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Abstract
Higher order nets and sequences are used in quasi-Monte Carlo rules for the

approximation of high dimensional integrals over the unit cube. Hence one wants
to have higher order nets and sequences of high quality.

In this paper we introduce a duality theory for higher order nets whose construc-
tion is not necessarily based on linear algebra over finite fields. We use this duality
theory to prove propagation rules for such nets. This way we can obtain new higher
order nets (sometimes with improved quality) from existing ones. We also extend
our approach to the construction of higher order sequences.
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1 Introduction

The concept of (t,m, s)-nets and (t, s)-sequences in base b was introduced by Niederre-
iter [13] as a general framework for constructing point sets and sequences which can be
used as quadrature points for quasi-Monte Carlo (qMC) rules. Such nets (and sequences)
are point sets (and sequences of points) in the unit cube [0, 1)s. Throughout the paper a
point set is always understood as a multiset, i.e., points may occur repeatedly.

In general, qMC rules are of the form 1
N

∑N−1
n=0 f(xn), where x0, . . . ,xN−1 are the

quadrature points, which can be used to approximate integrals of the form
∫

[0,1]s
f(x) dx.

Typically one obtains a convergence of the integration error of O(N−1(logN)s) for such
methods [10, 13].

The notion of (t, α, β, n,m, s)-nets and (t, α, β, σ, s)-sequences in base b on the other
hand was introduced in [8]. We give the definitions and some properties of (t, α, β, n,m, s)-
nets and (t, α, β, σ, s)-sequences in base b. To this end some notation has to be fixed which
is used throughout the paper.

Let n, s ≥ 1, b ≥ 2 be integers. For ν = (ν1, . . . , νs) ∈ {0, . . . , n}s let |ν|1 =
∑s

j=1 νj
and define iν = (i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs) with integers 1 ≤ ij,νj < . . . < ij,1 ≤ n in
case νj > 0 and

{
ij,1, . . . , ij,νj

}
= ∅ in case νj = 0, for j = 1, . . . , s. For given ν and iν let

aν ∈ {0, . . . , b− 1}|ν|1 , which we write as aν = (a1,i1,1 , . . . , a1,i1,ν1
, . . . , as,is,1 , . . . , as,is,νs ).

A generalised elementary interval in base b is a subset of [0, 1)s of the form

J(iν ,aν) =
s∏
j=1

b−1⋃
aj,l=0

l∈{1,...,n}\{ij,1,...,ij,νj }

[
aj,1
b

+ · · ·+ aj,n
bn

,
aj,1
b

+ · · ·+ aj,n
bn

+
1

bn

)
,

where
{
ij,1, . . . , ij,νj

}
= ∅ in case νj = 0 for 1 ≤ j ≤ s.

From [8, Lemmas 3.1 and 3.2] it is known that for ν ∈ {0, . . . , n}s and iν defined as

above and fixed, the generalised elementary intervals J(iν ,aν) for aν ∈ {0, . . . , b− 1}|ν|1
form a partition of [0, 1)s and the volume of J(iν ,aν) is b−|ν|1 .

We can now give the definition of (t, α, β, n,m, s)-nets based on [8, Definition 4].

Definition 1.1 Let n, m, s, α ≥ 1 be natural numbers, let 0 < β ≤ min(1, αm/n)
be a real number, and let 0 ≤ t ≤ βn be an integer. Let b ≥ 2 be an integer and
P = {x0, . . . ,xbm−1} be a multiset in [0, 1)s. We say that P is a (t, α, β, n,m, s)-net in
base b, if for all integers 1 ≤ ij,νj < · · · < ij,1, where νj ≥ 0, with

s∑
j=1

min(νj ,α)∑
l=1

ij,l ≤ βn− t,

where for νj = 0 we set the empty sum
∑0

l=1 ij,l = 0, the generalised elementary interval

J(iν ,aν) contains exactly bm−|ν|1 points of P for each aν ∈ {0, . . . , b− 1}|ν|1 .
A (t, α, β, n,m, s)-net in base b is called a strict (t, α, β, n,m, s)-net in base b, if it is

not a (u, α, β, n,m, s)-net in base b with u < t.

Note that in the definition above the specific order of elements of a multiset is not
important. The parameter t is often referred to as the quality parameter of the net. By
the strength of the net one means the quantity βn− t.
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Informally we refer to (t, α, β, n,ms)-nets as higher order nets.

Remark 1.1 We obtain the definition of a classical (t,m, s)-net in base b due to Niederre-
iter [13, Definition 4.1] from Definition 1.1 by setting α = β = 1, n = m, and considering
all ν1, . . . , νs ≥ 0 so that

∑s
j=1 νj ≤ m−t, where we set ij,k = νj−k+1 for k = 1, . . . , νj. In

this case the definition can be simplified to the following. A multiset P = {x0, . . . ,xbm−1}
whose elements belong to [0, 1)s is a (t,m, s)-net in base b if for all integers d1, . . . , ds ≥ 0

with d1 + · · · + ds = m − t each elementary interval J =
∏s

j=1

[
aj

bdj
,
aj+1

bdj

)
with integers

0 ≤ aj < bdj for 1 ≤ j ≤ s and of volume bt−m contains exactly bt elements of P . Hence
a (t, 1, 1,m,m, s)-net is a (t,m, s)-net.

Remark 1.2 Let n, m, s, α ≥ 1 be natural numbers and let 0 < β ≤ 1 be a real
number. It follows from Definition 1.1 that any multiset consisting of bm points in [0, 1)s

is a (bβnc, α, β, n,m, s)-net in base b.

Remark 1.3 Note that bm−|ν|1 = bmVol(J(iν ,aν)). Hence Definition 1.1 states that the
proportion of points of P in J(iν ,aν) equals the volume of J(iν ,aν), i.e.,

|{0 ≤ h < bm : xh ∈ J(iν ,aν)}|
bm

= Vol(J(iν ,aν)).

We also give the definition of (t, α, β, σ, s)-sequences from [8].

Definition 1.2 Let σ, s, α ≥ 1 be natural numbers, let 0 < β ≤ 1 be a real number,
and let t ≥ 0 be an integer. Let b ≥ 2 be an integer and ω = (x0,x1, . . . ) be an infinite
sequence in [0, 1)s. We say that ω is a (t, α, β, σ, s)-sequence in base b, if for all integers
k ≥ 0 and m > t/(βσ) we have that the finite subsequence {xkbm ,xkbm+1, . . . ,x(k+1)bm−1}
is a (t, α, β, σm,m, s)-net in base b.

A (t, α, β, σ, s)-sequence in base b is called a strict (t, α, β, σ, s)-sequence in base b if it
is not a (u, α, β, σ, s)-sequence in base b with u < t.

Note that in the definition above the specific order of elements of an infinite sequence
is of importance.

Informally we refer to (t, α, β, σ, s)-sequences as higher order sequences. Of particular
importance are (t, α, β, σ, s)-sequences for which α = βσ since these are in some sense
optimal, see [8]. For any 1 ≤ δ < ∞ constructions of higher order sequences for which
α = βσ for all 1 ≤ α ≤ δ are given in [6] (note that β and σ generally depend on α).

Remark 1.4 We obtain the definition of a classical (t, s)-sequence in base b due to Nieder-
reiter [13, Definition 4.2] from Definition 1.2 and Remark 1.1 by setting α = β = σ = 1.
Hence a (t, 1, 1, 1, s)-sequence in base b is a (t, s)-sequence in base b.

Explicit constructions of (t, α, β, n,m, s)-nets, respectively (t, α, β, σ, s)-sequences, in
prime power bases b are known using the digital construction scheme. Nets (and se-
quences) constructed in this manner are referred to as digital (t, α, β, n×m, s)-nets (and
digital (t, α, β, σ, s)-sequences) over a finite field Fb. For more information we refer to
[6, Subsection 4.4] and [9]. The proof that digital (t, α, β, n × m, s)-nets, respectively
digital (t, α, β, σ, s)-sequences, over Fb are in fact special cases of (t, α, β, n,m, s)-nets,
respectively (t, α, β, σ, s)-sequences, in base b can be found in [8, Theorem 3.5].
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The advantage of the more general concept due to [8] (in comparison to classical
(t,m, s)-nets) is that (t, α, β, n,m, s)-nets and (t, α, β, σ, s)-sequences in base b can exploit
the smoothness α of a function f (which is not the case for the classical concepts of
(t,m, s)-nets and (t, s)-sequences). More precisely, we have the following theorem from
[1].

Theorem 1.1 Let {x0, . . . ,xbm−1} be a (t, α, β, n,m, s)-net in base b. Let f : [0, 1]s →
R have mixed partial derivatives up to order α ≥ 2 in each variable which are square
integrable. Then∣∣∣∣∣

∫
[0,1]s

f(x) dx− 1

bm

bm−1∑
h=0

f(xh)

∣∣∣∣∣ = O
(
b−(1−1/α)(βn−t)(βn− t)αs

)
.

Additionally, the following results are known. If α = β = 1 and n = m, then the
integration error is ofO(b−m+tms), see [13]. If {x0, . . . ,xbm−1} is a digital (t, α, β, n×m, s)-
net, then one obtains an integration error of O(b−(βn−t)(βn− t)αs), see [5, 6].

Hence it is important to have explicit constructions of digital nets with a large value
of βn− t.

Special constructions of such point sets are based on the digital construction scheme
introduced by Niederreiter [13] and generalised in [5, 6]; the resulting point sets are
referred to as digital nets and sequences. Nowadays many propagation rules for nets
and sequences, digital or not, and also for digital higher order nets (see [9]) are known.
Roughly speaking, propagation rules are methods by which one can construct new nets
and sequences from existing ones (sometimes the net or sequence does not change, only
the parameters change and the net or sequence with such parameters might not have been
known before).

1.1 Six elementary propagation rules

Some simple propagation rules for (t, α, β, n,m, s)-nets, respectively (t, α, β, σ, s)-sequences,
in base b were already listed in [8]. For completeness, we repeat them here. We also add
some further trivial propagation rules in the following list:

Theorem 1.2 (Propagation Rules 1–6) Let P be a (t, α, β, n,m, s)-net in base b and
let ω be a (t, α, β, σ, s)-sequence in base b. Then we have the following:

(1) P is a (t′, α, β′, n,m, s)-net in base b for all 0 < β′ ≤ β and all t ≤ t′ ≤ β′n, and ω
is a (t′, α, β′, σ, s)-sequence in base b for all 0 < β′ ≤ β and all t ≤ t′.

(2) P is a (t′, α′, β′, n,m, s)-net in base b for all α′ ≥ 1 where β′ = βmin(α, α′)/α and
t′ = dtmin(α, α′)/αe, and ω is a (t′, α′, β′, σ, s)-sequence in base b for all α′ ≥ 1
where β′ = βmin(α, α′)/α and where t′ = dtmin(α, α′)/αe.

(3) Consider the point set P ′ obtained by truncating the base b representation of each
coordinate of each element of P after n′ digits, 1 ≤ n′ ≤ n. The resulting point set
is a (t′, α, β, n′,m, s)-net in base b, where t′ = max(t− β(n− n′), 0).

(4) Consider the point set P ′ obtained by truncating the base b representation of each
coordinate of each element of P ′ after n digits and adding n′−n extra digits to every
element, all of which are zero, n′ ≥ n. The resulting point set is a (t, α, β′, n′,m, s)-
net, where β′ = βn/n′.
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(5) The point set obtained by projecting P onto the coordinates in u, where u ⊆ {1, . . . , s},
is a (tu, α, β, n,m, |u|)-net in base b, where tu ≤ t.

(6) Let P1,P2, . . . ,Pbr be (t, α, β, n,m, s)-nets in base b. Then the multiset obtained
from the union of the elements of P1,P2, . . . ,Pbr is a (t, α, β, n,m+r, s)-net in base
b.

We remark that these propagation rules are analogous to Propagation Rules I–VI in
[9] for digital higher order nets.

In this paper we introduce generalisations of the following propagation rules, which
appeared in [9] for the special case of digital nets: The direct product of two digital
higher order nets, the (u, u + v)-construction, the matrix product construction, the dou-
ble m-construction, base change propagation rules and the higher order to higher order
construction. In some cases the proofs are based on a new duality theory for not nec-
essarily digital nets (in the digital case, duality theory is already well known to be an
important tool for the analysis and construction of digital nets).

The paper is organised as follows. Duality theory for not necessarily digital nets is
presented in Section 2 and propagation rules for (t, α, β, n,m, s)-nets and (t, α, β, σ, s)-
sequences are presented in Sections 3 and 4 respectively.

Throughout the paper N0 is used to denote nonnegative integers and N is used to
denote natural numbers.

