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Preface

The theory of digital nets and sequences has its roots in uniform distribution
modulo one and in numerical integration using quasi-Monte Carlo (QMC)
rules. The subject can be traced back to several influential works: The no-
tion of uniform distribution goes back to a classical paper by Weyl [263].
The Koskma-Hlawka inequality, which forms the starting point for analysing
QMC methods for numerical integration, goes back to Koksma [119] in the
one-dimensional case and Hlawka [109] in arbitrary dimension. Explicit con-
structions of digital sequences were first introduced by Sobol” [251], followed
by Faure [66] and Niederreiter [171]. A general principle of these construc-
tions was introduced by Niederreiter in [170], which now forms one of the
essential columns of QMC integration and of this book. These early results
are well summarised in [61, 112, 128, 169, 175], where much more informa-
tion on the history and earlier discoveries can be found.

Since then, numerical integration based on QMC has been developed into
a comprehensive theory with many new facets. The introduction of reproduc-
ing kernel Hilbert spaces by Hickernell [106] furnished many Koksma-Hlawka
type inequalities. The worst-case integration error can be expressed directly
in terms of a reproducing kernel, which is a function which, together with a
uniquely defined inner product, describes a Hilbert space of functions.

As opposed to earlier believes, QMC methods are now used for numerical
integration of functions in hundreds or even thousands of dimensions. The
success of this approach has been described by Sloan & Wozniakowski in
[247], where the concept of weighted spaces was introduced. These weighted
spaces nowadays permeate the literature on high-dimensional numerical in-
tegration. The consequence is a weighted Koksma-Hlawka inequality which
yields weighted quality measures (called discrepancies) of the quadrature
points and the need for constructions of point sets which are of high quality
with respect to this new criterion. This leads to computer search algorithms
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for suitable quadrature points which were first developed for lattice rules
[244, 245] and subsequently extended to polynomial lattice rules [45].

The construction of low-discrepancy point sets and sequences has also un-
dergone dramatic improvements. The constructions of Sobol’ [251], Faure [66],
and Niederreiter [171] have been developed into the overarching notion of
(digital) (¢,m, s)-nets and (t, s)-sequences. The problem of asymptotically
optimal constructions in the context of this theory (i.e., which minimise
the quality parameter ¢) have been developed by Niederreiter & Xing in
[189, 265], with several subsequent extensions. From a theoretical perspec-
tive interesting is the development of a duality theory for digital nets [187],
which gives a general framework for the theory of digital nets.

Another development has seen a partial merging of Monte Carlo (MC)
methods, where the quadrature points are chosen purely at random, with
QMC. The aim here is to introduce a random element into the construction
of low-discrepancy points which, on the one hand preserves the distribution
properties and is, at the same time, sufficiently random to yield an unbiased
estimator (and which has also further useful properties). Such a method,
called scrambling, has been introduced by Owen [204], and was first analysed
in [205, 207]. As a bonus, one can obtain an improved rate of convergence
of O(N—3/2(log N)¢) (for some ¢ > 0) using this randomisation.

The topic of improved rates of convergence was further developed first in
[101] for lattice rules, and in [27] for polynomial lattice rules, using a random
shift and the tent transformation. This method achieves convergence rates
of O(N~2(log N)¢) (for some ¢ > 0). The quadrature points which can be
used in this method can be found by computer search.

A general theory of higher order digital nets and sequences has been de-
veloped in [36] for periodic functions, and for the general case in [37]. There
the convergence rate is of O(N~%(log N)¢) (for some ¢ > 0), with a > 1
arbitrarily large for sufficiently smooth functions.

A breakthrough result concerned with the classical problem of finding
explicit construction of point sets which achieve the optimal rate of conver-
gence of the Lo-discrepancy has been achieved by Chen & Skriganov [22].
This problem goes back to the lower bound on the Ly-discrepancy by Roth [226].

The aim of this work is to describe these achievements in the area of
QMC methods and uniform distribution. The choice and presentation of
the topics is naturally biased towards the authors interests and expertise.
Another consideration for our choice of topics concerns the monographs
already available, many of whom are cited throughout the book.

In order to give a consistent and comprehensive treatment of the subject
we use Walsh series analysis throughout the book. In our context these
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appeared already in [128, 168] and in the context of analysing digital nets in
[131, 146]. Some authors, especially those concerned with the analysis of the
mean-square worst-case error of scrambled nets, prefer to use Haar wavelets,
which were also used for instance by Sobol’ [250, 251].

