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Abstract Generalized digital nets and sequences have been introduced for the nu-
merical integration of smooth functions using quasi-Monte Carlo rules. In this pa-
per we study geometrical properties of such nets and sequences. The definition of
these nets and sequences does not depend on linear algebra over finite fields, it
only requires that the point set or sequence satisfies certain distributional proper-
ties. Generalized digital nets and sequences appear as special cases. We prove some
propagation rules and give bounds on the quality parameter t.

1 Introduction

In this paper we study the equidistribution properties of generalized digital nets
and sequences as introduced in [2], see also [1, 3]. Such nets and sequences have
been introduced since they can achieve arbitrarily high convergence rates of the
integration error when used in a quasi-Monte Carlo rule as quadrature points. To be
more precise, if the function f : [0,1]s → R, s ≥ 1, under consideration has mixed
partial derivatives up to order α ≥ 1 in each variable which are square-integrable,
then the integration error is of O(q−(βn−t)(βn−t)sα), for a digital (t,α,β ,n×m,s)-
net over Fq. Explicit constructions of digital (t,α,β ,n×m,s)-nets over Fq with
βn = αm and t bounded independently of m are also given in [1, 2]. Note that a
digital (t,α,β ,n×m,s)-net over Fq has qm points.

In the next section we define digital (t,α,β ,n×m,s)-nets and digital (t,α,β ,σ ,s)-
sequences and recall some of their properties as well as explicit constructions from
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[2]. In Section 3, generalized nets and sequences are introduced. In order to do so,
we introduce the concept of a generalized elementary interval in Subsection 3.1. We
prove some properties of such sets and then give the definition of (t,α,β ,n,m,s)-
nets and (t,α,β ,σ ,s)-sequences. In Subsection 3.2, propagation rules for these
types of point sets and sequences are shown and we also prove some lower and upper
bounds on the quality parameter t. In particular, we show that the quality parameter t
of a (t,α,β ,σ ,s)-sequence with smallest possible value of t satisfies t � α2s, which
also holds for digital sequences. For the remainder of the paper we use the follow-
ing nomenclature: (t,α,β ,n,m,s)-nets and (t,α,β ,σ ,s)-sequences as introduced
in Section 3 of this paper will be referred to as generalized nets and generalized
sequences, digital (t,α,β ,n×m,s)-nets and digital (t,α,β ,σ ,s)-sequences, as in-
troduced in [2], will be referred to as generalized digital nets and generalized digital
sequences, (t,m,s)-nets and (t,s)-sequences, [9, 10] will be referred to as classical
nets and classical sequences, digital (t,m,s)-nets and digital (t,s)-sequences, [9, 10]
as classical digital nets and classical digital sequences.

2 Definition of digital (t,α,β ,n×m,s)-nets and digital
(t,α,β ,σ ,s)-sequences

Before providing a geometric approach to digital (t,α,β ,n×m,s)-nets, we need to
recall the following concepts: We start with the digital construction scheme, which
digital (t,α,β ,n×m,s)-nets are based upon. This digital construction scheme stems
from the construction of digital (t,m,s)-nets, see [10].

Throughout the paper N denotes the set of natural numbers and N0 the set
of nonnegative integers. Having defined digital (t,α,β ,n×m,s)-nets and digital
(t,α,β ,σ ,s)-sequences, we will explain the meaning of the parameters in Re-
mark 1.

Definition 1. Let q be a prime power and let n,m,s ≥ 1 be integers. Let C1, . . . ,Cs
be n×m matrices over the finite field Fq of order q. Now we construct qm points in
[0,1)s: For 0 ≤ h < qm let h = h0 + h1q + · · ·+ hm−1qm−1 be the q-adic expansion
of h. Consider an arbitrary but fixed bijection ϕ : {0,1, . . . ,q−1} → Fq. Identify h
with the vector h = (ϕ(h0), . . . ,ϕ(hm−1))> ∈ Fm

q , where > denotes the transpose of
the vector. For 1 ≤ j ≤ s, multiply the matrix C j by h, i.e.,

C jh := (y j,1(h), . . . ,y j,n(h))> ∈ Fn
q,

and set

xh, j :=
ϕ−1(y j,1(h))

q
+ · · ·+

ϕ−1(y j,n(h))
qn .

The point set
{

x0, . . . ,xqm−1
}

is called a digital net (over Fq) (with generating ma-
trices C1, . . . ,Cs). For n,m = ∞ we obtain a sequence {x0,x1, . . .}, which is called a
digital sequence (over Fq) (with generating matrices C1, . . . ,Cs).
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It is clear from the definition, that all the information about the properties of the
point set is contained in the generating matrices C1, . . . ,Cs. Hence in order to be able
to deal with the properties of these point sets, it is enough to introduce a criterion
on the generating matrices. To define such a criterion we first define the dual space
[4, 5, 11] of the generating matrices C1, . . . ,Cs ∈ Fn×m

q for a digital net, given by

D = {k ∈ Ns
0 : C>

1 k1 + · · ·+C>
s ks = 0 ∈ Fm

q },

where for k = (k1, . . . ,ks) with k j = k j,0 + k j,1q + · · · we define the vector k j =
(k j,0, . . . ,k j,n−1)> ∈ Fn

q.
The following criterion was first introduced in the context of applying digi-

tal nets to the numerical integration of smooth functions, see [2]: For k ∈ N and
α ≥ 1 let µα(k) = a1 + · · ·+ amin(ν ,α), where k = κ1qa1−1 + · · ·+ κν qaν−1 with
0 < κ1, . . . ,κν < q and 1 ≤ aν < · · · < a1. Further we set µα(0) = 0. For a vec-
tor k = (k1, . . . ,ks) ∈ Ns

0 we define µα(k) = µα(k1)+ · · ·+ µα(ks). The following
definition was motivated in [3].

