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In this blog entry you can find lecture notes for Math2111, several variable calculus. See
also the table of contents for this course. This blog entry printed to pdf is available here.

We have studied a variety of generalisations of the fundamental theorem of calculus:

the fundamental theorem of line integrals;
Green’s theorem;
Stokes’ theorem;
Gauss’ Divergence theorem;

Now we show how all of these formulae concisely fit into one approach. Differential forms
provide the underlying theory to present all formulae in one framework. This also allows us
to generalise the theorems above to arbitrary dimensions.

Differential -forms

Consider an open set  (more generally one could also consider open subsets of ). To
start, a differential  form is just a function 

A differential -form is an expression of the form

where  We have seen such expressions previously when we studied line
integrals. If  and the curve  is parameterised by 
then the line integral of the vector field  over the curve  can be written
as
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As an example, let  be continuously differentiable. Then

is a differential -form. It is called the total differential of  If  are functions of  then

Hence by cancelling  in this formula one obtains the total differential of 

Using this notation, we can now write the fundamental theorem of line integrals in a very
concise form. Let the curve  be parameterised by  where  Then
fundamental theorem of line integral states that

Using differential forms, this can be written as

Notice the similarity between this notation and the one dimensional integral 
(here we write  which just stands for ).

Definition
Let  be a differential -form. If there is a function  such that

 then the differential form  is called exact.

Let  be a differential -form. Then we can associate with it a vector
field  Then,  is conservative if there is a function  such that 

Hence, a differential -form is exact if and only if the associated vector field  is
conservative. If the region where  is defined is simply connected, then we have seen that 
is conservative if and only if  Hence we also get a criterion to check whether a
differential -form is exact and a method of calculating a function  such that  The
details are left as an exercise.

Exact differential forms also appear in ordinary differential equations (ode). Consider the
ode

By multiplying with  and defining the differential  the ode can be written
as

If  is an exact differential, then there is a function  such that  Hence,
an exact ode can be written as

where  is a function defined on a subset of  By integrating on both sides we get a
solution  where  is a constant.

Differential -forms are useful for describing line integrals and gradients. But for double
integrals, surface integrals, Green’s theorem and Stokes’ theorem we need a more general
concept.
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Bivectors and differential -forms

We now consider differential -forms, which can partly be understood geometrically.

Recall that, under certain conditions, Green’s theorem in tangential form states that

Leaving out the integral signs, then the left-hand side is again just a differential -form. The
aim now is to investigate, given a differential -form, how can we obtain the formula on the
right-hand side in Green’s theorem? Once we know the underlying principles, then we can
obtain analogous results in other situations.

We have seen this principle already above. If  is a differential -form, then we can `apply ‘
to obtain a differential -form  Similarly, given a differential -form  we
would again want to `apply ‘ (what this means will be made more precise below) to obtain a
differential -form  such that we can express Green’s theorem as

where  is a suitable region and  is its boundary.

Before we can describe how the operator  works on differential forms, let us study
differential -forms in more detail.

Above we associated a differential -form with a vector. Differential -forms can be associated
with bivectors (see also multivectors). For  we define the bivector  (the symbol

 is pronounced `wedge’ and we call  the wedge product of  and ). Such a bivector
can be associated with the cross product  Geometrically, the vectors  and  span a
parallelogram in space. This parallelogram lies in a plane (defined by the vectors ) and
the length of the cross product  is the area of the parallelogram spanned by  and 
Additionally, the cross product  also has a direction, which is determined by the
right-hand rule. For bivectors, we can associate this direction with a direction (or
orientation) of the boundary curve of the parallelogram. Hence we can represent a bivector

 by the following picture: 

Bivectors can be manipulated in the following ways. For a scalar  we define the
bivector  whose associated parallelogram has area  times  If  then
the parallelogram has the same orientation and if  then the orientation is reversed. The
following statements can be interpreted using the parallelogram analogy:

changing the order of the vectors changes the orientation of the parallelogram, hence:

the area of a parallelogram spanned by  and  is zero, hence:
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 times the area of the parallelogram spanned by  and  is equal to the area of the
parallelogram spanned by  and  and is equal to the area of the parallelogram
spanned by the vectors  and  hence:

there is also a distributive law:

which can be visualised by the following picture:

(Notice that the cross product  satisfies the same properties.)