In the analysis of scrambled nets, no disadvantage seems to arise from re-
placing Haar functions with Walsh functions. The locality of Haar functions
is offset by the locality of the Walsh-Dirichlet kernel. As illustration, Owen’s
description of a nested ANOVA decomposition [205] can also be neatly de-
scribed using the Walsh-Dirichlet kernel, see Section 13.2. The place where
it turned out that Walsh functions are of considerable advantage is in Chap-
ter 14. The Walsh coefficients of smooth functions exhibit a certain decay
which is an essential ingredient in the theory on higher order digital nets
and sequences. This property is not shared in the same manner by the Haar
coefficients of smooth functions. Furthermore, also the construction of point
sets with optimal Lo-discrepancy has its origin in the Walsh series expansion
of the characteristic function x|o ;). This makes Walsh functions more suit-
able for our endeavour than Haar functions. However, this shall not mean
that this is the case in all situations, in future work authors should consider
such a choice on a case by case basis.

The aim of the book is to give an introduction to the topics described
above as well as some others. Parts of the theory which already appeared
elsewhere are repeated here to make the monograph as self-contained as pos-
sible. This effort is complemented by two appendices, one on Walsh functions
and one on algebraic function fields. The latter one are the underlying basis
for the constructions of digital nets and sequences by Niederreiter, Xing,
and Ozbudak described in Chapter 8.

The text is aimed at undergraduate students in Mathematics. The exer-
cises at the end of each chapter make it suitable for an undergraduate or
graduate course on the topic of this book or parts thereof. Such a course
may be useful for students in science, engineering, or finance, where QMC
methods find their applications. We also hope that it may prove useful for
our colleagues as reference book and inspiration for future work. We hope
for a similar advancement of the area in the next decades as we have seen
in the past.
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Introduction

In this introductory chapter we review some current methods of numerical
integration to put the subsequent chapters into a wider context. This serves
as a motivation for later investigations.

The problem of numerical integration occurs in applications from physics,
chemistry, finance, biology, computer graphics, and others, where one has
to compute some integral (for instance an expectation value) which cannot
be done analytically. Hence one has to resort to numerical methods in this
case. We shall in the following consider only the standardised problem of
approximating an integral of the form

f(x)de.
[0,1]¢

The books of Fox [79], Tezuka [254], Glasserman [83], and Lemieux [152]
and the surveys of Keller [118] and L’Ecuyer [149] deal more directly with
questions arising from applications.

1.1 The one-dimensional case

Let us consider the case s = 1 first. Let f : [0,1] — R be a Riemann
integrable function. We proceed now as follows. Take a sample of N points
xg,...,xN—1 in the interval [0,1) and calculate the average function value
at those points, i.e.,

1 Nl
n=0
As approximation to the integral we use the value

length of the interval x average function value,
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that is, we approximate the integral of f by

1 1 N-1
| @~ 5 > fGan)

The question arises how large the approximation error is using this method,
i.e., how large is the value

1 | N2
/0 f(z)dz — N %f(xn) ?

Intuitively we expect the integration error to depend on two quantities,

namely,

e on the quadrature points zg,...,zy—1 € [0,1), and
e on the function f.

Let us consider those two points in turn. The quadrature points should
have no big gaps in between otherwise large portions of the function are
not considered in the approximation. Hence {zg,...,zy_1} should be well
distributed in [0, 1). For instance, assume we want to integrate the function
f:10,1] — R given by

[0 ifz<1)2,
f(””)_{ 1 ifz>1/2

If all the points xq, ..., zy_1 are in the interval [0,1/2], i.e., the points are
not well distributed in [0,1), then we obtain

| Nl
~ > flan) =0
n=0
as an approximation to the integral

1
/ f(@)de = 1/2,
0

see Figure 1.1.
Hence we obtain an integration error

1 N-1 1
¥ 2 ) - | r@as

The error depends of course also strongly on the integrand f itself, and in
particular on the smoothness and some norm of the integrand f, which in

1
=3

some sense measures how strongly f varies. For instance, constant functions
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Figure 1.1 Example of badly distributed quadrature points.

are always integrated exactly with our method. On the other hand, assume
we have an integrand f which varies strongly, like the function f(x) =
1+ cos(2rkx) in Figure 1.2 for some large value of k. If we choose for N = k

0.2 0.4 0.6 0.8 1

Figure 1.2 Example of the strongly varying function f(z) = 1+ cos(27kx)
with k = 10.

the points xo,...,on-1 as x, = (2n + 1)/(2N) for 0 < n < N, then one
may say that they are “well” distributed in [0, 1), but we still obtain a large
integration error. Indeed we have

/Olf(x) Qe =1,
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but

1 N-1
N Z flan) =0.
n=0

Hence again we obtain a large integration error

1 N-1 1
NZ&W@—Af@Mx

Remark 1.1 We see later in Chapter 2 that one can indeed bound the
integration error by a product of a quantity which measures the distribution
properties of the points xg,...,xy_1 and a quantity which measures how
strongly the integrand f varies.