Definition 2. Let n,m,α ∈ N, let 0 < β ≤ min(1,αm/n) be a real number, and let
0≤ t ≤ βn be a non-negative integer. Let Fq be the finite field of prime power order
q and let C1, . . . ,Cs ∈ Fn×m

q with C j = (c j,1, . . . ,c j,n)T . If for all 1≤ i j,ν j < · · ·< i j,1,
where 0 ≤ ν j for all j = 1, . . . ,s, with

s

∑
j=1

min(ν j ,α)

∑
l=1

i j,l ≤ βn− t

the vectors
c1,i1,ν1

, . . . ,c1,i1,1 , . . . ,cs,is,νs , . . . ,cs,is,1

are linearly independent over Fq, then the digital net with generating matrices
C1, . . . ,Cs is called a digital (t,α,β ,n×m,s)-net over Fq.

If t is the smallest nonnegative integer such that the digital net generated by
C1, . . . ,Cs is a digital (t,α,β ,n×m,s)-net, then we call the digital net a strict digital
(t,α,β ,n×m,s)-net.

Note that the condition ∑
s
j=1 ∑

ν j
l=1 i j,l ≤ βn− t implies that i j,1 ≤ n, as β ≤ 1 and

t ≥ 0.
Similarly, we can recall the definition of digital (t,α,β ,σ ,s)-sequences over Fq

from [2].

Definition 3. Let α,σ ≥ 1 and t ≥ 0 be integers and let 0 < β ≤ α/σ be a real
number. Let Fq be the finite field of prime power order q and let C1, . . . ,Cs ∈ F∞×∞

q

with C j = (c j,1,c j,2, . . .)>. Further let C j,σm×m denote the left upper σm×m sub-
matrix of C j. If for all m > t/(βσ) the matrices C1,σm×m, . . . ,Cs,σm×m generate a
digital (t,α,β ,σm×m,s)-net, then the digital sequence with generating matrices
C1, . . . ,Cs is called a digital (t,α,β ,σ ,s)-sequence over Fq.
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If t is the smallest nonnegative integer such that the digital sequence generated
by C1, . . . ,Cs is a digital (t,α,β ,σ ,s)-sequence, then we call the digital sequence a
strict digital (t,α,β ,σ ,s)-sequence.

Remark 1. In the following we explain the meaning of the parameters t, α , β , n, m
and s used in the context of generalized digital (t,α,β ,n×m,s)-nets; see also [2,
Remark 4.5]:

• s denotes the dimensionality of the point set;
• the logarithm in base q of the number of points is m, i.e., a digital (t,α,β ,n×

m,s)-net has qm points;
• n denotes the number of rows of the generating matrices and therefore corre-

sponds to the maximum number of non-zero digits in the base q expansion of
each coordinate of each point; hence n determines how precise each point is
placed in the unit cube, which has a direct influence on the convergence of the
integration error as can be seen from the next point;

• βn−t denotes the quality of the point set, which can be referred to as the strength
of the net; in particular, the integration error is O(q−βn+t(βn− t)αs);

• digital (t,α,β ,n×m,s)-nets were introduced in the context of numerical inte-
gration, where α is a variable parameter, which denotes the smoothness of the
integrand. We assume that the smoothness α is not known explicitly.

Finally, following [2], we now recall a method of explicitly constructing digital
(t,α,β ,n×m,s)-nets, which was first presented in [2, Section 4.4]. This way we
obtain digital (t,α,min(1,α/d),dm×m,s)-nets for all α ≥ 1, where d ∈ N is a
parameter which can be chosen freely.

Let d ≥ 1 and let C1, . . . ,Csd be the generating matrices of a digital (t ′,m,sd)-net;
we recall that many explicit examples of such generating matrices are known, see
e.g., [6, 7, 8, 10, 12, 18] and the references therein. As we will see later, the choice
of the underlying digital (t ′,m,sd)-net has a direct impact on the bound on the t-
value of the digital (t,α,min(1, α

d ),dm×m,s)-net, which was proven in [2]. Let
C j = (c j,1, . . . ,c j,m)> for j = 1, . . . ,sd; i.e., c j,l are the row vectors of C j. Now let
the matrix C(d)

j consist of the first rows of the matrices C( j−1)d+1, . . . ,C jd , then the
second rows of C( j−1)d+1, . . . ,C jd , and so on, in the order described in the following:

The matrix C(d)
j is a dm×m matrix; i.e., C(d)

j = (c(d)
j,1 , . . . ,c(d)

j,dm)>, where c(d)
j,l = cu,v

with l = (v− j)d + u, 1 ≤ v ≤ m, and ( j−1)d < u ≤ jd for l = 1, . . . ,dm and j =
1, . . . ,s. We remark that this construction can be extended to digital (t,α,β ,σ ,s)-
sequences by letting C̃ j = (c̃ j,1, c̃ j,2, . . .)>, for j = 1, . . . ,sd, denote the generating
matrices of a digital (t ′,sd)-sequence; the resulting matrices C̃(d)

j , j = 1, . . . ,s, are

now ∞×∞ matrices, where again we have C̃(d)
j = (c̃(d)

j,1 , c̃(d)
j,2 , . . .)>, where c̃(d)

j,l = c̃u,v

with l = (v− j)d +u, v ≥ 1, and ( j−1)d < u ≤ jd for l = 1,2, . . . and j = 1, . . . ,s.
The following result improves [2, Theorem 4.11] for some cases. For a proof

see [4].
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Theorem 1. Let d ≥ 1 be a natural number and let C1, . . . ,Csd be the generating
matrices of a digital (t ′,m,sd)-net over the finite field Fq of prime power order q. Let
C(d)

1 , . . . ,C(d)
s be defined as above. Then for any α ∈ N, the matrices C(d)

1 , . . . ,C(d)
s

are the generating matrices of a digital (t,α,min(1,α/d),dm×m,s)-net over Fq
with

t = min(α,d)min
(

m, t ′+
⌊

s(d−1)
2

⌋)
. (1)

Furthermore, the matrices C̃(d)
1 , . . . ,C̃(d)

s obtained from the generating matrices
C̃1, . . . ,C̃sd of a digital (t ′,sd)-sequence over Fq are the generating matrices of a
digital (t,α,min(1,α/d),d,s)-sequence over Fq with

t = min(α,d)
(

t ′+
⌊

s(d−1)
2

⌋)
.