2 Duality theory

Duality theory, as introduced by Niederreiter and Pirsic [16] (see also [9]), is a helpful tool
in the analysis and construction of digital nets. In [9] it was extended to digital higher
order nets. Here we introduce a duality theory for higher order nets which also applies
to point sets not obtained by the digital construction scheme. The basic tool are Walsh
functions in integer base b ≥ 2 whose definition and basic properties are recalled in the
following.

Definition 2.1 Let b ≥ 2 be an integer and represent k ∈ N0 in base b, k = κa−1b
a−1 +

· · · + κ0, with κi ∈ {0, . . . , b− 1}. Further let ωb = e2πi/b be the bth root of unity. Then
the kth b-adic Walsh function bwalk(x) : [0, 1)→

{
1, ωb, . . . , ω

b−1
b

}
is given by

bwalk(x) = ω
ξ1κ0+···+ξaκa−1

b ,

for x ∈ [0, 1) with base b representation x = ξ1b
−1 + ξ2b

−2 + . . . (unique in the sense that
infinitely many of the ξi are different from b− 1).

For dimension s ≥ 2, x = (x1, . . . , xs) ∈ [0, 1)s, and k = (k1, . . . , ks) ∈ Ns
0, we define

bwalk : [0, 1)s →
{

1, ωb, . . . , ω
b−1
b

}
by

bwalk(x) =
s∏
j=1

bwalkj(xj).
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The following notation will be used throughout the paper: By ⊕ we denote the digit-
wise addition modulo b, i.e., for x, y ∈ [0, 1) with base b expansions x =

∑∞
l=1 ξlb

−l and
y =

∑∞
l=1 ηlb

−l, we define

x⊕ y =
∞∑
l=1

ζlb
−l,

where ζl ∈ {0, . . . , b− 1} is given by ζl ≡ ξl + ηl (mod b). Let 	 denote the digitwise
subtraction modulo b (for short we use 	x := 0	 x). In the same fashion we also define
the digitwise addition and digitwise subtraction for nonnegative integers based on the
b-adic expansion. For vectors in [0, 1)s or Ns

0, the operations ⊕ and 	 are carried out
componentwise. Throughout the paper, we always use the same base b for the operations
⊕ and 	 as is used for the Walsh functions. Further, we call x ∈ [0, 1) a b-adic rational
if it can be written in a finite base b expansion. The following simple properties of Walsh
functions are often used in the sequel.

For all k, l ∈ N0 and all x, y ∈ [0, 1), with the restriction that if x, y are not b-adic
rationals, then x⊕ y is not allowed to be a b-adic rational, we have bwalk(x) · bwall(x) =

bwalk⊕l(x) and bwalk(x)· bwalk(y) = bwalk(x⊕y). Furthermore, bwalk(x) = bwal	k(x).
Now we turn to duality theory for nets. Let Ksr,b = {0, . . . , br − 1}s. We also assume

there is an ordering of the elements in Ksr,b which can be arbitrary but needs to be the
same in each instance, i.e., let Ksr,b = {k0, . . . ,kbsr−1}. (Note that |Ksr,b| = bsr.) By this
we mean that in expressions like

∑
k∈Ksr,b

, (ak,l)k,l∈Ksr,b , and (ck)k∈Ksr,b the elements k and

l run through the set Ksr,b always in the same order.
The following bsr×bsr matrix plays a central role in the duality theory for higher order

nets
Wr :=

(
bwalk

(
b−rl

))
k,l∈Ksr,b

.

We call Wr a Walsh matrix.
In the following we denote by A∗ the conjugate transpose of a matrix A over the

complex numbers C, i.e., A∗ = A
>

.

Lemma 2.1 The Walsh matrix Wr is invertible and its inverse is given by W−1
r =

b−srW∗
r .

Proof. Let A = (ak,l)k,l∈Ksr,b = b−srWrW
∗
r . Then, using the orthogonality of the Walsh

functions, we obtain

ak,l =
1

bsr

∑
h∈Ksr,b

bwalk
(
b−rh

)
bwall (b−rh) =

1

bsr

s∏
j=1

br−1∑
h=0

bwalkj	lj(h/b
r)

=

{
1 if k = l,
0 if k 6= l.

where k = (k1, . . . , ks) and l = (l1, . . . , ls) are in Ksr,b. �

Let b ≥ 2 and r,N ≥ 1 be integers. For a multiset P = {x0, . . . ,xN−1} in [0, 1)s and
k ∈ Ksr,b we define

ck = ck(P) :=
N−1∑
h=0

bwalk(xh)
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(note that |ck| ≤ N and c0 = N) and the vector

~C = ~C(P) := (ck)k∈Ksr,b . (1)

For a = (a1, . . . , as) ∈ Ksr,b define the elementary b-adic interval

Ea :=
s∏
j=1

[
aj
br
,
aj + 1

br

)
.

Lemma 2.2 We have∑
k∈Ksr,b

bwalk(x	 y) =

{
|Ksr,b| if x,y ∈ Ea for some a ∈ Ksr,b,
0 otherwise.

Proof. We have x, y ∈ [ab−r, (a + 1)b−r) for some 0 ≤ a < br if and only if the b-adic
digit expansions of x and y coincide at the first r digits. From this the result follows. �

Let x ∈ Ea for some a ∈ Ksr,b. Then, using Lemma 2.2, we have

1

|Ksr,b|
∑
k∈Ksr,b

ck bwalk(x) =
1

|Ksr,b|
∑
k∈Ksr,b

N−1∑
h=0

bwalk(xh 	 x)

=
N−1∑
h=0

1

|Ksr,b|
∑
k∈Ksr,b

bwalk(xh 	 x)

= |{h : xh ∈ Ea}| =: ma.

Definition 2.2 Let b ≥ 2 and r,N ≥ 1 be integers. Let P = {x0, . . . ,xN−1} be a
multiset in [0, 1)s and let Ksr,b = {0, . . . , br − 1}s.

1. For a ∈ Ksr,b let
ma = ma(P) := |{h : xh ∈ Ea}|

and
~M = ~M(P) := (ma)a∈Ksr,b

.

Then we call the vector ~M the point set vector (with resolution r).

2. The vector ~C = ~C(P) from (1) is called the dual vector (with respect to the Walsh
matrix Wr).

3. The set
Dr = Dr(P) := {k ∈ Ksr,b : ck 6= 0}

is called the dual set (with respect to the Walsh matrix Wr).

The relationship between a point set vector and its dual vector is stated in the following
theorem.
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Theorem 2.1 Let P = {x0, . . . ,xN−1} be a multiset in [0, 1)s and let r ∈ N. Let ~M be

the point set vector with resolution r and ~C be the dual vector with respect to Wr defined
as above. Then

1

|Ksr,b|
Wr

~C = ~M and ~C = W∗
r
~M. (2)

Proof. The first result follows from Lemma 2.2 and the second result follows from
Lemma 2.1 and the identity ~C = |Ksr,b|W−1

r
~M = W∗

r
~M . �

The vector ~C carries sufficient information to construct a point set in the following
way: Given ~C, we can use Theorem 2.1 to determine how many points are to be placed
in the interval Ea, a ∈ Ksr,b.

Note that for the (t, α, β, n,m, s)-net property it is of no importance where exactly
within an interval Ea, a ∈ Ksn,b, the points are placed. Hence we can reconstruct a net
from a dual vector with respect to Wr provided that r ≥ bβnc − t. In words, if one
knows the dual vector of a net, then one can use this dual vector to obtain the net via
Theorem 2.1 provided that the resolution is bigger or equal to the strength of the net.

In analogy, the dual space of a digital net also allows us to reconstruct the original
point set, see [16]. Although ~C is different from the dual space for digital nets, it contains
the same information and can be used in a manner similar to the dual space. This will be
shown below by example of the direct product construction, the (u, u + v)-construction,
the matrix-product construction and the double m construction for higher order nets. In
case P is a digital (t, α, β, n×m, s)-net, the dual set Dn defined in Definition 2.2 coincides
with the dual space defined in [9] intersected with Ksn,b, and if P is a digital (t,m, s)-net,
it coincides with the dual space in [16] intersected with Ksm,b.

Although the above results hold for arbitrary point sets, in the following we consider
point sets which are nets and show how to relate the quality of a (t, α, β, n,m, s)-net to its
dual set. To this end we need to introduce a function which was first introduced in [6] in
the context of applying digital nets to quasi-Monte Carlo integration of smooth functions
and which is related to the quality of suitable digital nets. For k ∈ N0 and α ≥ 1 let

µα(k) =

{
a1 + · · ·+ amin(ν,α) for k > 0,
0 for k = 0,

where for k > 0 we assume that k = κ1b
a1−1 + · · · + κνb

aν−1 with 0 < κ1, . . . , κν < b and
1 ≤ aν < · · · < a1.

For a vector k = (k1, . . . , ks) ∈ Ns
0 we define µα(k) = µα(k1) + · · · + µα(ks) and for a

subset Q of Ksr,b with Q \ {0} 6= ∅ and α ≥ 1 define

ρα(Q) := min
k∈Q\{0}

µα(k).

For Q ⊆ {0} we set ρα(Q) = r + 1.
Let P = {x0, . . . ,xN−1} ⊂ [0, 1)s. In the following we consider for which cases we

have Dr(P) = {0} (note that 0 ∈ Dr(P) for any point set P with at least one point). If
Dr(P) = {0}, then we have c0 6= 0 and ck = 0 for all k ∈ Ksr,b \ {0}. By Theorem 2.1 we

have ~M(P) = c0b
−rs(1, 1, . . . , 1)>, that is, each box Ea contains exactly c0b

−rs points for
all a ∈ Ksr,b and P consists of N = c0 points altogether. This is the only case for which
Dr(P) = {0}.



9

Conversely, since the number of points in Ea must be an integer, it follows that
c0b
−rs ∈ N, i.e., brs divides c0 and therefore brs divides N . From this we conclude that if

we choose a resolution r ∈ N such that brs > N , i.e., r > 1
s

logbN , then Dr(P) 6= {0}.
For a net with N = bm points this means that we require r > m/s.

The following theorem establishes a relationship between ρα(Q) and the quality of a
(t, α, β, n,m, s)-net.

Theorem 2.2 Let P = {x0, . . . ,xbm−1} ⊂ [0, 1)s be a multiset. Then P is a (t, α, β, n,m, s)-
net in base b if and only if ρα(Dbβnc−t) ≥ bβnc−t+1. If P is a strict (t0, α, β, n,m, s)-net
in base b, then ρα(Dbβnc−t0) = bβnc − t0 + 1.

Proof. It was shown in [1, Theorem 1] that P is a (t, α, β, n,m, s)-net in base b if and
only if for all k ∈ Ns

0 satisfying 0 < µα(k) ≤ bβnc − t we have
∑bm−1

h=0 bwalk(xh) = 0 and
this is equivalent to ρα(Dbβnc−t) ≥ bβnc − t+ 1, since for k ∈ Ns

0 with µα(k) ≤ bβnc − t
we have k ∈ Ksbβnc−t,b.

For the second assertion, we assume that P is a strict (t0, α, β, n,m, s)-net in base b,
which implies that ρα(Dbβnct0) ≥ bβnc − t0 + 1. We now assume ρα(Dbβnc−t0) ≥ bβnc −
t0 + 2 = bβnc− (t0− 1) + 1. Arguing in the same fashion as for the first part of the proof
this is equivalent to

∑bm−1
h=0 bwalk(xh) = 0 for all k satisfying 0 < µα(k) ≤ bβnc−(t0−1).

Using [1, Theorem 1] again this implies that P is a (t0 − 1, α, β, n,m, s)-net in base b,
which contradicts the assumption that P is a strict (t0, α, β, n,m, s)-net in base b. �

Let now P be a strict (t0, α, β, n,m, s)-net in base b. Let r ≥ bβnc − t0. Then
Dr ⊇ Dbβnc−t0 and Dr \ Dbβnc−t0 ⊆ Ksr,b \ Ksbβnc−t0,b. For any k ∈ Ksr,b \ Ksbβnc−t0,b we have

µα(k) ≥ bβnc − t0 + 1. Theorem 2.2 implies that ρα(Dbβnc−t0) = bβnc − t0 + 1 and hence
ρα(Dr) = ρα(Dbβnc−t0) = bβnc − t0 + 1. In particular, for all r, r′ ≥ bβnc − t0 we have

ρα(Dr) = ρα(Dr′) = ρα(Dn) = bβnc − t0 + 1, (3)

since n ≥ bβnc − t0.

