
∑

P∈PF

mPP with all mP = 0.

The additive inverse of D =
∑

P∈PF
mPP is

−D =
∑

P∈PF

(−mP )P.

The abelian group of all divisors of F is called the divisor group Div(F ) of

F .

Definition B.24 The support supp(D) of a divisor D =
∑

P∈PF
mPP is

given by

supp(D) = {P ∈ PF : mP 6= 0}.

By the definition of a divisor, supp(D) is a finite subset of PF .

If D =
∑

P∈PF
mPP , then it is often convenient to write mP = νP (D).

Thus, a divisor D can also be represented in the form

D =
∑

P∈supp(D)

νP (D)P.

Definition B.25 If D ∈ Div(F ) is as above, then the degree deg(D) is

defined by

deg(D) =
∑

P∈supp(D)

νP (D) deg(P ).

It is not difficult to show that the degree map deg : Div(F )→ Z is a group

homomorphism. Consequently, the divisors of F of degree 0 (i.e., the kernel

of the group homomorphism deg) form a subgroup Div0(F ) of Div(F ).

One can introduce a partial order on Div(F ) by saying that D1 ≤ D2, if

νP (D1) ≤ νP (D2) for all P ∈ PF .

A divisor D ≥ 0 is called positive (or effective).

If F is the rational function field and if f ∈ F ∗, then obviously νP (f) 6= 0

for at most finitely many P ∈ PF . The same is true for an arbitrary algebraic

function field F/k. Thus the following definition makes sense.

Definition B.26 Let F be an algebraic function field and f ∈ F ∗. Then
the principal divisor div(f) of f is defined by

div(f) =
∑

P∈PF

νP (f)P.



B.6 The Riemann-Roch Theorem 607

The set of all principal divisors of F is denoted by Princ(F ).

If F is the rational function field and f ∈ F ∗, then by Remark B.13 and

Example B.21 we have

deg(div(f)) =
∑

P∈PF

νP (f) deg(P ) = 0.

The same formula holds for an arbitrary function field F/k. For a proof of

the subsequent result we refer to [252, Section I.4].

Proposition B.27 The degree of every principal divisor is 0.

The set Princ(F ) of all principal divisors of F forms a subgroup of Div0(F ).

The factor group Cl(F ) := Div0(F )/Princ(F ) is finite and its cardinality

h(F ) := |Cl(F )| is called the divisor class number of F .

B.6 The Riemann-Roch Theorem

For any divisor D of F/k we form the Riemann-Roch space

L(D) := {f ∈ F ∗ : div(f) +D ≥ 0} ∪ {0}.
This means that L(D) consists of all f ∈ F with

νP (f) ≥ −νP (D) for all P ∈ PF .

It is easy to show that L(D) is a vector space over k.

Example B.28 For f ∈ F ∗ we have that f ∈ L(0) if and only if νP (f) ≥ 0

for all P ∈ PF . But as deg(div(f)) =
∑

P∈PF
νP (f) deg(P ) = 0 by Proposi-

tion B.27 it follows that f ∈ L(0) if and only if νP (f) = 0 for all P ∈ PF .

This in turn can be shown to be equivalent to the fact that f ∈ k∗. Hence,
for the zero divisor we have L(0) = k.

Remark B.29 If deg(D) < 0, then necessarily L(D) = {0}. For if we had

a nonzero f ∈ L(D), then by applying the degree map to div(f) + D ≥ 0

we get 0 + deg(D) ≥ 0 which is a contradiction.

The vector space L(D) has a finite dimension over k which is denoted

by ℓ(D). By Example B.28 we have ℓ(0) = 1 and by Remark B.29 we have

ℓ(D) = 0 whenever deg(D) < 0.

Theorem B.30 (Riemann-Roch Theorem) Let F/k be an algebraic func-

tion field with finite full constant field k. Then there exists a constant c such

that for any divisor D of F we have

ℓ(D) ≥ deg(D) + 1− c.
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For a proof see [252, Sections I.4 and I.5]. As a consequence of the Riemann-

Roch Theorem we can define the number

g = max
D∈Div(F )

(deg(D)− ℓ(D) + 1).

This integer g = g(F/k) is called the genus of F/k, a very important invari-

ant of an algebraic function field. By putting D = 0 in its definition we see

that g ≥ 0 always. Note that by definition of g we have

ℓ(D) ≥ deg(D) + 1− g for all D ∈ Div(F ).

Theorem B.31 (Supplement to the Riemann-Roch Theorem) If deg(D) ≥
2g − 1, then

ℓ(D) = deg(D) + 1− g.
Example B.32 If F is a rational function field, then it is easy to verify

that

ℓ(D) ≥ deg(D) + 1 for all D ∈ Div(F ).

Therefore g(F ) = 0. In fact, rational function fields over finite fields can be

characterised by the property of having genus 0.