In the following example we show that the above result cannot be improved on
in general.

Example 1. Let d = 2 and s = 1 and generate a digital (t,α,min(1,α/2),2m×m,1)-
net over Fq from a digital (0,m,2)-net over Fq (such nets exist, for example one
can take the Hammersley net). Then Theorem 1 implies that we can choose t =
min(α,2)0+min(α,2)b1 ·1/2c= 0, which is already best possible.

On the other hand it can be checked that the bound on the t-value in Theo-
rem 1 for particular digital nets is not necessarily best possible. That is, if we use
a strict digital (t ′,m,sd)-net over Fq for the construction of the generating matri-
ces C(d)

1 , . . . ,C(d)
s , then these generating matrices do not necessarily generate a strict

digital (t,α,β ,n×m,s)-net over Fq, where t is given by (1). This is illustrated in
the next example.

Example 2. The following matrices generate a strict digital (1,3,4)-net over F2 and
stem from a Niederreiter-Xing sequence as implemented by Pirsic [16]:

C1 =

 1 1 1
0 1 0
0 0 0

 ,C2 =

 1 0 0
0 0 1
0 1 0

 ,C3 =

 1 1 0
1 0 0
0 0 1

 ,C4 =

 0 1 1
1 1 0
1 1 1

 .

Using the method described in [2, Section 4.4] with d = 2, we construct the gener-
ating matrices C(2)

1 and C(2)
2 , which are given by:

C(2)
1 =


1 1 1
1 0 0
0 1 0
0 0 1
0 0 0
0 1 0

 ,C(2)
2 =


1 1 0
0 1 1
1 0 0
1 1 0
0 0 1
1 1 1

 .
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For any α ≥ 2, Theorem 1 yields a digital (4,α,1,6× 3,2)-net and for α = 1 a
digital (2,1,1/2,6×3,2)-net.

We now show that the exact t-value of this digital net is smaller than the one
obtained from Theorem 1. It can be confirmed by inspection that the matrices C(2)

1

and C(2)
2 generate a digital (2,α,1,6× 3,2)-net for all α ≥ 2, by checking that for

all 1 ≤ i j,ν j < · · ·< i j,1, where 0 ≤ ν j, j = 1,2, with

2

∑
j=1

min(ν j ,α)

∑
l=1

i j,l ≤ 6−2 = 4

the vectors c(2)
1,i1,ν1

, . . . ,c(2)
1,i1,1

,c(2)
2,i2,ν2

, . . . ,c(2)
2,i2,1

are linearly independent over F2. Fur-

thermore, it can be confirmed that the two matrices C(2)
1 and C(2)

2 do not generate a
digital (1,α,1,6×3,2)-net for any α ≥ 2, as for ν1 = 0, ν2 = 2, i2,2 = 1, i2,1 = 4,
c(2)

2,i2,1
and c(2)

2,i2,2
are linearly dependent. Hence, for any α ≥ 2, the matrices C(2)

1 and

C(2)
2 generate a strict digital (2,α,1,6×3,2)-net.

For α = 1 on the other hand, it can be checked that the matrices C(2)
1 and C(2)

2
generate a strict digital (0,1,1/2,6×3,2)-net.

Thus, for this example, Theorem 1 does not yield the best possible result for any
α ≥ 1.

Next we present an example which might be counterintuitive at first: We present
a strict digital (2,3,4)-net, which generates a strict digital (1,α,1,6× 3,2)-net for
any α ≥ 2, and, for α = 1, a strict digital (0,1,1/2,6×3,2)-net.

Example 3. The following matrices generate a strict digital (2,3,4)-net over F2:

K1 =

 1 1 0
1 0 0
1 1 0

 ,K2 =

 1 0 1
1 0 1
0 0 0

 ,K3 =

 0 0 1
1 0 0
0 0 1

 ,K4 =

 0 1 0
0 1 0
0 0 0

 .

Using the method described in [2, Section 4.4] with d = 2, we construct the gener-
ating matrices K(2)

1 and K(2)
2 , which are given by:

K(2)
1 =


1 1 0
1 0 1
1 0 0
1 0 1
1 1 0
0 0 0

 ,K(2)
2 =


0 0 1
0 1 0
1 0 0
0 1 0
0 0 1
0 0 0

 .

For any α ≥ 2, Theorem 1 yields a digital (6,α,1,6× 3,2)-net, and for α = 1 a
digital (3,1,1/2,6×3,2)-net.

As in Example 2, it can be confirmed by inspection that the matrices K(2)
1 and

K(2)
2 generate a digital (1,α,1,6× 3,2)-net for all α ≥ 2. Furthermore, it can be
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confirmed that the two matrices K(2)
1 and K(2)

2 do not generate a digital (0,α,1,6×
3,2)-net for α ≥ 2, as for ν1 = 2, ν2 = 2, i1,2 = 1, i1,1 = 2, i2,2 = 1 and i2,1 = 2,
k(2)

1,i1,2
, k(2)

1,i1,1
, k(2)

2,i2,2
and k(2)

2,i2,1
are linearly dependent, where k(2)

j,i denotes the ith row

of the matrix K(2)
j .

For α = 1 on the other hand, it can be checked that the matrices K(2)
1 and K(2)

2
generate a strict digital (0,1,1/2,6×3,2)-net.