3 Propagation rules for (t, α, β, n,m, s)-nets

In this section, we introduce several propagation rules for (t, α, β, n,m, s)-nets, many of
which generalise the analogous results for the digital case given in [9].

3.1 The direct product of two (t, α, β, n,m, s)-nets

Let P1 = {xh}b
m1−1
h=0 be a (t1, α1, β1, n1,m1, s1)-net in base b and P2 = {yi}

bm2−1
i=0 be a

(t2, α2, β2, n2,m2, s2)-net in base b. Note that Definition 1.1 implies that we may assume
that β1n1 and β2n2 are integers (since the ij,l are integers). Based on P1 and P2 a new
(t, α, β, n,m, s)-net in base b is formed, where n = n1 +n2, m = m1 +m2, and s = s1 +s2.
The points of P are defined to be the direct product of the points from P1 and P2, i.e.,
P is the multiset of bm points

(xh,yi) , for 0 ≤ h ≤ bm1 − 1 and 0 ≤ i ≤ bm2 − 1 (4)

in some order. The following theorem gives information on the t-value of the resulting
(t, α, β, n,m, s)-net.
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Theorem 3.1 (Propagation Rule 7) Let P1 be a (t1, α1, β1, n1,m1, s1)-net in base b
where we assume that β1n1 is an integer, P2 is a (t2, α2, β2, n2,m2, s2)-net in base b where
we assume that β2n2 is an integer, and P be defined as above. Then P is a (t, α, β, n,m, s)-
net in base b, where α = max(α1, α2), β = min(β1, β2), and

t ≤ max(β1n1 + t2, β2n2 + t1).

Proof. Let ~C = (ck)k∈Ksn,b be the dual vector of P , ~C1 = (c1,k′)k′∈Ks1n,b be the dual vector

of P1 and ~C2 = (c2,k′′)k′′∈Ks2n,b be the dual vector of P2. Then, for k = (k′,k′′), where

k′ ∈ Ks1n,b, k
′′ ∈ Ks2n,b, k ∈ Ksn,b, we have

ck =
bm1−1∑
h=0

bm2−1∑
i=0

bwalk(xh,yi) =
bm1−1∑
h=0

bwalk′(xh)
bm2−1∑
i=0

bwalk′′(yi) = c1,k′c2,k′′ .

Hence ck 6= 0 if and only if c1,k′ 6= 0 and c2,k′′ 6= 0. Note that c1,0, c2,0 6= 0 and k =
(k′,k′′) 6= 0 implies that either k′ 6= 0 or k′′ 6= 0 or both k′,k′′ 6= 0. Therefore

ρα(Dn) = min(ρα(Dn,1), ρα(Dn,2)) ≥ min(ρα1(Dn,1), ρα2(Dn,2)),

where Dn,Dn,1,Dn,2 are the dual vectors of P ,P1,P2.
Let t0 be the integer such that P is a strict (t0, α, β, n,m, s)-net in base b, where

α = max(α1, α2), β = min(β1, β2), n = n1 + n2, m = m1 +m2, and s = s1 + s2. Then, by
Theorem 2.2, Equation (3), and the assumption that β1n1 and β2n2 are integers, we have

t0 = bβnc − ρα(Dn) + 1

≤ bβnc+ 1−min(ρα1(Dn,1), ρα2(Dn,2))
≤ bβnc −min(β1n1 − t1, β2n2 − t2)
≤ bβnc −min(−β2n2 + βn2 + β1n1 − t1,−β1n1 + βn1 + β2n2 − t2)
≤ bβnc −min(bβnc − β2n2 − t1, bβnc − β1n1 − t2)
= max(β2n2 + t1, β1n1 + t2).

This shows that P is a (t, α, β, n,m, s)-net in base b for any integer t such that t0 ≤ t ≤
max(β2n2 + t1, β1n1 + t2). Hence the result follows. �

3.2 The (u, u+ v)-construction

The (u, u+v)-construction in the context of (t, α, β, n,m, s)-nets in base b has already been
discussed in the recent paper [1, Section 5]. Hence we simply recall the construction and
state the result. Assume we are given a (t1, α, β1, n1,m1, s1)-net P1 denoted by {xh}b

m1−1
h=0

and a (t2, α, β2, n2,m2, s2)-net P2 denoted by {yi}b
m2−1
i=0 , where we assume s1 ≤ s2. Again

we may assume that β1n1 and β2n2 are integers. Further, w.l.o.g. we may assume that
xh = (xh,1, . . . , xh,s1) with xh,j = ξh,j,1/b + · · · + ξh,j,n1/b

n1 and yi = (yi,1, . . . , yi,s2) with
yi,j = ηi,j,1/b + · · · + ηi,j,n2/b

n2 (if there are digits ξh,j,r 6= 0 for r > n1 or ηi,j,r 6= 0 for
r > n2 we can slightly modify P1, P2 by setting ξh,j,r = 0 for r > n1 and ηi,j,r = 0 for
r > n2, without changing the (tw, α, βw, nw,mw, sw)-net property of Pw, w = 1, 2). Set
further ` := min(2β1n1 − 2t1 + 1, β2n2 − t2).

We define a new point set P = {zh}b
m1+m2−1
h=0 , zh = (zh,1, . . . , zh,s1+s2), consisting of

bm1+m2 points in [0, 1)s1+s2 as follows:
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• For j = 1, . . . , s1, i = 0, . . . , bm2 − 1 and h = 0, . . . , bm1 − 1 we set

zibm1+h,j =
ξh,j,1 	 ηi,j,1

b
+ · · ·+

ξh,j,min(`,n1) 	 ηi,j,min(`,n1)

bmin(`,n1)

+

(
ξh,j,`+1

b`+1
+ · · ·+ ξh,j,n1

bn1

)
1n1≥`

+

(
	ηi,j,n1+1

bn1+1
+ · · ·+ 	ηi,j,`

b`

)
1n1<`.

• For j = s1 + 1, . . . , s1 + s2, i = 0, . . . , bm2 − 1 and h = 0, . . . , bm1 − 1 we set

zibm1+h,j = yi,j−s1 .

Then we have the following result, which was first shown in [1, Theorem 3]:

Theorem 3.2 (Propagation Rule 8) Let b ≥ 2 be an integer, let P1 be a (t1, α, β1, n1,m1, s1)-
net in base b where we assume that β1n1 is an integer, and P2 be a (t2, α, β2, n2,m2, s2)-
net in base b where we assume that β1n1 is an integer. Then P defined as above is
a (t, α, β, n,m, s)-net in base b, where n = n1 + n2, m = m1 + m2, s = s1 + s2,
β = min(β1, β2), and

t = bβnc − `.

Remark 3.1 Note that we defined the (u, u+ v)-construction in such a way that it yields
the same point set as the (u, u+ v)-construction for digital nets as considered in [9].

3.3 The matrix-product construction

In this subsection, we will assume that b is prime. We firstly introduce matrices which
are nonsingular by column (NSC), see [3]. Let A be an M × M matrix over Zb. For
1 ≤ l ≤ M , let Al denote the l × M matrix consisting of the first l rows of A. For
1 ≤ k1 < · · · < kl ≤M , let A(k1, . . . , kl) denote the l× l matrix consisting of the columns
k1, . . . , kl of Al.

Definition 3.1 An M ×M matrix A defined over Zb is called nonsingular by column
(NSC) if A(k1, . . . , kl) is nonsingular for each 1 ≤ l ≤M and 1 ≤ k1 < · · · < kl ≤M .

It is known that an M ×M NSC matrix over Zb exists if and only if 1 ≤ M ≤ b, see
[3, Section 3]. For any integer 1 ≤ M ≤ b, an explicit M ×M upper triangular NSC
matrix over Zb is given in [3, Section 5.2].

For the remainder of this section, we will assume that A = (Ak,l) is an M ×M upper
triangular NSC matrix over Zb (upper triangular means that Ak,l = 0 for all 1 ≤ l < k ≤
M).

We now describe how to construct the point set, based on the so-called matrix-product
construction:

Let 1 ≤ s1 ≤ · · · ≤ sM be integers and define σ0 := 0 and σk := s1+· · ·+sk for 1 ≤ k ≤
M . Let s := σM . For 1 ≤ k ≤M let Pk = {x(k)

h }
bmk−1
h=0 , where x

(k)
h = (x

(k)
h,σk−1+1, . . . , x

(k)
h,σk

)

for 0 ≤ h < bmk , be (tk, α, βk, nk,mk, sk)-nets in base b where we assume that βknk is an
integer. (As with the (u, u + v)-construction, one can without loss of generality assume
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that x
(k)
h,j = ξ

(k)
h,j,1/b + ξ

(k)
h,j,2/b

2 + · · · with ξ
(k)
h,j,c = 0 for c > nk, as setting the remaining

digits to zero does not affect the quality of the net Pk. However, this is not necessary as
the results in this subsection also hold otherwise.)

We now define V = (Vk,l)
M
k,l=1 := A−1 ∈ ZM×M

b and note that V is upper triangular.
For

h = h1 + h2b
m1 + · · ·+ hMb

m1+m2+···+mM−1 ,

with integers 0 ≤ hk < bmk (hence 0 ≤ h < bm where m = m1 + · · · + mM) and for
σk−1 < j ≤ σk, k = 1, . . . ,M , define

zh,j := Vk,kx
(k)
hk,j
⊕ · · · ⊕ Vk,Mx(M)

hM ,j
, (5)

where⊕ and also the multiplication are carried out digitwise modulo b, i.e., zh,j = ζh,j,1/b+
ζh,j,2/b

2 + · · · where

ζh,j,c = Vk,kξ
(k)
hk,j,c

+ · · ·+ Vk,Mξ
(M)
hM ,j,c

∈ Zb for all c ≥ 1,

with x
(l)
hl,j

= ξ
(l)
hl,j,1

/b + ξ
(l)
hl,j,2

/b2 + · · · for k ≤ l ≤ M , where addition and multiplication
are carried out in Zb, and where we assume that for each h and j infinitely many of the
digits ζh,j,c, c = 1, 2, . . . are different from b− 1 (if this is not the case, then, for example
by modifying any of the digits ζh,j,c, c = max1≤k≤M nk + 1,max1≤k≤M nk + 2, . . . , will
solve this problem without affecting the quality of the point set; indeed, the forthcoming
Theorem 3.3 will establish that the digits ζh,j,c with c > min1≤k≤M(M − k+ 1)(βknk− tk)
can be modified arbitrarily since they do not influence the quality of the net; this way, for
M = 2, the (u, u+ v)-construction can be viewed as a special case of the matrix product
construction).

Analogously to the notation used above, we write
⊕k

l=1Al,ku
(k)
l = A1,ku

(k)
1 ⊕ · · · ⊕

Ak,ku
(k)
k , where the addition and multiplication are carried out digitwise modulo b.

Now we define P = {z0, . . . ,zbm−1} with m = m1 + · · · + mM through zh :=
(zh,1, . . . , zh,s) for 0 ≤ h < bm.

Lemma 3.1 Let d = (d1, . . . ,dM) ∈ Ksn,b with dk ∈ Kskn,b and assume that dk =
⊕k

l=1Al,ku
(k)
l

where for l ≤ k, u
(k)
l = (ul,0) ∈ Kskn,b for some ul ∈ Ksln,b. Then we have

1

bm1+m2+···+mM

bm1+m2+···+mM−1∑
h=0

bwald(zh) =
M∏
r=1

(
1

bmr

bmr−1∑
hr=0

bwalur(x
(r)
hr

)

)
.

Proof. Let zh = (z
(s1)
h , . . . ,z

(sM )
h ) ∈ [0, 1)s1+···+sM where z

(sk)
h = (zh,σk−1+1, . . . , zh,σk) ∈

[0, 1)sk for 1 ≤ k ≤M . For d = (d1, . . . ,dM) ∈ Ksn,b with dk ∈ Kskn,b we have

bm1+···+mM−1∑
h=0

bwald(zh) =
bm1+···+mM−1∑

h=0

M∏
k=1

bwaldk(z
(sk)
h ).