An algebraic function field of genus 1 is also called an elliptic function

field. Elliptic function fields F/k with k = Fb can be characterised. In all

cases, F is a quadratic extension of k(x). If b is odd, then F = k(x)(y) for

some y ∈ F with y2 = f(x) where f(x) ∈ k[x] is square-free of degree 3. If

b is even, then F = k(x)(y) for some y ∈ F with either y2 + y = f(x) with

f ∈ k[x] of degree 3 or y2 + y = x+ 1
ax+c with a, c ∈ k and a 6= 0.

There is no general explicit formula for the genus of an algebraic function

field except for some special families.

Example B.33 Let k = Fb with b odd and let k(x) be the rational function

field. Let F = k(x)(y) be the quadratic extension defined by y2 = f(x) where

f ∈ k[x] is square-free of degree d ≥ 1. Then g(F/k) =
⌊
d−1
2

⌋
. For a proof

see [252, Section III.7].

Exercises

B.1 Give a proof of Proposition B.3.

B.2 Show that the valuation Ring OP of a place P is an integral domain.

B.3 Show that the multiplicative group of units of OP is given by UP :=

{x ∈ K : νP (x) = 0}. Hint: A proof can be found in [178].

B.4 For a given prime p let νp be the p-adic valuation of Q. Determine Up.
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B.5 Let k(x) be the rational function field over a field k and let p(x) ∈ k[x]
be a monic irreducible polynomial. Show that νp(x) and ν∞, as defined

in Section B.3 are both normalised valuations of k(x). Hint: A proof

for ν∞ can be found in [178].

B.6 Show that if the constant field is finite, then for any valuation ν of k(x)

we have ν(a) = 0 for all a ∈ k∗. Hint: A proof can be found in [178].

B.7 Determine U∞, the multiplicative group of units of O∞ from Exam-

ple B.12.

B.8 Show that the degree map deg : Div(F )→ Z is a group homomorphism.

B.9 Let F be an algebraic function field with full constant field k. Show

that for f ∈ k∗ we have div(f) = 0.

B.10 Show that the set Princ(F ) of principal divisors of F forms a subgroup

of Div0(F ). Hint: Note that div(fg) = div(f)+div(g) for all f, g ∈ F ∗.
B.11 Let D be a divisor of F/k. Show that the Riemann-Roch space L(D)

is a vector space over k.
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integrals. Z̆. Vyčisl. Mat. i Mat. Fiz., 7:784–802, 1967. [8, 9, 10, 125, 131,
141, 151, 172, 200, 285, 288]

[252] H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer,
Berlin, 1993. [597, 603, 607, 608]

[253] S. Tezuka. Polynomial arithmetic analogue of Halton sequences. ACM Trans-
actions on Modeling and Computer Simulation, 3:99–107, 1993. [288]

[254] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Inter-
national Series in Engineering and Computer Science. Kluwer, Boston, 1995.
[15, 288]

[255] S. Tezuka and H. Faure. I-binomial scrambling of digital nets and sequences.
J. Complexity, 19:744–757, 2003. [423]

[256] H. Triebel. Bases in function spaces, sampling, discrepancy, numerical inte-
gration. to appear, 2009. [49]

[257] G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1990. [480]

[258] J. L. Walsh. A closed set of normal orthogonal functions. Amer. J. Math.,
45:5–24, 1923. [582, 592]

[259] X. Wang. A constructive approach to strong tractability using quasi-Monte
Carlo algorithms. J. Complexity, 18:683–701, 2002. [242]

[260] X. Wang. Strong tractability of multivariate integration using quasi-Monte
Carlo algorithms. Math. Comp., 72:823–838, 2003. [242]

[261] T. T. Warnock. Computational investigations of low discrepancy point sets.
In S. K. Zaremba, editor, Applications of number theory to numerical analysis,
pages 319–343. Academic Press, 1972. [47]

[262] E. Weiss. Algebraic number theory. McGraw-Hill Book Co., Inc., New York,
1963. [597, 603]

[263] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann.,
77:313–352, 1916. (In German). [8, 63]
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admissible
(tuple), 220
interval, 220

algebraic function field, 602
α-degree, 518
ANOVA decomposition, 56

crossed, 423
nested, 423, 425

b-adic diaphony, 121
b-adic spectral test, 121, 199
base change propagation rule, 314
Bernoulli polynomial, 472
Bessel’s inequality, 589

circulant matrix, 348
component-by-component construction, 102,

339, 357, 380, 406
component-by-component sieve algorithm,

357, 359
constant field, 600
construction

component-by-component, 102, 339, 357,
380, 406

direct product, 272, 307
double m, 312
fast component-by-component, 345
matrix-product, 310, 311
(u, u+ v)-, 308, 312