The last two examples show that Theorem 1 does not always yield the best pos-
sible bounds on the t-value for digital (t,α,β ,n×m,s)-nets constructed from par-
ticular classical digital nets. (This could mean that it might be possible to improve
the bound on the t-value for generalized digital nets constructed from particular
classical nets (or sequences).) On the other hand, at least for digital (t,α,β ,σ ,s)-
sequences, we will see below that Theorem 1 does yield the asymptotically optimal
dependence of the t-value on α and s, see Theorem 7 below.

Remark 2. Note that even though the strict digital (1,3,4)-net used in Example 2
has a better t-value (in the classical sense) than the strict digital (2,3,4)-net in Ex-
ample 3, the latter generates the better digital (t,α,1,6× 3,2)-net for any α ≥ 2,
as measured by the generalized t-value. However, it is possible to find a strict dig-
ital (1,3,4)-net which generates a strict digital (1,α,1,6×3,2)-net for any α ≥ 2.
Consider for example

K̃1 =

 1 1 0
1 0 0
1 1 0

 , K̃2 =

 1 0 1
1 1 1
0 0 0

 , K̃3 =

 0 0 1
1 0 0
0 0 1

 , K̃4 =

 0 1 0
1 1 1
0 0 0

 .

Remark 3. It can be checked that the matrices C(2)
1 and C(2)

2 from Example 2 can
also be interpreted as generating matrices of a digital (0,3,2)-net over F2. However,
if we set C̃2 = C(2)

2 , but

C̃1 =


1 1 1
1 0 0
0 1 1
0 0 1
0 0 0
0 1 0

 ,

we have an example of a strict digital (2,α,1,6×3,2)-net over F2, α ≥ 2, which is
a strict digital (1,3,2)-net.

3 Equidistribution properties of generalized nets and sequences

Generalized digital nets and sequences, as introduced in [2], rely on linear alge-
bra over finite fields. The quality of such point sets is determined by linear in-
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dependence properties of the generating matrices. In this section we remove this
restriction by introducing the essential geometrical properties satisfied by digital
(t,α,β ,n×m,s)-nets and digital (t,α,β ,σ ,s)-sequences. This is analogous to the
link between (t,m,s)-nets and digital (t,m,s)-nets in the classical theory (or (t,s)-
sequences and digital (t,s)-sequences), where the former includes the latter as a
special case and (t,m,s)-nets (and (t,s)-sequences) are defined using only geomet-
rical features of the point set.

3.1 Definition of (t,α,β ,n,m,s)-nets and (t,α,β ,σ ,s)-sequences

We recall that the definition of (t,m,s)-nets is based on the concept of an el-
ementary interval, see e.g. [10]. In the following we introduce a concept anal-
ogous to that of an elementary interval, namely that of a generalized elemen-
tary interval. Before we do so we need some notation: let ν = (ν1, . . . ,νs), let
|ν |1 = ∑

s
j=1 ν j, let iν = (i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs), let aν ∈ {0, . . . ,q−1}|ν |1 ,

and let aν = (a1,i1,1 , . . . ,a1,i1,ν1
, . . . ,as,is,1 , . . . ,as,is,νs ), where the components i j,l and

a j,l , l = 1, . . . ,ν j, do not appear in the vectors iν and aν in case ν j = 0.
By a generalized elementary interval we mean a subset of [0,1)s of the form

J(iν ,aν)

=
s

∏
j=1

q−1⋃
a j,l=0

l∈{1,...,n}\
{

i j,1,...,i j,ν j

}
[

a j,1

q
+ · · ·+

a j,n

qn ,
a j,1

q
+ · · ·+

a j,n

qn +
1
qn

)
,

where q≥ 2 is an integer and where for j = 1, . . . ,s we have 1≤ i j,ν j < · · ·< i j,1 ≤ n
in case ν j > 0 and {i j,1, . . . , i j,ν j}= /0 in case ν j = 0.

We note that a generalized elementary interval is not always an elementary inter-
val, but can be a union of several elementary intervals, see for example Figure 1.

Generalized elementary intervals posses properties similar to those of classical
elementary intervals as we show in the following.

Lemma 1. Let ν ∈ {0, . . . ,n}s and iν be defined as above and fixed. Then the gen-
eralized elementary intervals J(iν ,aν) for aν ∈ {0, . . . ,q−1}|ν |1 , form a partition
of [0,1)s, i.e.

⋃
aν∈{0,...,q−1}|ν |1 J(iν ,aν) = [0,1)s and J(iν ,aν)∩J(iν ,a′ν) = /0, for all

aν 6= a′ν ∈ {0, . . . ,q−1}|ν |1 .

Proof. First we have
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aν∈{0,...,q−1}|ν |1

J(iν ,aν)

=
s

∏
j=1

q−1⋃
a j,l=0

l∈{1,...,n}

[
a j,1

q
+ · · ·+

a j,n

qn ,
a j,1

q
+ · · ·+

a j,n

qn +
1
qn

)

= [0,1)s.

To show the second part, we note that, for iν fixed and aν 6= a′ν , there exists a j ∈
{1, . . . ,s}, and a k ∈

{
i j,1, . . . , i j,ν j

}
, such that a j,k 6= a′j,k. Let x = (x1, . . . ,xs) where

each coordinate x j, j = 1, . . . ,s, has base q expansion x j = x j,1q−1 + x j,2q−2 + . . .
(we assume that for each j ∈ {1, . . . ,s} infinitely many x j,k 6= q− 1). Then x ∈
J(iν ,aν) if and only if for all j = 1, . . . ,s and all k ∈ {i j,1, . . . , i j,ν j} we have x j,k =
a j,k. But as there exists a j and k such that a j,k 6= a′j,k, x cannot be in J(iν ,aν) and
J(iν ,a′ν) simultaneously. Hence J(iν ,aν)∩ J(iν ,a′ν) = /0 and the result follows.