By assumption we have dk =
⊕k

l=1Al,ku
(k)
l , where for l ≤ k, u

(k)
l = (ul,0) ∈ Kskn,b

for some ul ∈ Ksln,b. Let furthermore ul = (ul,0) ∈ Ksn,b. Then for each of the above
summands we have

M∏
k=1

bwaldk(z
(sk)
h ) =

M∏
k=1

bwalLk
l=1 Al,ku

(k)
l

(z
(sk)
h )
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=
M∏
k=1

bwalLk
l=1 Al,ku

(k)
l

(zh,σk−1+1, . . . , zh,σk)

=
M∏
k=1

M∏
r=k

bwalLk
l=1 Al,ku

(k)
l

(Vk,rx
(r)
hr,σk−1+1, . . . , Vk,rx

(r)
hr,σk

)

=
M∏
k=1

M∏
r=k

bwal
Vk,r

“Lk
l=1 Al,ku

(k)
l

”(x(r)
hr,σk−1+1, . . . , x

(r)
hr,σk

)

=
M∏
k=1

M∏
r=k

bwal
Vk,r

“Lk
l=1 Al,ku

(k)
l

”(x(r)
hr

)

=
M∏
r=1

r∏
k=1

bwal
Vk,r

“Lk
l=1 Al,ku

(k)
l

”(x(r)
hr

)

=
M∏
r=1

bwalLr
k=1 Vk,r

“Lk
l=1 Al,ku

(k)
l

”(x(r)
hr

)

=
M∏
r=1

bwalLr
k=1 Vk,r(

Lk
l=1 Al,kul)

((x
(r)
hr
,0)),

where (x
(r)
hr
,0) ∈ [0, 1)s is just the concatenation of x

(r)
hr
∈ [0, 1)sr and the s − sr dimen-

sional zero vector 0. Since V = A−1 we now have

r⊕
k=l

Vk,rAl,k =

{
1 if r = l
0 if r 6= l.

Hence we obtain
⊕r

k=1 Vk,r
⊕k

l=1Al,kul =
⊕r

l=1 ul
⊕r

k=l Vk,rAl,k = ur and hence

M∏
r=1

bwalLr
k=1 Vk,r(

Lk
l=1 Al,kul)

((x
(r)
hr
,0)) =

M∏
r=1

bwalur((x
(r)
hr
,0)) =

M∏
r=1

bwalur(x
(r)
hr

).

Hence

1

bm1+···+mM

bm1+···+mM−1∑
h=0

bwald(zh) =
1

bm1+···+mM

bm1+···+mM−1∑
h=0

M∏
r=1

bwalur(x
(r)
hr

)

=
M∏
r=1

(
1

bmr

bmr−1∑
hr=0

bwalur(x
(r)
hr

)

)
.

�

For the rest of the subsection, we make the convention that

µα(d) =
M∑
k=1

µα(dk).

If µα(d) > 0, then there exists at least one integer l, so that ul 6= 0; the largest integer l
so that ul 6= 0 is denoted by l∗. We need the following lemma.



14

Lemma 3.2 Let d be as in Lemma 3.1 with µα(d) > 0 and let l∗ denote the largest
integer l so that ul 6= 0. Then we have µα(d) ≥ (M − l∗ + 1)µα(ul∗).

Proof. The proof follows along the same lines as the proofs of [9, Lemmas 2 and 3]. �

We can now show the main result of this subsection.

Theorem 3.3 (Propagation Rule 9) Let 1 ≤ s1 ≤ · · · ≤ sM be integers. For 1 ≤
k ≤ M let Pk = {x(k)

h }
bmk−1
h=0 , where x

(k)
h = (x

(k)
h,σk−1+1, . . . , x

(k)
h,σk

) for 0 ≤ h < bmk , be

(tk, α, βk, nk,mk, sk)-nets in base b where we assume that βknk is an integer.
The multiset P = {z0, . . . ,zbm−1}, where zh := (zh,1, . . . , zh,s) and where the zh,j are

given by (5), forms a (t, α, β, n,m, s)-net, where s = s1 + · · · + sM , n = max1≤k≤M nk,
m = m1 + · · ·+mM , β = min(1, αm/n) and

t ≤ βn− min
1≤l≤M

(M − l + 1)(βlnl − tl).

Proof. According to [1, Theorem 1] it is enough to show that

1

bm1+m2+···+mM

bm1+m2+···+mM−1∑
h=0

bwald(zh) = 0

for all d ∈ Ns
0 satisfying 0 < µα(d) ≤ βn− t. As d must satisfy µα(d) ≤ βn− t we may

restrict ourselves to d ∈ Ksn,b satisfying 0 < µα(d) ≤ βn− t. From Lemma 3.1, we know
that

1

bm1+m2+···+mM

bm1+m2+···+mM−1∑
h=0

bwald(zh) =
M∏
r=1

(
1

bmr

bmr−1∑
hr=0

bwalur(x
(r)
hr

)

)
. (6)

Assume now that d ∈ Ksn,b is such that 0 < µα(d) ≤ βn− t, then there exists an integer
l so that µα(ul) > 0 and as before, we denote the largest integer l so that µα(ul) > 0 by
l∗. We now use Lemma 3.2 to conclude that

(M − l∗ + 1)(βl∗nl∗ − tl∗) ≥ min
1≤l≤M

(M − l + 1)(βlnl − tl)

= βn− t ≥ µα(d) ≥ (M − l∗ + 1)µα(ul∗).

Hence we have shown that 0 < µα(ul∗) ≤ βl∗nl∗ − tl∗ and therefore

1

bml∗

bml∗−1∑
hl∗=0

bwalul∗ (x
(l∗)
hl∗

) = 0,

i.e., the l∗th factor in Equation (6) is zero. �

3.4 A double m-construction

In this section, we aim to generalise a propagation rule referred to as “doublem-construction”
in [9, Section 3.4], which again generalises a propagation rule from [16] for digital (t,m, s)-
nets.
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Assume we are given a (t1, α1, β1, n,m, s)-net in base b, denoted by P1 = {xh}b
m−1
h=0 , and

a (t2, α2, β2, n,m, s)-net in base b, denoted by P2 = {yi}b
m−1

i=0 . For xh = (xh,1, . . . , xh,s),
we write

xh,j =
ξh,j,1
b

+ · · ·+ ξh,j,n
bn

and for yi = (yi,1, . . . , yi,s), we set

yi,j =
ηi,j,1
b

+ · · ·+ ηi,j,n
bn

.

Furthermore, the dual set associated with P1 is denoted by D(1)
n , the dual set associated

with P2 by D(2)
n . We are now in a position to define a multiset P := {z0, . . . ,zb2m−1} as

follows: For h′ = hbm + i, 0 ≤ h ≤ bm − 1, 0 ≤ i ≤ bm − 1, we set

zh′,j =
ξh,j,1 ⊕ ηi,j,1

b
+ · · ·+ ξh,j,n ⊕ ηi,j,n

bn
+

0	 ηi,j,1
bn+1

+ · · ·+ 0	 ηi,j,n
b2n

, (7)

h′ = 0, . . . , b2m − 1, j = 1, . . . , s. We now define a set N , which in the forthcoming
Lemma 3.3 will be shown to be the dual set of P . Let ar = (ar,1, . . . , ar,s) ∈ D(r)

n , r = 1, 2
and define k = k(a1,a2) := (k1, . . . , ks), where

kj = a1,j + bn(a1,j ⊕ a2,j), j = 1, . . . , s,

then we set N =
{
k(a1,a2) ∈ Ks2n,b : a1 ∈ D(1)

n ,a2 ∈ D(2)
n

}
.

Lemma 3.3 The set N =
{
k ∈ Ks2n,b : a1 ∈ D(1)

n ,a2 ∈ D(2)
n

}
is the dual set of P =

{z0, . . . ,zb2m−1} where zh := (zh,1, . . . , zh,s) and where the zh,j are given by Equation
(7).

Proof. Let k = (k1, . . . , ks) ∈ Ks2n,b, where kj = a1,j + bn(a1,j ⊕ a2,j), j = 1, . . . , s, and
where ar = (ar,1, . . . , ar,s) ∈ Ksn,b, r = 1, 2. Clearly,

ck =
b2m−1∑
h′=0

bwalk(zh′) =
bm−1∑
h=0

bm−1∑
i=0

bwalk(zhbm+i) =
bm−1∑
h=0

bm−1∑
i=0

s∏
j=1

bwalkj(zhbm+i,j).

For brevity, we set kj = k
(1)
j + bnk

(2)
j , where k

(1)
j and k

(2)
j have the b-adic expansions

k
(1)
j =

∑n
l=1 k

(1)
j,l b

l−1 and k
(2)
j =

∑n
l=1 k

(2)
j,l b

l−1. Hence

bwalkj(zhbm+i,j) = exp

[
2πi

b

(
n∑
l=1

k
(1)
j,l (ξh,j,l ⊕ ηi,j,l) +

2n∑
l=n+1

k
(2)
j,l−n(0	 ηi,j,l−n)

)]

= exp

[
2πi

b

n∑
l=1

k
(1)
j,l (ξh,j,l ⊕ ηi,j,l)

]
exp

[
2πi

b

n∑
l=1

k
(2)
j,l (0	 ηi,j,l)

]
= bwal

k
(1)
j

(xh,j ⊕ yi,j) bwal
k
(2)
j

(0	 yi,j)

= bwala1,j
(xh,j) bwala1,j

(yi,j) bwala1,j
(0	 yi,j) bwala2,j

(0	 yi,j)
= bwala1,j

(xh,j) bwala2,j
(yi,j),
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and further

ck =
bm−1∑
h=0

bm−1∑
i=0

s∏
j=1

bwala1,j
(xh,j) bwala2,j

(yi,j)

=
bm−1∑
h=0

bm−1∑
i=0

bwala1(xh) bwala2(yi)

=
bm−1∑
h=0

bwala1(xh)
bm−1∑
i=0

bwala2(yi)

=
bm−1∑
h=0

bwala1(xh)
bm−1∑
i=0

bwala2(yi).

If k ∈ N , then a1 ∈ D(1)
n and a2 ∈ D(2)

n , so we have ck 6= 0 and hence k is in the dual set
of P . If on the other hand k is in the dual set of P , then ck 6= 0 and hence a1 ∈ D(1)

n and
a2 ∈ D(2)

n , so k ∈ N . �

In order to bound the quality parameter of P = {z0, . . . ,zb2m−1}, we define

d = d(D(1)
n ,D(2)

n ) := max
1≤j≤s

max
Rj

max(0, µα(a1,j)− µα(a1,j ⊕ a2,j)),

where Rj is the set of all ordered pairs (a1,a2), with ar = (ar,1, . . . , ar,s) ∈ D(r)
n \ {0},

a1,i ⊕ a2,i = 0 for i 6= j and a1,j ⊕ a2,j 6= 0. We define the max over Rj to be zero if Rj is
empty. We can now prove the main result of this subsection.

Theorem 3.4 (Propagation Rule 10) Let P1 be a (t1, α1, β1, n,m, s)-net in base b

with dual set D(1)
n and P2 be a (t2, α2, β2, n,m, s)-net in base b with dual set D(2)

n . Let

d = d(D(1)
n ,D(2)

n ). Then the point set given by Equation (7) is a (t, α, β, 2n, 2m, s)-net in
base b with α = max(α1, α2), β = min(β1, β2) and

t ≤ max(b2βnc − n− bβ1nc+ t1 + d, b2βnc − n− bβ2nc+ t2, 0),

if D(1)
n ∩ D(2)

n = {0}, and

t ≤ max(b2βnc−n−bβ1nc+ t1 +d, b2βnc−n−bβ2nc+ t2, b2βnc+1−ρα(D(1)
n ∩D(2)

n ), 0),

if D(1)
n ∩ D(2)

n 6= {0}.

Proof. Clearly, 0 < β ≤ 1, α ≥ 1. We show a lower bound for µα(k) for all nonzero
vectors k ∈ N , which by Lemma 3.3 is the dual set of the point set given by Equation (7).

To this end we use the property that ρα(D(r)
n ) ≥ ραr(D

(r)
n ) ≥ bβrnc − tr + 1, as α ≥ αr,

r = 1, 2. For k ∈ N , k 6= 0, we have k = a1 + bn(a1 ⊕ a2) with a1 ∈ D(1)
n and a2 ∈ D(2)

n

(not both of them are zero) and hence

µα(k) = µα(a1 + bn(a1 ⊕ a2)).

We consider four different cases:



17

1. If a1 = 0, then a2 6= 0, and hence

µα(k) = µα(bna2) ≥ n+ µα(a2) ≥ n+ ρα(D(2)
n ) ≥ n+ bβ2nc − t2 + 1.

2. If a2 = 0, then a1 6= 0, and we obtain in a similar manner that

µα(k) ≥ µα(bna1) ≥ n+ ρα(D(1)
n ) ≥ n+ bβ1nc − t1 + 1.

3. If a1,a2 6= 0, but a1 ⊕ a2 = 0, then a1 ∈ D(2)
n , so a1 ∈ D(1)

n ∩ D(2)
n . Consequently,

if D(1)
n ∩ D(2)

n = {0}, this is not possible. If D(1)
n ∩ D(2)

n 6= {0}, then

µα(k) = µα(a1) ≥ ρα(D(1)
n ∩ D(2)

n ).