Differential -forms can now be understood in the same way as bivectors, with the difference
that differential -forms are built from differential -forms instead of vectors. Hence,
differential -forms on  are expressions of the form

Let   and  be differential -forms and let  be a differential -form. Then the following
rules apply:

1.
 where  stands for the nullform 2.

3.
4.

Example
Let  and  be differential -forms. Then,
using the rules for  we obtain

Again, we can associate a vector field  to differential -form. We obtain this
association in the following way. First let us use the associations of differential -forms with
vectors as above:

Then the wedge products of the differential -forms are associated with the cross products of
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the vectors, that is

By changing the order in the last wedge product we see that  is associated with 
Hence, we associate a vector field over  with a differential -form in the following way:

The Hodge star operator maps differential -forms to differential -forms and back in the
following way:

Surface integrals

We consider now surface integrals and show how they can be written using differential 
-forms. Let us consider a special case first where the surface is a suitable region  in  Let

 be a differential  form where  Then we define the integral of the
differential -form  by

(Notice that we write  rather than  since, in general, we can have differential 
-forms for which we would need  integral signs. Since in the general case this becomes too
cumbersome one just writes only one integral sign.)

Assume that now the surface  is parameterised by  where
 is the domain of  Note that

See Chapter 4, Section 1 for the definition of 

Exercise
Verify the properties 1., 2., 3., 4. of the wedge product defined above for 

 and  

Let  Then we have

Let a differential -form  be given. Let 
be the associated vector field. Then, by the definition above, we have
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To show the result see Chapter 4, Section 3.

Notice that the last equation also shows that the ordering of the sum in
 is the most natural form.

Differential forms

To define general differential forms, we introduce one more rule. Let   and  be
differential forms.

Distributive law: 

Differential -forms over  are expressions of the form

where  In general, differential -forms defined over  are expressions of the form

where 

(Note that the cross product of vectors does not generalise to arbitrary dimensions, see
here. Hence we do not use the analogy with the cross product of vectors anymore. Instead,
one uses alternating multilinear forms.)

We call a differential form  continuously differentiable if  are continuously
differentiable (analogously we define twice continuously differentiable differential forms,
and so on).

Some remarks:

For each  there is a zero differential -form  such that  and  for
any differential -form  and any differential -form  We call this form the nullform.
A differential -form  is different from the nullform  For each  the nullform

 where the sum is over all subsets  of 
consisting of  elements, is a differential -form.

In particular, for  we have the nullforms  for all  which is a differential 
-form, the nullform  which is a differential -form, the nullform

 which is a differential -form and the nullform
 which is a differential -form.

When adding differential forms  and  then both must be differential -forms defined
on  (or a subset of ) for some  and  For instance, the expression

 is not permitted (does not make sense).
On the other hand the expression  where  is a differential -form and  is a
differential -form, both defined over  (or an open subset of ), is well defined. For
instance, we have

Let  be a differential -form and  be a differential -form, both defined over . If
 then the differential -form  is the nullform. The proof of this

result is left as an exercise.

Let  be differential forms. Then the wedge product satisfies the following properties.
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For each  there exists a nullform  which is a differential -form. The nullform
satisfies  for all differential -forms  and  and  for all differential 
-forms 

1.

For any differential -form  and any differential -form  we have 2.
3.
4.

For differential -forms   we have 5.
Let  be a differential -form. Then 6.

Exterior Derivative

Let  be a differential -form. Then we have already seen that the derivative of this
differential form is the differential -form 

If  is a differential -form, then the derivative of , denoted by  is a differential 
-form. The operator  is called the exterior derivative.

The exterior derivative  satisfies the following properties:

Let  be a continuously differentiable differential -form. Then

If  and  are differential -forms, then

For a continuously differentiable -form  and a differential -form 
where  we define

Laws for the exterior derivative
Let  be continuously differentiable differential forms.

 if  and  are both differential -forms;
 for all 

 where  is a differential -form;

See also the de Rham cohomology.