�

In the following lemma, we compute the volume of a generalized elementary
interval.

Lemma 2. Let ν , iν and aν be as above. Then the volume of J(iν ,aν) is q−|ν |1 .

Proof. Let ν and iν be fixed. Then we have seen in Lemma 1 that the J(iν ,aν),
aν ∈ {0, . . . ,q−1}|ν |1 form a partition of [0,1)s. From the definition of generalized
elementary intervals one can see that Vol(J(iν ,aν)) = Vol(J(iν ,a′ν)) for all aν ,a′ν ∈
{0, . . . ,q−1}|ν |1 , where Vol(J) denotes the volume of an interval J, as the intervals
J(iν ,aν) and J(iν ,a′ν) are only shifted versions of each other. Hence

Vol(J(iν ,aν)) =
1

|{aν ∈ {0, . . . ,q−1}|ν |1}|
=

1
q|ν |1

.

�

We are now in a position to define a (t,α,β ,n,m,s)-net, which is based on the
concept of a generalized elementary interval and Lemma 2.

Definition 4. Let n,m,α ≥ 1 be natural numbers, let 0 < β ≤ 1 be a real number,
and let 0≤ t ≤ βn be an integer. Let q≥ 2 be an integer and P =

{
x0, . . . ,xqm−1

}
⊆

[0,1)s be a point set in the s-dimensional unit cube, s ≥ 1. We say that P is a
(t,α,β ,n,m,s)-net (in base q), if for all integers 1≤ i j,ν j < · · ·< i j,1, where ν j ≥ 0,
with

s

∑
j=1

min(ν j ,α)

∑
l=1

i j,l ≤ βn− t,

where for ν j = 0 we set the empty sum ∑
0
l=1 i j,l = 0, the generalized elementary

interval J(iν ,aν) contains exactly qm−|ν |1 points of P for each aν ∈{0, . . . ,q−1}|ν |1 .
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Fig. 1 The picture shows a (2,α,1,6,3,2)-net in base 2 for any α ≥ 2 and a generalized elementary
interval J(iν ,aν ), where ν1 = ν2 = 1, i1,1 = i2,1 = 2, and ai1,1 = 0 and ai2,1 = 1.

Remark 4. Note that qm−|ν |1 = qmVol(J(iν ,aν)). For an interval J ⊆ [0,1)s and a
point set P ⊂ [0,1)s, let |P(J)| denote the number of points of P in J. Then Def-
inition 4 says that the proportion of points of P in J(iν ,aν), which is given by
|P(J(iν ,aν))|/|P([0,1)s)|, equals the volume of J(iν ,aν).

Remark 5. Note that (t,α,β ,n,m,s)-nets can only exist for parameters t, α , β , n, m,
s where the definition implies that ν1 + · · ·+νs ≤ m.

Consider for example the choice of parameters β = 1, t = α = s = 2, m = 3 and
n = 6; such a (2,2,1,6,3,2)-net can exist, since if ν1 +ν2 > 3 we have for all choices

of 1 ≤ i j,ν j < · · · < i j,1 ≤ 6, for j = 1,2, that ∑
s
j=1 ∑

min(ν j ,α)
l=1 i j,l > 4 = βn− t. (On

the other hand, that does not imply that such a net really does exist, it only allows
for the possibility to exist.)

But a (0,2,1,6,3,2)-net, i.e. we set t = 0 and leave the remaining parameters
unchanged, cannot exist, since we could choose ν1 = ν2 = 2, i1,1 = i2,1 = 2 and
i1,2 = i2,2 = 1, in which case we have i1,1 + i1,2 + i2,1 + i2,2 = 6 = βn−t, and thereby
obtain a generalized elementary interval which has to contain exactly qm−ν1−ν2 =
q−1 points, which is of course absurd. Hence t = 0 is not possible for this choice
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of parameters. (Regarding t = 1, we have explicitly constructed digital (1,2,1,6×
3,2)-nets in Example 3 and Remark 2, which by Theorem 6 below also form a
(1,2,1,6,3,2)-net.)

Remark 6. We obtain the definition of a classical (t,m,s)-net from Definition 4 by
setting α = β = 1, n = m, and considering all ν1, . . . ,νs ≥ 0 so that ∑

s
j=1 ν j ≤m− t,

where we set i j,k = ν j − k + 1 for k = 1, . . . ,ν j. Hence a (t,1,1,m,m,s)-net is a
(t,m,s)-net.

We shall now discuss the additional parameters α,β , and n, which do not appear
in the definition of classical (t,m,s)-nets. The case α = 1 is strongly related to
classical (t,m,s)-nets. We can, w.l.o.g., choose ν j, j = 1, . . . ,s so that ∑

s
j=1 ν j =

bβnc− t and set i j,l = ν j +1− l for l = 1, . . . ,ν j, as in this case we obtain the most
stringent condition on the points, i.e., all other conditions are automatically included
in this choice of the i j,l . Then a (t,1,β ,n,m,s)-net is a classical (t ′,m,s)-net with
t ′ = m−bβnc+ t.

We have the following theorem.

Theorem 2. Assume that n,m,α ∈ N, 0 < β ≤ 1 a real number, and 0 ≤ t ≤ βn
an integer, such that there exists a (t,α,β ,n,m,s)-net in base q. For 1 ≤ j0 ≤ s let
0 ≤ ` j0 < j0 be given by ` j0 ≡ m (mod j0). Then for j0 = 1, . . . ,s we have

βn− t < αm− j0
α(α −1)

2
+α, for m ≥ α j0,

and

βn− t <
1
2

α j0

⌊
m
j0

⌋
+(` j0 +1)

(⌊
m
j0

⌋
+1

)
, for m < α j0.