4. If a1,a2 6= 0 and a1 ⊕ a2 6= 0, then we have

µα(k) =
s∑
j=1

µα(a1,j + bn(a1,j ⊕ a2,j))

=
s∑
j=1

aj,1⊕aj,2 6=0

µα(a1,j + bn(a1,j ⊕ a2,j)) +
s∑
j=1

aj,1⊕aj,2=0

µα(a1,j)

≥
s∑
j=1

aj,1⊕aj,2 6=0

µα(bn(a1,j ⊕ a2,j)) +
s∑
j=1

aj,1⊕aj,2=0

µα(a1,j). (8)

We now distinguish between two subcases: Firstly, assume that the first sum in
equation (8) has at least two terms, then µα(k) ≥ 2n+ 2. Otherwise, it has exactly
one term, say for j = j0, which gives a smaller value than 2n + 2. In this subcase
we have

µα(k) = µα(bn(a1,j0 ⊕ a2,j0)) + µα(a1)− µα(a1,j0)

≥ n+ µα(a1)− (µα(a1,j0)− µα(a1,j0 ⊕ a2,j0))

≥ n+ ρα(D(1)
n )− d(D(1)

n ,D(2)
n )

≥ n+ bβ1nc − t1 + 1− d(D(1)
n ,D(2)

n ).

Hence combining the four cases we have

ρα(N ) ≥ min(n+ bβ1nc − t1 + 1− d(D(1)
n ,D(2)

n ), n+ bβ2nc − t2 + 1, ρα(D(1)
n ∩ D(2)

n )),

if D(1)
n ∩ D(2)

n 6= {0}, and

ρα(N ) ≥ min(n+ bβ1nc − t1 + 1− d(D(1)
n ,D(2)

n ), n+ bβ2nc − t2 + 1),

if D(1)
n ∩ D(2)

n = {0}. Now the result follows from Theorem 2.2. �
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3.5 A base change propagation rule

In this subsection we show how one can obtain a net in base b from a net in base bL.
Thereby we generalise [14, Propagation Rule 7] (see also [9, Propagation Rule XI]) to
(t, α, β, n,m, s)-nets. The proof technique and the construction follows [14, Proposition 7]
very closely.

Theorem 3.5 (Propagation Rule 11) If there exists a (t, α, β, n,m, s)-net in base bL

with an integer L ≥ 1, then there exists a (t, α, β, n,mL, sL)-net in base b.

Proof. Let P = {xh}(b
L)m−1

h=0 be a (t, α, β, n,m, s)-net in base bL. Without loss of
generality we may assume that xh = (xh,1, . . . , xh,s) with

xh,j =
n∑
l=1

ξh,j,l(b
L)−l for 0 ≤ h ≤ (bL)m − 1,

where all ξh,j,l ∈ ZbL . Let the expansion of ξh,j,l in base b be

ξh,j,l =
L∑
k=1

z
(j)
h,l,kb

k−1 for 0 ≤ h ≤ (bL)m − 1, 1 ≤ j ≤ s, 1 ≤ l ≤ n,

where all z
(j)
h,l,k ∈ Zb. Now we define a multiset Q = {w0, . . . ,wbmL−1} whose elements

are in [0, 1)sL. The coordinate indices range from 1 to sL, and so we can denote them by
(j − 1)L + k with 1 ≤ j ≤ s and 1 ≤ k ≤ L. Let wh,(j−1)L+k denote the corresponding
coordinates of the point wh. To complete the definition of Q, we put

wh,(j−1)L+k =
n∑
l=1

z
(j)
h,l,kb

−l for 1 ≤ j ≤ s, 1 ≤ k ≤ L, 0 ≤ h ≤ bmL − 1.

We will now show that Q is a (t, α, β, n,mL, sL)-net in base b. To this end we fix
ν,aν , iν so that 1 ≤ i(j−1)L+k,ν(j−1)L+k

< · · · < i(j−1)L+k,1, for 1 ≤ k ≤ L and 1 ≤ j ≤ s, so

that
∑s

j=1

∑L
k=1

∑min(ν(j−1)L+k,α)

l=1 i(j−1)L+k,l ≤ βn− t.
For wh to be in J(aν , iν), we need

wh,(j−1)L+k,l = a(j−1)L+k,l for all l ∈
{
i(j−1)L+k,ν(j−1)L+k

, . . . , i(j−1)L+k,1

}
,

which is satisfied if and only if

z
(j)
h,l,k = a(j−1)L+k,l for all l ∈

{
i(j−1)L+k,ν(j−1)L+k

, . . . , i(j−1)L+k,1

}
.

For 1 ≤ j ≤ s we define
⋃L
k=1

{
i(j−1)L+k,ν(j−1)L+k

, . . . , i(j−1)L+k,1

}
=
{
ej,eνj , . . . , ej,1}.

For l ∈
{
ej,eνj , . . . , ej,1}, we set ãj,l =

∑L
k=1 a(j−1)L+k,lb

k−1, where unspecified a(j−1)L+k,l

are chosen arbitrarily. In fact, the number of a(j−1)L+k,l chosen arbitrarily is given by

s∑
j=1

L∑
k=1

(ν̃j − ν(j−1)L+k) = L

s∑
j=1

ν̃j −
s∑
j=1

L∑
k=1

ν(j−1)L+k.
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Hence there are bL
Ps
j=1 eνj−Ps

j=1

PL
k=1 ν(j−1)L+k generalised elementary intervals of format

J(ã, e) =
s∏
j=1

bL−1⋃
eaj,l=0

l∈{1,...,n}\{ej,eνj ,...,ej,1}

[
ãj,1
bL

+ · · ·+ ãj,n
(bL)n

,
ãj,1
bL

+ · · ·+ ãj,n
(bL)n

+
1

(bL)n

)

of volume (bL)−
Ps
j=1 eνj . However,

s∑
j=1

min(eνj ,α)∑
l=1

ej,l ≤
s∑
j=1

L∑
k=1

min(ν(j−1)L+k,α)∑
l=1

i(j−1)L+k,l ≤ βn− t,

hence by the (t, α, β, n,m, s)-net property of P , J(ã, e) contains (bL)m−
Ps
j=1 eνj points and

hence J(iν ,aν) contains

bL
Ps
j=1 eνj−Ps

j=1

PL
k=1 ν(j−1)L+k(bL)(m−

Ps
j=1 eνj) = bLm−

Ps
j=1

PL
k=1 ν(j−1)L+k

points of Q as required. �

3.6 Pirsic’s base change rule

In this subsection, we present a generalisation of Pirsic’s base change rule, see [19, Lemma
12], also [18]. This result shows how to interpret a (t, α, β, n,m, s)-net in base bL as a
(t′, α′, β′, n′,m′, s)-net in base bL

′
. Furthermore, we state some special cases, in particular,

we show how to interpret a (t, α, β, n,m, s)-net in base b as a (t′, α′, β′, n′,m′, s)-net in
base bL

′
and how to interpret a (t, α, β, n,m, s)-net in base bL as a (t′, α′, β′, n′,m′, s)-net

in base b.

Theorem 3.6 (Propagation Rule 12) Let n, n′,m,m′, s, α, L and L′ ∈ N, where gcd(L,L′) =
1, mL = m′L′, nL = n′L′, let 0 < β ≤ 1 be a real number and let 0 ≤ t ≤ βn and βn be
integers. Then a (t, αL′, β, n,m, s)-net in base bL is a (t′, α, β

L′
, n′,m′, s)-net in base bL

′
,

where

t′ = min

(⌈
tL+ sα(L− 1)L′ − (L′−1)L′

2
+ (−L′ (mod L))βn′

L′(L′ + (−L′ (mod L)))

⌉
,⌈

tL+ (sαL′ − 1)(L− 1)− (L′−1)L′

2

L′2

⌉)
.

Proof. The proof proceeds as follows: We start with a generalised elementary interval for
the point set in base bL

′
, then change this into a generalised elementary interval in base

b and consequently rewrite the latter as a union of intervals in base bL.
Assume we are given an arbitrary generalised elementary interval J(iν ,aν) in base bL

′

for some given values of ν, iν , aν , such that νj ≥ 0, 1 ≤ ij,νj < · · · < ij,1, j = 1, . . . , s,
and such that for a nonnegative integer t′′

s∑
j=1

min(νj ,α)∑
l=1

ij,l ≤
β

L′
n′ − t′′. (9)
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Without loss of generality, we assume that there exists at least one νj satisfying νj > 0,
then J(iν ,aν) admits the following representation:

J(iν ,aν) =
s∏
j=1

bL
′−1⋃

aj,l=0

l∈{1,...,n′}\{ij,νj ,...,ij,1}

[
aj,1
bL′

+ · · ·+ aj,n′

(bL′)n′
,
aj,1
bL′

+ · · ·+ aj,n′

(bL′)n′
+

1

(bL′)n′

)
.

As aj,l ∈
{

0, . . . , bL
′ − 1

}
it has a b-adic representation of the form aj,l = aj,l,1+aj,l,2b+

· · ·+ aj,l,L′b
L′−1, and hence

aj,l
(bL′)l

=
aj,l,L′

b(l−1)L′+1
+ · · ·+ aj,l,2

blL′−1
+
aj,l,1
blL′

,

for 1 ≤ l ≤ n′ where aj,l,g ∈ {0, . . . , b− 1}. We now set

aj,l
(bL′)l

=
lL′∑

k=(l−1)L′+1

ãj,k
bk
,

i.e. ãj,lL′−g+1 = aj,l,g, 1 ≤ l ≤ n′, 1 ≤ g ≤ L′ and 1 ≤ j ≤ s. We can now rewrite the
above interval as a generalised elementary interval in base b,

J (̃iν , ãν) =
s∏
j=1

b−1⋃
eaj,l=0

l∈{1,...,n′L′}\
neij,νjL′ ,eij,νjL′−1,...,

eij,1o
[
ãj,1
b

+ · · ·+ ãj,L′

bL′
+ · · ·+ ãj,n′L′

bn′L′
,

ãj,1
b

+ · · ·+ ãj,L′

bL′
+ · · ·+ ãj,n′L′

bn′L′
+

1

bn′L′

)
,

where
ĩj,(k−1)L′+g = ij,kL

′ + 1− g

for 1 ≤ g ≤ L′ and 1 ≤ k ≤ νj. Clearly,

J (̃iν , ãν) =
s∏
j=1

b−1⋃
eaj,l=0

l∈{1,...,nL}\
neij,νjL′ ,...,eij,1o

[
ãj,1
b

+ · · ·+ ãj,nL
bnL

,
ãj,1
b

+ · · ·+ ãj,nL
bnL

+
1

bnL

)
.

Now for 1 ≤ j ≤ s and 1 ≤ k ≤ νjL
′ we define integers rj,k and ej,k such that 0 ≤ rj,k < L

and
ĩj,k = ej,kL− rj,k.

Note that it is possible that ej,k = ej,k′ for k 6= k′. Let now
{
ẽj,eνj , . . . , ẽj,1} be the

set of distinct elements of
{
ej,νjL′ , . . . , ej,1

}
. Then ν̃j ≤ νjL

′ and
{
ej,νjL′ , . . . , ej,1

}
={

ẽj,eνj , . . . , ẽj,1}.
Let ν̃ = (ν̃1, . . . , ν̃s). For 1 ≤ j ≤ s for fixed ãj,l and ẽj,kL− (L−1) ≤ l ≤ ẽj,kL, where

1 ≤ k ≤ ν̃j, we set

˜̃aj,eej,k = bL−1ãj,eej,kL−(L−1) + bL−2ãj,eej,kL−(L−2) + · · ·+ ãj,eej,kL.
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Furthermore, for fixed j, only νjL
′ of the ãj,l, where ẽj,kL − (L − 1) ≤ l ≤ ẽj,kL and

1 ≤ k ≤ ν̃j, are specified in ãν . Hence J (̃iν , ãν), and therefore also J(iν ,aν), is the union
of bL

Ps
j=1 eνj−L′Ps

j=1 νj disjoint intervals of the format

s∏
j=1

bL−1⋃
eeaj,l=0

l∈{1,...,n}\{eej,eνj ,...,eej,1}

[ ˜̃aj,1
(bL)

+
˜̃aj,2

(bL)2
+ · · ·+

˜̃aj,n
(bL)n

,
˜̃aj,1
(bL)

+
˜̃aj,2

(bL)2
+ · · ·+

˜̃aj,n
(bL)n

+
1

(bL)n

)
.