curse of dimensionality, 24, 110
cyclic net over Fb, 367, 368

star discrepancy, 382
weighted star discrepancy, 382

degree
(of a divisor), 606
(of a place), 603
map, 606

δ-cover, 122
digital net, 166

character property, 185
group structure, 183, 400
overall generating matrix, 186, 269

row space, 269
scrambling, 418
star discrepancy, 220, 228, 233, 241
strength, 171
subgroup, 184
weighted star discrepancy, 230

digital sequence, 189
group structure, 197
star discrepancy, 226, 227, 246, 247
subgroup, 197
uniformly distributed modulo one, 193, 195
well-distributed modulo one, 195

digital shift, 179, 182, 195
digital shift invariant kernel, 385, 386, 390, 396
digital shift of depth m, 181, 560
digital (t, α, β, n×m, s)-net over Zb, 491
digital (t, α, β, σ, s)-sequence over Zb, 493
digital (t, m, s)-net over Fb, 166

quality parameter, 168, 231, 270, 324
star discrepancy, 220, 228, 233, 241

digital (T, s)-sequence over Fb, 189
quality function, 190, 244
star discrepancy, 226, 227, 246, 247

digitally shifted
point set, 179
sequence, 195, 196

digitwise addition modulo b, 583
direct product construction, 272, 307
direction numbers, 289
discrepancy

extreme, 72
L2-, 34, 47, 77
Lq-, 77, 112
minimal L2-, 110
minimal star, 106, 218
minimal weighted L2-, 114
minimal weighted star, 114
star, 34, 47, 73, 112
weighted Lq-, 112
weighted star, 112

discrepancy function
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one-dimensional, 33
s-dimensional, 46

discrete exponential valuation, 244, 320
discrete valuation, 597
divisibility chain, 352
divisor, 605

class number, 607
group, 606

(d, k,m, s)-system over Fb, 267, 274
(d,m, s)-system over Fb, 267, 268
double m construction, 312
dual code, 276
dual net, 186, 228, 325, 373, 374
dual space chain, 278

elementary interval, 68
Erdős-Turán-Koksma inequality, 84
extensible polynomial lattice point set, 353

star discrepancy, 360
weighted star discrepancy, 356

extensible polynomial lattice rule, 353
extreme discrepancy, 72

fair
point set, 29, 126, 127
subset, 126

fast component-by-component construction,
345

fast Fourier transform, 350
Faure sequence, 289
figure of merit, 325, 374, 519
formal Laurent series, 244, 320
full constant field, 603

gain coefficients, 431, 434
generalised Niederreiter sequence, 288
generating

matrices, 166, 189, 321, 367, 368, 370
vector, 324

genus, 608
good lattice point, 102

Hölder condition, 28, 447, 467
Hammersley point set, 99, 136, 161, 172, 202
Hamming weight, 276, 533, 534, 550
Hankel matrix, 321
higher order digital (t, α, β, n×m, s)-net over

Zb, 491
quality parameter, 492
smoothness parameter, 492
strength, 492

higher order digital (t, α, β, σ, s)-sequence over
Zb, 493

higher order polynomial lattice point set, 517
dual net, 518
figure of merit, 519

higher order polynomial lattice rule, 517
Hlawka’s identity, 33, 48
hyperplane net over Fb, 370

dual net, 374
figure of merit, 374

quality parameter, 375
star discrepancy, 378, 379, 381
weighted star discrepancy, 378, 379, 381

inequality
Bessel’s, 589
Erdős-Turán-Koksma, 84
Jensen’s, 402
Koksma, 34
Koksma-Hlawka, 49

initial error, 42, 388
intractability, 110
inverse
L2-discrepancy, 110
star discrepancy, 106
weighted L2-discrepancy, 114
weighted star discrepancy, 114

Jensen’s inequality, 402

Koksma’s inequality, 34
Koksma-Hlawka inequality, 49
Korobov lattice point set, 123
Korobov space, 58, 59, 124
Korobov vector, 123, 328, 342, 409

L2-discrepancy, 34, 47, 77
Latin square, 254
lattice point set, 101
lattice rule, 101
linear code, 276
linear independence parameter, 169, 190, 326
local expansion, 605
local parameter, 599
low discrepancy point set, 100
low discrepancy sequence, 90, 215
Lq-discrepancy, 77, 112

matrix
circulant, 348

matrix-product construction, 310, 311
mean square worst-case error, 388, 398, 399,