Proof. As elaborated in Remark 5, for every choice of 1 ≤ i j,ν j < · · ·< i j,1, ν j ≥ 0,

for j = 1, . . . ,s, with ∑
s
j=1 ∑

min(ν j ,α)
l=1 i j,l ≤ βn− t, we must have that |ν |1 ≤ m.

Let 1 ≤ j0 ≤ s and let

ν j =

 bm/ j0c+1 for 1 ≤ j ≤ ` j0 +1,
bm/ j0c for ` j0 +2 ≤ j ≤ j0,
0 for j0 +1 ≤ j ≤ s.

Further set i j,l = ν j +1− l for l = 1, . . . ,ν j for j = 1, . . . , j0. Note that for this choice
of ν1, . . . ,νs we have

|ν |1 = j0

⌊
m
j0

⌋
+ ` j0 +1 = j0

m− ` j0
j0

+ ` j0 +1 = m+1.

Consider the case where α ≤ bm/ j0c. Then
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s

∑
j=1

min(ν j ,α)

∑
l=1

i j,l = j0

(⌊
m
j0

⌋
+

⌊
m
j0

⌋
−1+ · · ·+

⌊
m
j0

⌋
− (α −1)

)
+α(` j0 +1)

= α j0

⌊
m
j0

⌋
− j0

α(α −1)
2

+α(` j0 +1)

= α j0
m− ` j0

j0
− j0

α(α −1)
2

+α` j0 +α

= αm− j0
α(α −1)

2
+α.

Thus we get a contradiction if the last term is smaller or equal to βn− t and hence
the first result follows.

Now we consider the case where α ≥ bm/ j0c+1. Then

s

∑
j=1

min(ν j ,α)

∑
l=1

i j,l = j0

(⌊
m
j0

⌋
+

⌊
m
j0

⌋
−1+ · · ·+1

)
+(` j0 +1)

(⌊
m
j0

⌋
+1

)
= j0

bm/ j0c(bm/ j0c+1)
2

+(` j0 +1)
(⌊

m
j0

⌋
+1

)
≤ 1

2
α j0

⌊
m
j0

⌋
+(` j0 +1)

(⌊
m
j0

⌋
+1

)
.

Again we get a contradiction if the last term is smaller or equal to βn− t and hence
also the second result follows.

�

Note, Theorem 2 implies for α = 1,2 that βn− t < αm + 1 (choose j0 = 1)
and, based on the proof of Theorem 2, one can show that βn− t < αm for α ≥ 3
(choose j0 = 1). Thus, as βn− t < αm + 1, we can w.l.o.g. choose β and n such
that βn < αm + 1 (for βn ≥ αm + 1 we must have t > 0, hence we do not exclude
any cases by choosing βn < αm+1), or if β is such that βn is an integer, we have
β ≤ αm/n.

Choosing j0 = s in Theorem 2 and estimating ` j0 +1≤ j0, we obtain the follow-
ing corollary.

Corollary 1. Assume that n,m,α ∈N, 0 < β ≤ 1 a real number, and 0 ≤ t ≤ βn an
integer, such that there exists a (t,α,β ,n,m,s)-net in base q. Then we have

βn− t < αm− s
α(α −1)

2
+α, for m ≥ αs,

and
βn− t <

1
2

αm+m+ s, for m < αs.

As in the classical case, we can also define sequences.
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Definition 5. Let α,σ ≥ 1, t ≥ 0 be integers, and 0 < β ≤ 1 be a real number. Let
S = {x0,x1, . . .} be a sequence of points in [0,1)s. Then S is a (t,α,β ,σ ,s)-sequence
in base q if for all k ≥ 0 and m > t/(βσ) we have that xkqm ,xkqm+1, . . . ,x(k+1)qm−1
is a (t,α,β ,σm,m,s)-net in base q.

Remark 7. We obtain the definition of a classical (t,s)-sequence from Definition 5
and Remark 6 by setting α = β = σ = 1. Hence a (t,1,1,1,s)-sequence is a (t,s)-
sequence.

3.2 Some properties of (t,α,β ,n,m,s)-nets and
(t,α,β ,σ ,s)-sequences

In this subsection we establish a few propagation rules for (t,α,β ,n,m,s)-nets
and (t,α,β ,σ ,s)-sequences in base q. Furthermore, we establish that every digital
(t,α,β ,n×m,s)-net over Fq is a (t,α,β ,n,m,s)-net in base q and that every digital
(t,α,β ,σ ,s)-sequence over Fq is also a (t,α,β ,σ ,s)-sequence in base q. Finally,
we produce lower and upper bounds on the quality parameter t for (t,α,β ,σ ,s)-
sequences.

The following theorem is in analogy to [2, Theorem 4.10].

Theorem 3. Let P be a (t,α,β ,n,m,s)-net in base q and let S be a (t,α,β ,σ ,s)-
sequence in base q. Then we have the following:

(i) P is a (t ′,α,β ′,n,m,s)-net for all 0 < β ′ ≤ β and all t ≤ t ′ ≤ β ′n, and S is a
(t ′,α,β ′,σ ,s)-sequence for all 0 < β ′ ≤ β and all t ≤ t ′.

(ii) P is a (t ′,α ′,β ′,n,m,s)-net for all α ′ ≥ 1 where β ′ = β min(α,α ′)/α and t ′ =
dt min(α,α ′)/αe, and S is a (t ′,α ′,β ′,σ ,s)-sequence for all α ′ ≥ 1 where β ′ =
β min(α,α ′)/α and where t ′ = dt min(α,α ′)/αe.

(iii) Any (t,α,β ,σ ,s)-sequence is a (t,α,β ,σ ′,s)-sequence for all 1 ≤ σ ′ ≤ σ .
(iv) Any (t,α,β ,n,m,s)-net is a classical (m−bβn/αc+ dt/αe,m,s)-net and any

(t,α,β ,σ ,s)-sequence with α = βσ is a classical (dt/αe,s)-sequence.