If we can show that
s∑
j=1

min(eνj ,αL′)∑
l=1

ẽj,l ≤ βn− t, (10)

then each interval contains (bL)m−|eν|1 points, and consequently J(iν ,aν) contains

(bL)m−|eν|1b|eν|1L−|ν|1L′ = bmL−|ν|1L
′
= bm

′L′−|ν|1L′ = (bL
′
)m
′−|ν|1

points and the proof is complete. Hence J(iν ,aν) contains the right number of points if
Equation (10) is satisfied, or equivalently, if

s∑
j=1

min(eνj ,αL′)∑
l=1

ẽj,lL ≤ L(βn− t).

So J(iν ,aν) still contains the right number of points if

s∑
j=1

min(νjL
′,αL′)∑

l=1

ĩj,l +
s∑
j=1

min(νjL
′,αL′)∑

l=1

rj,l ≤ L(βn− t). (11)

We now find a bound for
∑s

j=1

∑min(νjL
′,αL′)

l=1 ĩj,l:

s∑
j=1

min(νjL
′,αL′)∑

l=1

ĩj,l =
s∑
j=1

L′min(νj ,α)∑
l=1

ĩj,l

=
s∑
j=1

min(νj ,α)∑
k=1

L′∑
g=1

ĩj,(k−1)L′+g =
s∑
j=1

min(νj ,α)∑
k=1

L′∑
g=1

(ij,kL
′ + 1− g)

=
s∑
j=1

min(νj ,α)∑
k=1

[
L′∑
g=1

ij,kL
′ −

L′−1∑
g=1

g

]

=
s∑
j=1

min(νj ,α)∑
k=1

[
ij,kL

′2 − (L′ − 1)L′

2

]

≤
s∑
j=1

min(νj ,α)∑
k=1

[
ij,kL

′2
]
− (L′ − 1)L′

2

≤ βn′L′ − t′′L′2 − (L′ − 1)L′

2
, (12)
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where we used Equation (9). Combining Equations (11) and (12) we find that J(iν ,aν)
contains the right number of points if

t′′L′2 +
(L′ − 1)L′

2
−

s∑
j=1

min(νjL
′,αL′)∑

l=1

rj,l ≥ tL.

That is, we can set

t′ = min

{
t′′ : t′′L′2 +

(L′ − 1)L′

2
−M(t′′) ≥ tL

}
, (13)

where

M(t′′) = max


s∑
j=1

min(νjL
′,αL′)∑

l=1

(−ĩj,l (mod L)) : ij,l ≥ 0 and
s∑
j=1

min(νj ,α)∑
l=1

ij,l ≤
β

L′
n′ − t′′

 ,

where we recall ĩj,l = ẽj,lL − rj,l for 1 ≤ l ≤ νjL
′ and 1 ≤ j ≤ s, and ĩj,(k−1)L′+g =

ij,kL
′ + 1 − g for 1 ≤ g ≤ L′ and 1 ≤ k ≤ νj. We now aim to find an upper bound for∑s

j=1

∑min(νjL
′,αL′)

l=1 (−ĩj,l (mod L)). We have

s∑
j=1

min(νjL
′,αL′)∑

l=1

(−ĩj,l (mod L)) =
s∑
j=1

min(νj ,α)∑
k=1

L′∑
g=1

(−ij,kL′ − 1 + g (mod L))

≤
s∑
j=1

min(νj ,α)∑
k=1

L′∑
g=1

(−ij,kL′ (mod L)) +
s∑
j=1

min(νj ,α)∑
k=1

L′∑
g=1

(g − 1 (mod L))

≤
s∑
j=1

min(νj ,α)∑
k=1

L′∑
g=1

(−L′ (mod L))ij,k + sα(L− 1)L′

≤ (−L′ (mod L))L′
(
β

L′
n′ − t′′

)
+ sα(L− 1)L′

= (−L′ (mod L))(βn′ − t′′L′) + sα(L− 1)L′.

From Equation (13) it follows that

t′ ≤ min

{
t′′ : t′′L′2 +

(L′ − 1)L′

2
− ((−L′ (mod L))(βn′ − t′′L′) + (L− 1)L′αs) ≥ tL

}
.

This condition is satisfied for all t′′ with

t′′ ≥

⌈
tL+ sα(L− 1)L′ − (L′−1)L′

2
+ (−L′ (mod L))βn′

L′(L′ + (−L′ (mod L)))

⌉
,

which gives the first bound. For the second bound, let

t′′ =

⌈
tL+ (sα− 1)(L− 1)− (L′−1)L′

2

L′2

⌉
,
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then, using Equation (12), we have

s∑
j=1

min(eνj ,αL′)∑
l=1

ẽj,l ≤
1

L

 s∑
j=1

min(νjL
′,αL′)∑

l=1

ĩj,l +
s∑
j=1

min(νjL
′,αL′)∑

l=1

rj,l


≤ 1

L

βn′L′ − t′′L′2 − (L′ − 1)L′

2
+

s∑
j=1

min(νjL
′,αL′)∑

l=1

rj,l


≤ 1

L

(
βn′L′ − t′′L′2 − (L′ − 1)L′

2
+ sα(L− 1)L′

)
≤ 1

L

(
βn′L′ − Lt− (sαL′ − 1)(L− 1) +

(L′ − 1)L′

2
− (L′ − 1)L′

2
+ sα(L− 1)L′

)
= βn− t+

L− 1

L
.

By assumption, βn is an integer,
∑s

j=1

∑min(eνj ,αL′)
l=1 ẽj,l is an integer, hence

s∑
j=1

min(eνj ,αL′)∑
l=1

ẽj,l ≤ βn− t,

which completes the proof. �

We point out that αL′ changes to α in Theorem 3.6 . Using Propagation Rule (2),
we can establish the following corollary to Theorem 3.6, which avoids a change in the
parameter α.

Corollary 3.1 Let n, n′,m,m′, s, α, L and L′ ∈ N, where gcd(L,L′) = 1, mL = m′L′,
nL = n′L′, let 0 < β ≤ 1 be a real number and let 0 ≤ t ≤ βn and βn be integers. Then
a (t, α, β, n,m, s)-net in base bL is a (t′, α, β

L′
, n′,m′, s)-net in base bL

′
, where

t′ = min

(⌈
tL+ sα(L− 1)L′ − (L′−1)L′

2
+ (−L′ (mod L))βn′

L′(L′ + (−L′ (mod L)))

⌉
,⌈

tL+ (sαL′ − 1)(L− 1)− (L′−1)L′

2

L′2

⌉)
.

However, in some cases it is possible to improve on Corollary 3.1.

Theorem 3.7 (Propagation Rule 14) Let n, n′,m,m′, s, α, L and L′ ∈ N, L′ ≥ α
where gcd(L,L′) = 1, mL = m′L′, nL = n′L′, let 0 < β ≤ 1 be a real number
and let 0 ≤ t ≤ βn and βn be integers. Then a (t, α, β, n,m, s)-net in base bL is a
(t′, α, β

α
, n′,m′, s)-net in base bL

′
, where

t′ = min

(⌈
tL+ sf(α,L)− (α−1)α

2
+ (−L′ (mod L))βn′

α(L′ + (−L′ (mod L)))

⌉
,⌈

tL+ (sα− 1)(L− 1)− (α−1)α
2

αL′

⌉)
,

and where f(α,L) =
∑α

l=1(l − 1 (mod L) ).
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Proof. Using the same definitions as in the proof of Theorem 3.6, we aim to establish
that the assumption

s∑
j=1

min(νj ,α)∑
l=1

ij,l ≤
β

α
n′ − t′′

where t′′ is a nonnegative integer, implies that

s∑
j=1

min(eνj ,α)∑
l=1

ẽj,l ≤ βn− t. (14)

We proceed in a manner similar to the proof of Theorem 3.6, i.e. J(iν ,aν) contains the
right number of points if Equation (14) is satisfied which in turn is equivalent to

s∑
j=1

min(eνj ,α)∑
l=1

ẽj,lL ≤ βnL− tL,

and hence J(iν ,aν) still contains the right number of points if

s∑
j=1

min(νjL
′,α)∑

l=1

ĩj,l +
s∑
j=1

min(νjL
′,α)∑

l=1

rj,l ≤ βnL− tL. (15)

We now find a bound for
∑s

j=1

∑min(νjL
′,α)

l=1 ĩj,l. We have

s∑
j=1

min(νjL
′,α)∑

l=1

ĩj,l =
s∑
j=1
νj>0

α∑
l=1

ĩj,l

=
s∑
j=1
νj>0

α∑
l=1

[ij,1L
′ + 1− l]

= L′
s∑
j=1
νj>0

α∑
l=1

ij,1 +
s∑
j=1
νj>0

α∑
l=1

(1− l)

= αL′
s∑
j=1
νj>0

ij,1 −
s∑
j=1
νj>0

(α− 1)α

2

≤ αL′
(
β

α
n′ − t′′

)
− (α− 1)α

2
. (16)

Hence, combining Equations (15) and (16), we find that J(iν ,aν) contains the right
number of points if

t′′αL′ +
(α− 1)α

2
−

s∑
j=1

min(νjL
′,α)∑

l=1

rj,l ≥ tL.
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We set

t′ = min

{
t′′ : t′′αL′ +

(α− 1)α

2
−M(t′′) ≥ tL

}
,

where

M(t′′) = max


s∑
j=1

min(νjL
′,α)∑

l=1

(−ĩj,l (mod L)) : ij,1 ≥ 0,
s∑
j=1
νj>0

ij,1 ≤
β

α
n′ − t′′

 .

We now establish a bound for
∑s

j=1

∑min(νjL
′,α)

l=1 (−ĩj,l (mod L)), where we set f(α,L) =∑α
l=1(l − 1 (mod L)). We have

s∑
j=1

min(νjL
′,α)∑

l=1

(−ĩj,l (mod L))

=
s∑
j=1
νj>0

α∑
l=1

(−ij,1L′ − 1 + l (mod L))

≤
s∑
j=1
νj>0

α∑
l=1

(−ij,1L′ (mod L)) +
s∑
j=1
νj>0

α∑
l=1

(l − 1 (mod L))

≤ (−L′ (mod L))α

(
β

α
n′ − t′′

)
+ sf(α,L).

Hence

t′ ≤ min

{
t′′ : t′′αL′ +

(α− 1)α

2
− ((−L′ (mod L))(βn′ − t′′α) + sf(α,L)) ≥ tL

}
,

which is satisfied for all t′′ with

t′′ ≥

⌈
tL+ sf(α,L) + (−L′ (mod L))βn′ − (α−1)α

2

α(L′ + (−L′ (mod L)))

⌉
.

To obtain the second bound, we set

t′′ =

⌈
tL+ (sα− 1)(L− 1)− (α−1)α

2

αL′

⌉
.

Consequently,

s∑
j=1

min(eνj ,α)∑
l=1

ẽj,l ≤
1

L

 s∑
j=1

min(νjL
′,α)∑

l=1

ĩj,l +
s∑
j=1

min(νjL
′,α)∑

l=1

rj,l


≤ αL′

L

(
β

α
n′ − t′′

)
− (α− 1)α

2L
+
sα(L− 1)

L

≤ βn− t+
L− 1

L
,

hence
∑s

j=1

∑min(eνj ,α)
l=1 ẽj,l ≤ βn− t and the proof is complete. �

In the following corollary, we recover the result due to Pirsic.
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Corollary 3.2 Let m,m′, L and L′ ∈ N, gcd(L,L′) = 1, mL = m′L′ and let 0 ≤ t ≤ m
be an integer. Then a (t,m, s)-net in base bL is a (t′,m′, s)-net in base bL

′
, with

t′ = min

(⌈
tL+ (−L′ (mod L))m′

L′ + (−L′ (mod L))

⌉
,

⌈
tL+ (s− 1)(L− 1)

L′

⌉)
.

Proof. The proof follows immediately from Theorem 3.7, where we set α = β = 1, n = m
and n′ = m′ and notice that f(1, L) = 0. �

We again remark that in Theorem 3.6, αL′ changes to α. However, when considering
a base change from bL to b, there is no need to change α, as the following theorem shows,
which can be regarded as a generalisation of [9, Theorem 9] and [17, Lemma 9].

Theorem 3.8 For α, n,m, s, L ∈ N, 0 < β ≤ 1 a real number and 0 ≤ t′ ≤ βn an
integer, a (t′, α, β, n,m, s)-net in base bL is a (t, α, β, nL,mL, s)-net in base b, where

t ≤ (t′ + e)L+ (sα− 1)(L− 1)

and e = 0 if βn is an integer and e = 1 otherwise.

Proof. The proof is similar to the proof of Theorem 3.6. �

Finally, we consider a base change from b to bL
′
, which can be considered to be a

generalisation of [12, Lemma 2.9].