413, 441
minimal
L2-discrepancy, 110
star discrepancy, 106, 218
weighted L2-discrepancy, 114
weighted star discrepancy, 114

minimum distance, 266
modulus of continuity, 19

integral, 447
Monte Carlo algorithm, 417
Monte Carlo method, 26

net
cyclic, 367, 368
digital, 166
digital (t,m, s)-, 166
dual, 186, 228
hyperplane, 370
Niederreiter-Özbudak, 290
strict (t,m, s)-, 135
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(t,m, s)-, 135
Niederreiter sequence, 286, 290
Niederreiter-Özbudak net, 290
Niederreiter-Xing sequence, 297
normalised

field, 597
valuation, 597

NRT weight, 266, 533, 550
NSC matrix, 311

optimum [s, k,m]-distribution, 542
ordered orthogonal array, 260
orthogonal array, 259
orthogonal squares, 254
overall generating matrix, 186, 269
Owen’s lemma, 425
Owen’s scrambling algorithm, 419, 423

of depth m, 454

parity-check matrix, 276
Pascal matrix, 289
place, 599
Plancherel’s identity, 590
polynomial lattice point set, 321, 323, 373, 517

dual net, 325
extensible, 353
figure of merit, 325
quality parameter, 326, 364
star discrepancy, 332, 337, 341, 344
weighted star discrepancy, 333, 338, 341,

342, 344
polynomial lattice rule, 321, 517
prime divisor, 605
principal divisor, 606
projective plane of order b, 258
propagation rule, 137, 139, 143, 162, 175, 195,

272, 307, 494

QMC rule, 31
quality function, 151, 190, 244
quality parameter, 136, 151, 168, 231, 270,

324, 326, 364, 375, 492
quasi-Monte Carlo algorithm, 31
quasi-Monte Carlo method, 27

Rader transform, 347
radical inverse function, 71, 137
rational place, 603
regular lattice, 88, 128, 135, 136

centred, 18, 24, 90
centred quasi-, 28

representer of the integration error, 43
reproducing kernel, 37
reproducing kernel Hilbert space, 37
reproducing property, 37
residue class

field, 599
map, 599

Riemann-Roch space, 607
Riemann-Roch Theorem, 607
Roth’s lower bound on L2-discrepancy, 77, 532

scramble invariant kernel, 435, 443
sequence

digital, 189
digital (T, s)-, 189
Faure, 289
generalised Niederreiter, 288
Niederreiter, 286
Niederreiter-Xing, 297
Sobol′, 288
strict (T, s)-, 151
strict (t, s)-, 151
(T, s)-, 151
(t, s)-, 151
uniformly distributed modulo one, 63, 154,

193, 195
van der Corput, 71, 157, 158, 161, 162, 197
van der Corput-Halton, 90
well-distributed modulo one, 64, 155, 195
Xing-Niederreiter, 301

sieve algorithm, 357
signed b-adic digit expansion, 95
simplified digital shift, 182, 560, 561
Sobol′ sequence, 288
Sobolev space

anchored, 52
unanchored, 51, 52, 479
unanchored (weighted), 390

square of order b, 254
star discrepancy, 34, 47, 73, 112
strength, 171, 259, 260, 492
superposition of digital nets, 242
support (of a divisor), 606

(t,m, s)-net in base b, 135
quality parameter, 136
star discrepancy, 201–203, 210, 218
weighted star discrepancy, 216, 251

trace code for digital nets, 314
tractability

polynomial, 107, 114
strong, 114, 242, 342, 381, 405

triangle inequality
for the discrepancy, 75
for the worst-case error, 44

(T, s)-sequence in base b, 151
quality function, 151
star discrepancy, 211–213, 216
strict, 151
uniformly distributed modulo one, 154
well-distributed modulo one, 155

(t, s)-sequence in base b, 151
quality parameter, 151
star discrepancy, 214, 215
strict, 151
uniformly distributed modulo one, 154
well-distributed modulo one, 155

((tu)∅6=u⊆Is
,m, s)-net in base b, 251

quality parameter, 251
weighted star discrepancy, 251
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unbiased estimator, 422
uniform distribution modulo one, 63
(u, u+ v)-construction, 308, 312

valuation, 597
discrete, 597
equivalent, 599
normalised, 597

valuation ring, 599
van der Corput sequence, 71, 157, 158, 161,

162, 197
van der Corput-Halton sequence, 90
variation

fractional order, 466
generalized Hardy and Krause, 450
in the sense of Hardy and Krause, 49
in the sense of Vitaly of order α, 449
total, 27, 49, 467

Walsh
coefficients, 456, 457, 461, 466, 468, 472,

479, 587
function, 582, 583
function system, 582, 583
polynomial, 587
series, 458, 485, 587
space, 38
space (weighted), 60

Walsh-Dirichlet kernel, 424, 587
Walsh-transform, 538
weighted
Lq-discrepancy, 112
star discrepancy, 112

weights, 112
finite order, 112
product, 112, 390

well-distribution modulo one, 63
Weyl criterion

(for the Walsh function system), 68
(for the trigonometric function system), 65

worst-case error, 36, 42, 44, 388

Xing-Niederreiter sequence, 301

Zaremba’s identity, 33, 48