Proof. For the first part note that β ′n− t ′ ≤ βn− t and hence the condition on P in
Definition 4 is either the same or weaker. The same holds for S, hence the first part
follows.

To prove the second part we consider firstly the case α ′ ≥ α . Let 1≤ i j,ν j < · · ·<
i j,1, ν j ≥ 0, for j = 1, . . . ,s with

s

∑
j=1

min(ν j ,α
′)

∑
l=1

i j,l ≤ βn− t.

As
s

∑
j=1

min(ν j ,α)

∑
l=1

i j,l ≤
s

∑
j=1

min(ν j ,α
′)

∑
l=1

i j,l
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and P is a (t,α,β ,n,m,s)-net, it follows that J(iν ,aν) contains qm−|ν |1 points for all
admissible aν and hence this case follows for nets.

Let now α ′ < α and assume

s

∑
j=1

min(ν j ,α
′)

∑
l=1

i j,l ≤ β
′n− t ′ =

α ′

α
βn−

⌈
t
α ′

α

⌉
.

As
1
α

s

∑
j=1

min(ν j ,α)

∑
l=1

i j,l ≤
1
α ′

s

∑
j=1

min(ν j ,α
′)

∑
l=1

i j,l ,

it follows that
s

∑
j=1

min(ν j ,α)

∑
l=1

i j,l ≤
α

α ′ (β
′n− t ′)≤ βn− t.

As P is a (t,α,β ,n,m,s)-net, it follows that J(iν ,aν) contains exactly qm−|ν |1 points
for all admissible aν , completing the proof for nets. For sequences the result follows
from the result for nets and Definition 5.

For the third part we have to show that every point set xkqm , . . . ,x(k+1)qm−1 is a
(t,α,β ,σ ′m,m,s)-net. We know that this point set is a (t,α,β ,σm,m,s)-net from
Definition 5. As σ ′m− t ≤ σm− t this follows as the condition on the points
xkqm , . . . ,x(k+1)qm−1 can only become weaker, which implies the result.

For the last part we use (ii), which shows that every (t,α,β ,n,m,s)-net P is also a
(dt/αe,1,β/α,n,m,s)-net. After Remark 6, it was shown that Definition 4 implies
that a (t,1,β ,n,m,s)-net is a (t ′,m,s)-net, with t ′ = m−bβnc+ t, hence P is also a
classical (t ′,m,s)-net, where

t ′ = m−
⌊

β

α
n
⌋

+
⌈ t

α

⌉
.

Now consider a (t,α,β ,σ ,s)-sequence x0,x1, . . . . For any k ≥ 0, the set of points
xkqm , . . . ,x(k+1)qm−1 forms a (t,α,β ,σm,m,s)-net. Hence the above result implies
that this is a classical (t ′,m,s)-net where

t ′ = m−
⌊

β

α
σm

⌋
+

⌈ t
α

⌉
=

⌈ t
α

⌉
.

As xkqm , . . . ,x(k+1)qm−1 is a classical (t ′,m,s)-net for all k ≥ 0, the result follows.

�

Remark 8. By Theorem 3, a (2,α,1,6,3,2)-net, α ≥ 2, is a classical (4−b 6
α
c,3,2)-

net. By the forthcoming Theorem 6, the digital (2,α,1,6×3,2)-net from Remark 3
is a (2,α,1,6,3,2)-net, hence we have an example of a (2,α,1,6,3,2)-net which is
a strict (1,3,2)-net. See also Figure 1 for an example of a (2,α,1,6,3,2)-net, which
is a (0,3,2)-net.
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In part (iv) of the above theorem we had the restriction that α = βσ . If S is a
(t,α,β ,σ ,s)-sequence with α > βσ , then we cannot use (iv) of the above theorem
to imply that S is a classical (t ′,s)-sequence, as then we would obtain a t ′-value
of the subnets xkqm , . . . ,x(k+1)qm−1 which grows with m. Hence we do not obtain a
classical sequence this way. On the other hand, we always have α ≥ βσ , as we show
in the following theorem.

Theorem 4. Assume that t,α,σ ,s ∈ N, and β ∈ R, 0 < β ≤ 1 are such that there
exists a (t,α,β ,σ ,s)-sequence. Then βσ ≤ α .

Proof. Let x0,x1, . . . be a (t,α,β ,σ ,s)-sequence. Then the set of points x0, . . . ,xqm−1
forms a (t,α,β ,σm,m,s)-net for all m > t/(βσ).

Assume to the contrary that α < βσ . As βσm− t < αm + 1, which was shown
after the proof of Theorem 2, we can choose an m large enough to obtain a contra-
diction. Hence βσ ≤ α .

�

Digital sequences for which α = βσ are of interest, as in this case we get the
optimal rate of convergence of the integration error for functions with square inte-
grable partial mixed derivatives of order α in each variable, whereas for α > βσ we
do not get the optimal rate, see [2]. But for the case α = βσ we get the following
bound on the value of t from Theorem 2.

Theorem 5. Assume that t,α,σ ,s∈N, and β ∈R, 0 < β ≤ 1, are such that α = βσ

and such that there exists a (t,α,β ,σ ,s)-sequence. Then for all α ≥ 2 we have

t > s
α(α −1)

2
−α.

Proof. Let m0 = αs. Then the first qm0 points of a (t,α,β ,σ ,s)-sequence form a
(t,α,β ,σm0,m0,s)-net. By Corollary 1 we obtain that

βσm0− t < αm0− s
α(α −1)

2
+α.

By substituting α for βσ in the last equation we obtain the result.