Theorem 3.9 Let n, m, s, α, L′ ∈ N, let 0 < β ≤ 1 be a real number and let 0 ≤
t ≤ βn/L′ be an integer. Then a (tL′2 + (L′−1)L′

2
, αL′, β, nL′,mL′, s)-net in base b is a

(t, α, β
L′
, n,m, s)-net in base bL

′
.

Proof. The proof is similar to the proof of Theorem 3.6. �

Furthermore, we point out that αL′ changes to α in Theorem 3.9. Using Propagation
Rule (2), we can establish the following corollary to Theorem 3.9, which avoids a change
in the parameter α.

Corollary 3.3 Let n,m, s, α, L′ ∈ N, let 0 < β ≤ 1 be a real number and let 0 ≤
t ≤ βn/L′ be an integer. Then a (tL′2 + (L′−1)L′

2
, α, β, nL′,mL′, s)-net in base b is a

(t, α, β
L′
, n,m, s)-net in base bL

′
.

However, in some cases it is possible to improve on Corollary 3.3.

Theorem 3.10 Let n,m, s, α, L′ ∈ N, L′ ≥ α, then a (tαL′+ (α−1)α
2

, α, β, nL′,mL′, s)-net

in base b is a (t, α, β
α
, n,m, s)-net in base bL

′
.

Proof. The proof proceeds along the same lines as the proof of Theorem 3.7. �
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3.7 A higher order to higher order construction

Next we consider a propagation rule which was referred to as “A higher order to higher
order construction” in [9]. In [6], it was shown how to construct digital (t, α, β, n×m, s)-
nets from digital (t,m, sd)-nets. Essentially, the “higher order to higher order construc-
tion” in [9] replaces the digital (t,m, sd)-net with a digital (t, α, β, n × m, sd)-net, but
makes use of the same construction algorithm. We now show that the same idea can
be used for (t, α, β, n,m, s)-nets. Assume we are given a multiset {x0,x1, . . . ,xbm−1}
forming a (t′, α′, β′, n,m, sd)-net in base b. We write xh = (xh,1, . . . , xh,sd) and xh,j =
ξh,j,1/b+ ξh,j,2/b

2 + . . . for all 0 ≤ h ≤ bm − 1 and 1 ≤ j ≤ sd.
Then we construct a multiset {y0, . . . ,ybm−1} as follows: For 0 ≤ h < bm we set

yh = (yh,1, . . . , yh,s) in [0, 1)s where for 1 ≤ j ≤ s,

yh,j =
n∑
l=1

d∑
k=1

ξh,(j−1)d+k,lb
−k−(l−1)d. (17)

Theorem 3.11 (Propagation Rule 15) Let d ∈ N and let the multiset {x0, . . . ,xbm−1}
be a (t′, α′, β′, n,m, sd)-net in base b, where we assume that β′n is an integer.

Then for any α ≥ 1, the multiset {y0, . . . ,ybm−1}, defined by Equation (17), forms a
(t, α, β′min(1, α/(α′d)), dn,m, s)-net in base b with

t =

⌈
min

(
d,
α

α′

)
min

(
β′n, t′ +

⌊
α′s(d− 1)

2

⌋)⌉
.

Proof. The case where β′n ≤ t′+bα′s(d−1)/2c is trivial. Hence we assume from now on
that β′n > t′ + bα′s(d− 1)/2c and that we deal with an arbitrary generalised elementary
interval J(iν ,aν), for some given values of ν, iν , aν , such that 1 ≤ ij,νj < · · · < ij,1,
νj ≥ 0, for 1 ≤ j ≤ s and

s∑
j=1

min(νj ,α)∑
l=1

ij,l ≤ β′min
(

1,
α

α′d

)
dn− t.

We need to show that J(iν ,aν) contains bm−|ν|1 points. For yh, 0 ≤ h ≤ bm − 1, to be in
J(iν ,aν), we need for 0 ≤ h ≤ bm − 1, 1 ≤ j ≤ s, 1 ≤ l ≤ n and 1 ≤ k ≤ d,

ηh,j,(l−1)d+k = aj,(l−1)d+k whenever (l − 1)d+ k ∈
{
ij,νj , . . . , ij,1

}
,

where yh,j := ηh,j,1/b + · · · + ηh,j,dn/b
dn. But from the construction method we find

that the condition ηh,j,(l−1)d+k = aj,(l−1)d+k is equivalent to ξh,(j−1)d+k,l = aj,(l−1)d+k. As
{x0,x1, . . . ,xbm−1} forms a (t′, α′, β′, n,m, sd)-net, we translate the above condition into
a condition on a generalised elementary interval of dimension sd. In particular we set

a′(j−1)d+k,l = aj,(l−1)d+k, if (l − 1)d+ k ∈
{
ij,νj , . . . , ij,1

}
.

Also, for each choice of 1 ≤ j ≤ s and 1 ≤ k ≤ d we let w(j−1)d+k denote the largest
integer such that there are e(j−1)d+k,1 > · · · > e(j−1)d+k,w(j−1)d+k

> 0 for which{
(e(j−1)d+k,u − 1)d+ k : u = 1, . . . , w(j−1)d+k

}
⊆
{
ij,νj , . . . , ij,1

}
,
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where for w(j−1)d+k = 0 we set
{

(e(j−1)d+k,u − 1)d+ k : u = 1, . . . , w(j−1)d+k

}
= ∅. Con-

sequently, for dimension (j − 1)d + k with 1 ≤ j ≤ s and 1 ≤ k ≤ d, the dig-
its a′(j−1)d+k,1, . . . , a

′
(j−1)d+k,w(j−1)d+k

are specified whenever w(j−1)d+k > 0. In particular,

w(j−1)d+k gives the number of digits in dimension (j − 1)d + k that the generalised ele-
mentary interval corresponding to the (t′, α′, β′, n,m, sd)-net contributes to dimension j of
the generalised elementary interval corresponding to the (t, α, β′min(1, α/(α′d)), dn,m, s)-
net. We hence note that

d∑
k=1

w(j−1)d+k = νj for 1 ≤ j ≤ s. (18)

and obtain the following generalised elementary interval J(ew,a
′
w) of dimension sd, where

ew = (e1,w1 , . . . , e1,1, . . . , esd,wsd , . . . , esd,1), a
′
w = (a′1,w1

, . . . , a′1,1, . . . , a
′
sd,wsd

, . . . , a′sd,1) and

J(ew,a
′
w)

=
sd∏
j=1

b−1⋃
a′
j,l

=0

l∈{1,...,n}\{ej,wj ,...,ej,1}

[
a′j,1
b

+
a′j,2
b2

+ · · ·+
a′j,n
bn

,
a′j,1
b

+
a′j,2
b2

+ · · ·+
a′j,n
bn

+
1

bn

)
.

By the property of the (t′, α′, β′, n,m, sd)-net, if

sd∑
j=1

min(wj ,α
′)∑

l=1

ej,l ≤ β′n− t′, (19)

then J(ew,a
′
w) contains bm−

Psd
j=1 wj = bm−

Ps
j=1 νj points, where we used Equation (18),

as required. By distinguishing the cases α′d ≤ α and α′d > α, it was shown in [9] that
Equation (19) holds, which completes the proof. �

Remark 3.2 Similar to [9, Example 1] one can employ a (0,m, 2)-net in base b to show
that Theorem 3.11 cannot be improved on in general.

Corollary 3.4 Let d ∈ N and let {x0, . . . ,xbm−1} be a (t′,m, sd)-net in base b. Then for
every α ≥ 1, the multiset {y0, . . . ,ybm−1} defined by Equation (17) forms a (t, α,min(1, α

d
), dm,m, s)-

net in base b with

t = min(d, α) min

(
m, t′ +

⌊
s(d− 1)

2

⌋)
.

Proof. The proof follows immediately from Remark 1.1 and by setting α′ = β′ = 1 and
n = m in Theorem 3.11. �

Theorem 3.11 can be improved when α = α′, which we show in the following.

Proposition 3.1 (Propagation Rule 16) Let α, d ∈ N and let {x0, . . . ,xbm−1} form a
(t, α, β, n,m, sd)-net in base b. Then the multiset {y0, . . . ,ybm−1} defined by Equation (17)
forms a (t, α, β, n,m, s)-net in base b.
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Proof. Let ν = (ν1, . . . , νs) ∈ {0, . . . , nd}s be given and for j = 1, . . . , s let dn > ij,1 >
· · · > ij,νj > 0 be such that

s∑
j=1

min(α,νj)∑
l=1

ij,l ≤ βn− t.

Let iν = (i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs), aν = (a1,i1,1 , . . . , a1,i1,ν1
, . . . , as,is,1 , . . . , as,is,νs ) ∈

{1, . . . , nd}|ν|1 , and a generalised elementary interval

J(iν ,aν) =
s∏
j=1

b−1⋃
aj,l=0

l∈{1,...,nd}\{ij,1,...,ij,νj }

[
aj,1
b

+ · · ·+ aj,nd
bnd

,
aj,1
b

+ · · ·+ aj,nd
bnd

+
1

bnd

)
,

where
{
ij,1, . . . , ij,νj

}
= ∅ in case νj = 0 for 1 ≤ j ≤ s, be given.

Let yh = (yh,1, . . . , yh,s) with yh,s = ηh,j,1/b + ηh,j,2/b
2 + · · · . Then yh ∈ J(iν ,aν) if

and only if ηh,j,l = aj,l for all l ∈ {ij,1, . . . , ij,νj} and 1 ≤ j ≤ s.
We define now a new generalised elementary interval J ′ in dimension sd such that

yh ∈ J(iν ,aν) if and only if xh ∈ J ′. To this end, for j = 1, . . . , s, let a′(j−1)d+k,l =

aj,(l−1)d+k where 1 ≤ k ≤ d and 1 ≤ l ≤ n are such that (l− 1)d+ k ∈ {ij,1, . . . , ij,νj}. For
j′ = 1, . . . , sd we have now specified a′j′,i′ for certain values of i′ ∈ {1, . . . , n}. Let Uj′ be
the set of i′ for which a′j′,i′ is specified, i.e.,

Uj′ = {1 ≤ i′ ≤ n : (i′ − 1)d+ j′ − (j − 1)d ∈ {ij,1, . . . , ij,νj} for j = dj′/de}.

We set Uj′ = {i′j′,1, . . . , i′j′,ν′
j′
}, where we assume that the elements are ordered such

that n ≥ i′j′,1 > · · · > i′j′,ν′
j′
> 0. Define now ν ′ = (ν ′1, . . . , ν

′
sd) ∈ {0, . . . , n}sd, i

′
ν′ =

(i′1,1, . . . , i
′
1,ν′1

, . . . , i′sd,1, . . . , i
′
sd,ν′sd

), and a′ = (a′1,i′1,1
, . . . , a′1,i′

1,ν′1

, . . . , a′sd,i′sd,1
, . . . , a′sd,i′

sd,ν′
sd

).

Then J ′ = J(i′ν′ ,a
′
ν′) has the property that yh ∈ J(iν ,aν) if and only if xh ∈ J(i′ν′ ,a

′
ν′).

Note that ν ′(j−1)d+1 + · · ·+ν ′(j−1)d+d = νj for 1 ≤ j ≤ s and therefore |ν|1 = |ν ′|1. Thus

if J ′ contains bm−|ν
′|1 points, then J(iν ,aν) contains bm−|ν|1 points. The former will be

the case if
∑sd

j=1

∑min(α,ν′j)

l=1 i′j,l ≤ βn− t, which we show in the following.
If νj < α, then

jd∑
j′=(j−1)d+1

ν′
j′∑
l=1

i′j′,l ≤
⌈
ij,1
α

⌉
+ · · ·+

⌈
ij,νj
α

⌉

≤
ij,1 + · · ·+ ij,νj + νj(α− 1)

α
≤ ij,1 + · · ·+ ij,νj

since i1 + · · · iνj ≥
νj(νj+1)

2
.

If νj ≥ α, then

jd∑
j′=(j−1)d+1

min(ν′
j′ ,α)∑

l=1

i′j′,l ≤
⌈
ij,1
α

⌉
+ · · ·+

⌈
ij,α
α

⌉
+

⌈
ij,α − 1

α

⌉
+ · · ·+

⌈
ij,α − α(d− 1)

α

⌉
≤ ij,1 + · · ·+ ij,α.
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Therefore we have

sd∑
j=1

min(α,ν′j)∑
l=1

i′j,l ≤
s∑
j=1

min(α,νj)∑
l=1

ij,l ≤ βn− t.