Three Theorems

We have already seen how the fundamental theorem of line integrals can be written in a
concise form using differentials. We now consider Green’s theorem, the Divergence theorem
and Stokes’ theorem.

Green’s theorem

We now show how the formula in Green’s theorem can be obtained using differentials.
Let  be continuously differentiable and let  Then

1.
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Let  be a suitable domain (see here for more information) and let  denote the
boundary curve oriented counterclockwise. Let  be a continuously differentiable
differential -form defined on  Then Green’s theorem states that

Divergence theorem2.

Let the functions  be continuously differentiable and let
 Then

Let  be a closed, bounded and smooth surface and let  be the region enclosed by 
Then we can write the divergence theorem as

Stokes’ Theorem

Let the functions  be continuously differentiable and let
 Then

Let  be a smooth and bounded surface and let  be its boundary which we assume to
be oriented positively. We have

Hence we can write Stokes’ theorem as

3.

Stokes’ theorem

We have now seen that all the main theorems can be written in a single form. It now
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becomes obvious how to generalise the results above to arbitrary dimension and manifolds.
This theorem is called Stokes’ theorem (named after the same person as the theorem
considered in Chapter 5, Section 2).

Stokes’ theorem
Let  be an oriented smooth manifold of dimension  Let  be a differential 
-form with compact support on  and let  denote the boundary of  with its
induced orientation, then

Exercise
Let  be an oriented smooth manifold of dimension  Let

 be a differential -form.

Write down Stokes’ theorem in explicit form.

Closed and exact differential forms

Definition
A differential form  for which  (the nullform) is called closed.

Exercise
Let  be twice continuously differentiable. Define the vector field

 and the associated differential -form  Show that
 if and only if  is closed. 

We have previously defined conservative vector fields , see Chapter 3, Section 3.
A similar concept applies to differentials.

Definition
A differential form  is called exact if there is a differential form  such that 

Exercise
Let  be continuous. Define the vector field  and the
associated differential -form  Show that  is conservative if and only
if  is exact. 

Poincaré lemma
If  is a contractible open subset of , any smooth closed differential -form 
defined on  is exact, for any integer  (this has content only when ).

In Chapter 2, Section 2 we have seen that  and  For differential
forms we have the following result.

Proposition
Let  be a twice continuously differentiable form defined on an open set of 
Then

The proof is left as exercise. (Hint Use Clairaut’s theorem.)

Notice that there is an analogue to this proposition for the regions of integration. Namely,
let  be compact and assume that  has a smooth boundary. Then the boundary of the
boundary of  is empty, that is,
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Cauchy’s integral theorem

Cauchy’s integral theorem is an important result in complex analysis. It can also be
expressed using differential forms (since it is somewhat related to Green’s theorem.) Let 
denote the set of complex numbers.

Let  A complex function  can be written as

where  It can be shown that the function  is continuous if both  and  are
continuous. We now consider complex derivatives. We set

where  is a complex number. Hence for the derivative to be well defined we need to
demand that the limit is the same for each way  approaches  In particular, if we restrict 
to real numbers, we get

On the other hand, if we restrict  to imaginary numbers, we get

Since the limits must coincide we get

These equations are called the Cauchy-Riemann equations. The converse also holds, that is,
if the  are differentiable and the Cauchy-Riemann equations hold, then  has a complex
derivative. If  has a complex derivative at some point  then we say that  is analytic at

A complex differential form  is an expression of the form  where  and  are
differential -forms for some  We define the integral of a complex differential  form by

where  can be parameterised by  where  are piecewise
continuously differentiable.

Let  and  Then

If  is analytic, then we obtain

Hence, by Green’s theorem, we obtain the following result.

Cauchy’s integral theorem
Let  be a simple closed curve parameterised by a piecewise continuously
differentiable function  Then for any analytic function  where  is
the region enclosed by  we have
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Exercise
Prove Cauchy’s integral theorem using Green’s theorem (without the use of differentials).

More information

For more information on differentials see here and here.
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