�

The next theorem establishes that a digital (t,α,β ,n×m,s)-net over Fq is a
(t,α,β ,n,m,s)-net in base q and analogously for sequences. This also yields ex-
plicit constructions of (t,α,β ,n,m,s)-nets and (t,α,β ,σ ,s)-sequences as digital
constructions are known from [2].

Theorem 6. Every digital (t,α,β ,n×m,s)-net over Fq is a (t,α,β ,n,m,s)-net in
base q and every digital (t,α,β ,σ ,s)-sequence over Fq is a (t,α,β ,σ ,s)-sequence
in base q.
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Proof. Assume we are given an arbitrary generalized elementary interval

J(iν ,aν)

=
s

∏
j=1

q−1⋃
a j,l=0

l∈{1,...,n}\
{

i j,1,...,i j,ν j

}
[

a j,1

q
+ · · ·+

a j,n

qn ,
a j,1

q
+ · · ·+

a j,n

qn +
1
qn

)
,

for some given values of ν , iν , and aν such that 1 ≤ i j,ν j < · · · < i j,1, j = 1, . . . ,s,
ν j ≥ 0, and

s

∑
j=1

min(ν j ,α)

∑
l=1

i j,l ≤ βn− t. (2)

We have to show that J(iν ,aν) contains exactly qm−|ν |1 points of the digital
(t,α,β ,n×m,s)-net, which we denote by x0, . . . ,xqm−1. Let xh = (xh,1, . . . ,xh,s) and
xh, j = xh, j,1q−1 + xh, j,2q−2 + . . . be the q-adic representation of xh, j.

Then for each 0 ≤ h < qm it follows that xh ∈ J(iν ,aν) if and only if xh, j,k = a j,k
for all k ∈

{
i j,1, . . . , i j,ν j

}
and all j = 1, . . . ,s. The value of xh, j,k is obtained from the

digital construction scheme in the following way: Let C1, . . . ,Cs denote the generator
matrices of the digital (t,α,β ,n×m,s)-net over Fq. Then xh, j,k = ϕ−1(c j,kh), where
c j,k denotes the kth row of C j. Thus c j,kh = ϕ(xh, j,k).

Let C = (c>1,i1,1
, . . . ,c>1,i1,ν1

, . . . ,c>s,is,1 , . . . ,c
>
s,is,νs

)> and further we define the vector

b = (ϕ(a1,i1,1), . . . ,ϕ(a1,i1,ν1
), . . . ,ϕ(as,is,1), . . . ,ϕ(as,is,νs ))

>. Then, by the above, it
follows that xh ∈ J(iν ,aν) if and only if Ch = b.

We now investigate how many solutions h the system of equations Ch = b has.
As (2) is satisfied, Definition 2 implies that the rows of the matrix C are linearly
independent. As C has |ν |1 (|ν |1 ≤ m) rows, there are exactly qm−|ν |1 solutions to
this system, and hence qm−|ν |1 of the x0, . . . ,xqm−1 fall into J(iν ,aν), which shows
that every digital (t,α,β ,n×m,s)-net is also a (t,α,β ,n,m,s)-net.

Now we turn to sequences. Let x0,x1, . . . be a digital (t,α,β ,σ ,s)-sequence over
the finite field Fq. Let k ≥ 0 and m > t/(βσ). Then the point set x`qm , . . . ,x(`+1)qm−1
can be obtained from the digital construction scheme with an added digital shift,
i.e., there are matrices C1, . . . ,Cs ∈ Fn×m

q and vectors d j,` = (d j,1,`, . . . ,d j,n,`)> ∈
Fn

q, 1 ≤ j ≤ s, which depend on `, such that xh, j,k = ϕ−1(c j,kh + d j,k,`). Thus we
have c j,kh = ϕ(xh, j,k)−d j,k,` ∈ Fq. For some given generalized elementary interval
J(iν ,aν) we have xh ∈ J(iν ,aν) if and only if c j,kh = ϕ(a j,k)− d j,k,` for all k ∈
{i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs} and j = 1, . . . ,s. Thus the same argument as for nets
applies and the result follows.

�

Definition 6. Let q be a prime power. Then let dq(α,s) denote the smallest value of
t such that there exists a digital (t,α,β ,σ ,s)-sequence over the finite field Fq with
α = βσ .
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The analogy of Definition 6 for classical digital sequences, i.e. the case α = 1,
has already appeared in [13], see also [14, Definition 8]. For α = β = σ = 1, i.e.
digital (t,s)-sequences, it is true that

s
q−1

−O(logs) < dq(1,s)≤ c
logq

s+1,

for all s ≥ 1, where c > 0 is an absolute constant. The lower bound was shown in
[17] and also holds for (t,s)-sequences, whereas the upper bound can be found in
[13, Theorem 4] and [14, Corollary 1]. Improved results for several special values
of q can also be found in [15].

The following theorem now considers the case α ≥ 2.

Theorem 7. Let q be a prime power. Then for all s ≥ 1 and α ≥ 2 we have

s
α(α −1)

2
−α < dq(α,s)≤ sα

2 c
logq

+α +α

⌊
s(α −1)

2

⌋
,

where c > 0 is an absolute constant.

Proof. The lower bound is taken from Theorem 5. To prove the upper bound we use
Theorem 1 with d = α to obtain a digital (t,α,1,α,s)-sequence over Fq with

t = αt ′+α

⌊
s(α −1)

2

⌋
,

where t ′ is the quality parameter of the classical digital (t ′,sα)-sequence upon which
the construction is based. From [13, Theorem 4], [14, Corollary 1] we know that
there exist digital (t ′,s)-sequences for which t ′ ≤ c

logq s + 1. Upon combining the
last two formulae, where we replace s with αs in the last formula as we consider
(t ′,sα)-sequences, the result follows.

�

Note that the bounds in Theorem 7 also apply to (non-digital) (t,α,β ,σ ,s)-
sequences with α = βσ and t value as small as possible.
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