Hence the result follows since {x0, . . . ,xbm−1} is a (t, α, β, n,m, sd)-net and therefore J ′

contains bm−|ν
′|1 points. �

4 Propagation rules for (t, α, β, σ, s)-sequences and an

application

Based on results from Section 3 we deduce properties of (t, α, β, σ, s)-sequences in base b.

4.1 A higher order to higher order construction for (t, α, β, σ, s)-
sequences

We use the higher order to higher order construction from Section 3.7 to construct
(t, α, β, σ, s)-sequences in base b.

Assume we are given an infinite sequence {x0,x1, . . . } forming a (t′, α′, β′, σ, sd)-
sequence in base b. We write xh = (xh,1, . . . , xh,sd) and xh,j = ξh,j,1/b+ ξh,j,2/b

2 + . . . for
all h ≥ 0 and 1 ≤ j ≤ sd.

Then we construct an infinite sequence {y0,y1, . . .} as follows: For h ≥ 0 we set
yh = (yh,1, . . . , yh,s) in [0, 1)s where

yh,j =
∞∑
l=1

d∑
k=1

ξh,(j−1)d+k,lb
−k−(l−1)d. (20)

Theorem 4.1 Let α′, d, s, σ ∈ N, 0 < β′ ≤ 1 be such that β′σ is an integer, and
t′ ≥ 0 be an integer. Let {x0,x1, . . . } be a (t′, α′, β′, σ, sd)-sequence in base b. Then
for any α ≥ 1, the infinite sequence {y0,y1, . . . } defined by Equation (20) forms a
(t, α, β′min(1, α/(α′d)), dσ, s)-sequence in base b with

t =

⌈
min

(
d,
α

α′

)(
t′ +

⌊
α′s(d− 1)

2

⌋)⌉
.

Proof. We need to show that for all k ≥ 0 and all m > t
β′min(1, α

α′d )dσ
the multiset

{ykbm , . . . ,y(k+1)bm−1} forms a (t, α, β′min(1, α
α′d

), dσm,m, s)-net in base b. It is clear that

m > t′

β′σ
and hence

{
xkbm , . . . ,x(k+1)bm−1

}
forms a (t′, α′, β′, σm,m, sd)-net in base b. But

β′σm is an integer, hence
{
ykbm , . . . ,y(k+1)bm−1

}
forms a (t, α, β′min(1, α

α′d
), dσm,m, s)-

net in base b, by Theorem 3.11, where t ≤ dmin(d, α
α′

)(t′ + bα
′s(d−1)

2
c)e. Hence Equa-

tion (20) defines a (t, α, β′min(1, α/(α′d)), dσ, s)-sequence. �

Remark 4.1 As in Remark 3.2 and [9, Example 1] one can employ a (0, 2)-sequence in
base b to show that Theorem 4.1 cannot be improved on in general.

Similar to Corollary 3.4 in Subsection 3.7, we consider the following special case.
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Corollary 4.1 Let α′, d, s, σ ∈ N, 0 < β′ ≤ 1 be such that β′σ is an integer, and t′ ≥ 0
be an integer. Let {x0,x1, . . . } be a (t′, sd)-sequence in base b. Then for any α ≥ 1,
the infinite sequence {y0,y1, . . . } defined by Equation (20) forms a (t, α,min(1, α

d
), d, s)-

sequence in base b with

t = min(d, α)

(
t′ +

⌊
s(d− 1)

2

⌋)
.

The following result is analogous to Proposition 3.1.

Proposition 4.1 Let {x0,x1, . . . } be a (t, α, β, σ, sd)-sequence in base b. Then the infi-
nite sequence {y0,y1, . . . } defined by Equation (20) forms a (t, α, β, σ, s)-sequence in base
b.

Proof. We need to show that for k ≥ 0, m > t/(βσ), the multiset {ykbm , . . . ,y(k+1)bm−1}
forms a (t, α, β, σm,m, s)-net in base b. But for k ≥ 0, m > t/(βσ),

{
xkbm , . . . ,x(k+1)bm−1

}
forms a (t, α, β, σm,m, sd)-net in base b, hence, by Proposition 3.1, {ykbm , . . . ,y(k+1)bm−1}
forms a (t, α, β, σm,m, s)-net in base b. �

4.2 A base reduction for (t, α, β, σ, s)-sequences

We show that a (t′, α, β, σ, s)-sequence in base bL can be considered as a (t, α, β, σ, s)-
sequence in base b with some quality parameter t. The following theorem generalises [17,
Proposition 4].

Theorem 4.2 Let σ, s, α, L′ ∈ N, let 0 < β ≤ 1 be a real number and t′ ≥ 0 be an integer.
A (t′, α, β, σ, s)-sequence in base bL is a (t, α, β, σ, s)-sequence in base b with

t = (t′ + e)L+ (sα− 1 + βσ)(L− 1) ,

where e = 0 if βσ is an integer and e = 1 otherwise.

Proof. Let {x0,x1, . . . } be a (t′, α, β, σ, s)-sequence in base bL, t as above and fix m > t
βσ

and write it in the form m = pL+ r with integers p and r such that 0 ≤ r < L. Note that
p > t′

βσ
. For a fixed integer k ≥ 0, we consider the multiset P = {xkbm , . . . ,x(k+1)bm−1}.

Then P can be split up into br multisets {xlbpL , . . . ,x(l+1)bpL−1} where kbr ≤ l < (k +

1)br. As p > t′

βσ
, each of these subsequences forms a (t′, α, β, σp, p, s)-net in base bL,

which by Theorem 3.8 is a ((t′ + e)L+ (sα− 1)(L− 1), α, β, σpL, pL, s)-net in base b. A
((t′ + e)L + (sα − 1)(L − 1), α, β, σpL, pL, s)-net in base b is also a ((t′ + e)L + (sα −
1 + βσ)(L − 1), α, β, σm, pL, s)-net in base b, as the strength of the latter is smaller
than the strength of the former. An application of Propagation Rule (6) shows that P
is a ((t′ + e)L + (sα − 1 + βσ)(L − 1), α, β, σm, pL + r, s)-net in base b, and hence a
(t, α, β, σm,m, s)-net in base b. �
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4.3 A base expansion for (t, α, β, σ, s)-sequences

Here we consider a base change in the opposite direction: We show that a (t, α, β, σ, s)-
sequence in base b can be interpreted as a (t′, α′, β′, σ, s)-sequence in base bL

′
. The follow-

ing theorem generalises Theorem 3.9 from Subsection 3.6 to (t, α, β, σ, s)-sequences (see
also [17, Proposition 5]).

Theorem 4.3 Let σ, s, α, L′ ∈ N, let 0 < β ≤ 1 be a real number and u ≥ 0 be an integer.
Then a (u, αL′, β, σ, s)-sequence in base b is a (t, α, β

L′
, σ, s)-sequence in base bL

′
, with

t =

⌈
u

L′2
− (L′ − 1)

2L′

⌉
.

Proof. Denote the (u, αL′, β, σ, s)-sequence in base b by {x0,x1, . . . }, which is of course

also a (tL′2 + (L′−1)L′

2
, αL′, β, σ, s)-sequence in base b. By Definition 1.2 for all integers

k ≥ 0 and m ≥ 1 the finite subsequence

{xkbmL′ , . . . ,x(k+1)bmL′−1} (21)

forms a (min(tL′2 + (L′−1)L′

2
, βσmL′), αL′, β, σmL′,mL′, s)-net in base b. We consider two

cases:

1. Assume first that m is such that tL′2 + (L′−1)L′

2
≤ βσmL′, then by Theorem 3.9, the

multiset given by Equation (21) forms a (t, α, β
L′
, σm,m, s)-net in base bL

′
. Further-

more, tL′2 + (L′−1)L′

2
≤ βσmL′ implies that t ≤ b β

L′
σmc.

2. Now assume βσmL′ < tL′2 + (L′−1)L′

2
. According to Remark 1.2, the multiset given

by Equation (21) forms a (b β
L′
σmc, α, β

L′
, σm,m, s)-net in base bL

′
. Furthermore,

βσmL′ < tL′2 + (L′−1)L′

2
implies that b β

L′
σmc ≤ t.

Hence the multiset given in Equation (21) is a
(
min(t, b β

L′
σmc), α, β

L′
, σm,m, s

)
-net in

base bL
′
. We conclude that for all m such that β

L′
σm > t we obtain a (t, α, β

L′
, σm,m, s)-net

in base bL
′

and therefore a (t, α, β
L′
, σ, s)-sequence in base bL

′
. �

We also consider a special case based on Theorem 3.10.

Theorem 4.4 Let σ, s, α, L′ ∈ N, L′ ≥ α, let 0 < β ≤ 1 be a real number and t ≥ 0 be
an integer. Then a (tαL′+ (α−1)α

2
, α, β, σ, s)-sequence in base b is a (t, α, β

α
, σ, s)-sequence

in base bL
′
.

Proof. We denote the (tαL′+ (α−1)α
2

, α, β, σ, s)-sequence in base b by {x0,x1, . . . }. Then
by Definition 1.2 for all integers k ≥ 0 and m ≥ 1 the finite subsequence

{xkbmL′ , . . . ,x(k+1)bmL′−1} (22)

forms a (min(tαL′ + (α−1)α
2

, βσmL′), α, β, σmL′,mL′, s)-net in base b. We consider two
cases:

1. Assume that tαL′ + (α−1)α
2
≤ βσmL′. Then by Theorem 3.10 the multiset given in

Equation (22) is a (t, α, β
α
, σm,m, s)-net in base bL

′
. Furthermore, tαL′ + (α−1)α

2
≤

βσmL′ implies that t ≤ bβ
α
σmc.
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2. Assume that βσmL′ < tαL′ + (α−1)α
2

. According to Remark 1.2, the multiset given

in Equation (22) forms a (bβ
α
σmc, α, β

α
, σm,m, s)-net in base bL

′
. Furthermore,

βσmL′ < tαL′ + (α−1)α
2

implies that bβ
α
σmc ≤ t.

Hence the multiset given in Equation (22) is a (min(t, bβ
α
σmc), α, β

α
, σm,m, s)-net in base

bL
′
. We conclude that for all m such that β

α
σm > t we obtain a (t, α, β

α
, σm,m, s)-net in

base bL
′

and therefore a (t, α, β
α
, σ, s)-sequence in base bL

′
. �

4.4 An explicit bound for tb(α, s) for prime powers b

In this subsection the least value t such that there exists a (t, α, β, σ, s)-sequence in base
b is studied.

Definition 4.1 For integers b ≥ 2, s ≥ 1, α ≥ 1, let tb(α, s) denote the least value t such
that there exists a (t, α, β, σ, s)-sequence in base b with α = βσ.

Remark 4.2 In [8, Definition 6] the analogous quantity for the digital case has been
introduced: Let b be a prime power, then db(α, s) denotes the smallest value of t such
that there exists a digital (t, α, β, σ, s)-sequence over the finite field Fb with α = βσ.

In this case it is known (see [8, Theorem 7]) that for all s ≥ 1 and α ≥ 2 we have

s
α(α− 1)

2
− α < dq(α, s) ≤ sα2 c

log q
+ α + α

⌊
s(α− 1)

2

⌋
,

where c > 0 is an absolute constant. Note that these bounds also apply to (nondigital)
(t, α, β, σ, s)-sequences where α = βσ.

The following corollary follows from Theorem 4.2 and Theorem 4.3. Setting α = β =
σ = 1 and making use of Theorem 4.2 and Theorem 4.4, we could even recover [17,
Corollary 4].

Corollary 4.2 For all integers b ≥ 2, s ≥ 1, α ≥ 1, α = βσ, we have

tb(α, s)− (sα− 1 + βσ)(L− 1)

L
≤ tbL(α, s) ≤

⌈
tb(αL, s)− (L−1)L

2

L2

⌉
.

The next theorem provides an explicit bound for tb(α, s) for prime powers b. Setting
α = β = σ = 1, this result recovers [17, Proposition 6].

Theorem 4.5 For every prime power b, we have

tb(α, s) ≤
2bsα2

b− 1
− 2

bα3/2s1/2

(b2 − 1)1/2
+ 2α

⌊
s(α− 1)

2

⌋
+ sα− 1 + α.

Proof. We use Theorem 4.2 with L = 2 to obtain

tb(α, s) ≤ 2tb2(α, s) + (sα− 1 + α).
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By Corollary 4.1, where we set d = α,

tb2(α, s) ≤ αtb2(1, sα) + α

⌊
s(α− 1)

2

⌋
,

where tb2(1, sα) corresponds to the least value t such that there exists a (t, sα)-sequence
in base b2. From [17, Theorem 5] we obtain

tb2(1, sα) ≤ bsα

b− 1
− b(sα)1/2

(b2 − 1)1/2

and the result follows. �
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