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In this blog entry you can find lecture notes for Math2111, several variable calculus. See
also the table of contents for this course.

In this part we discuss applications of Fourier series to solving a certain type of partial
differential equation (pde). In more detail, we discuss the heat equation. The aim is to show
how Fourier series naturally come up in the solution of this equation.

The heat equation describes the heat distribution in space and time. To illustrate the
method it is sufficient to consider only the case of one spatial variable here. Let 
denote the spatial variable, let  denote time and let  be a function of  and 
. Then the heat equation is given by

where  is a constant. The task is to find a function  which satisfies
the heat equation, some initial condition

where  is, say, continuous, and (in our case) homogeneous boundary conditions

Separation of variables

We solve the heat equation using separation of variables, that is, we assume that the
solution to the problem is of the form
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for a function  and  (note that  does NOT depend on  and that 
does NOT depend on ). In this case we have

where  and  Substituting this ansatz into the heat equation we obtain

We can now separate the functions  and  to obtain

Now observe that

is only a function of , whereas

is only a function of . Hence, the only way those two expressions can be equal is if both

are constant. Hence we have

Thus we obtain now two ordinary differential equations (ode)

where we set . The first ode has a solution of the form

(check this by substituting this equation into the ode). Now our solution should satisfy the
boundary conditions

If  or if , then  for all  and hence we only obtain the trivial solution
 for all  and . Hence we assume now that , which implies that

The first equation implies that , hence we get from the second equation that

If , then  for all  and we only get the trivial solution. If , then .
This holds if  for some integer  (for  we only get the trivial solution again).
Indeed, we get infinitely many solutions, where . Let now
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Then we obtain infinitely many solutions to the ode (1) of the form

We now solve (2). We have  (  is a constant given by the equation, but  may take
on different values depending on the solution). Hence  for  Hence
for each natural number  we obtain a solution  to the ode (2) (where ) of the form

(check that this solves the ode (2)).

Thus we obtain solutions to the heat equation which satisfy the homogeneous boundary
conditions of the form

We call these functions the eigenfunctions corresponding to the eigenvalues 

We still need to find a solution which satisfies the initial condition. To do so, notice that any
linear combination of the eigenfunctions  is again a solution to the heat equation which
satisfies the homogeneous boundary conditions. Hence, in general, we have a solution of the
form

where  are real numbers which we can choose such that  satisfies the initial
condition. More precisely, we need to choose  such that

The last equation means that the  are the Fourier coefficients of the Fourier sine series of
. Hence

which completes our solution to the heat equation.

Example Solve the heat equation in one dimension with homogeneous boundary conditions,
assuming that the initial temperature is given by
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