=1.

1.2 The general case

Now let us consider the case where s € N. Let f : [0,1]° — R be a, say, Rie-
mann integrable function. We want to approximate the value of the integral

/01 _ _./Olf(an,...,xs)dxl... dzg = /[071]Sf(as)d:v.

For this purpose we proceed as in the case s = 1, i.e., we choose quadrature
points xg,...,zx—_1 € [0,1)® and approximate the integral via the average
function value of f at those IV points, i.e.,

N-—-1
fla)de~ 3 fl)
n=0

[0,1]¢

Again we want to estimate the absolute value of the integration error

N—-1
fl@)dz—— 3 fan)].
n=0

[0,1]°

Now the question arises how we should choose the quadrature points
xg,...,xn—1. Considering the case s = 1, a solution which suggests it-
self for s > 1 would be to choose the points on a centred regular lattice. For
s = 1 we would choose, as above, the points z, = 22&L for 0 < n < N. In

2N
general, for m € N, m > 2, the centred regular lattice I'}, is given by the
points
2k +1 2ks + 1
= 1.1
L < om ) 9 om > ( )

for all k = (ki,...,ks) € Nj with |k| = maxi<i<s|ki| < m (hence we
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have N = m?® points). An example of a centred regular lattice is shown in
Figure 1.3.

Figure 1.3 Centred regular lattice I'§ in [0,1)2, i.e., s = 2 and m = 6.

As mentioned above, we need to make some smoothness assumptions on
the integrand f. In the following we therefore assume that the integrand f is
continuous. In this case we can introduce the following concept as a measure
of how much the function f varies.

Definition 1.2 For a continuous function f : [0,1]° — R, the modulus of
continuity is given by
My(@) = suwp |f(@)— fly)| for >0,
x,yc(0,1]8
|z—yloo <8
where | - | is the maximum norm, i.e., for @ = (z1,...,2,) we set |T|w =
maxlgigs ’1‘1‘

If we assume that the function f is uniformly continuous on [0, 1]*, then
we have lims_,g+ M¢(5) = 0. Note that for any function f its modulus M} is
nondecreasing and subadditive. Recall that a function f is nondecreasing if
f(z) < f(y) for all x <y, and that a function f is subadditive if f(z+y) <
f(x) + f(y) for all z,y in the domain of f.

Furthermore, for nonconstant functions f the smallest possible order of
My is Ms(6) = O(d) as § — 0T. Recall that we say h(z) = O(g(x)) as
x — 0 if and only if there exist positive real numbers § and C such that
Ih(@)] < Clg(x)| for || < 6.

For k = (k1,...,ks) € N§ with |kl < mlet Qx = [[;_[ki/m, (ki+1)/m).
Then each point of the centred regular lattice (1.1) is contained in exactly
one interval Qg, namely the point xj (see again Figure 1.3).
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Let now f :[0,1]° — R be a continuous function and let xj, for k € Nj
with |k|so < m be the points of a centred regular lattice. Then we have

f(x )da:—— Z fx)| = Z — f(xg) de

[0,1]¢

k‘,ENS kGN(S)
ko < Ikl oo <m
< / M|z — )o0) de
keNS
|k|oo<m

< m / L Milele)da, (12

where B(e) :={x € R* : || < ¢}.
Assume that the function f is in addition Lipschitz continuous (for exam-

ple it suffices if f has partial derivatives), i.e., there is a real number Cy > 0
such that

Mf((S) < Cyd forall § > 0.

Then, using (1.2), we have

where the last inequality can be obtained by estimating |&|. < %

This result cannot be improved significantly for uniformly continuous
functions. Before we show the corresponding result, let us give some ex-
amples. For instance, choose s = 1 and consider the function f(z) = —N(l +
cos(2rNx)) for some constant ¢ > 0 (see Figure 1.4). Notice that f'(z) =
—cmsin(2rNx), hence the Lipschitz constant is Cy = supg<, <1 |f'(z)| = e
and the modulus of continuity satisfies Mf(0) < end for all § > 0. Thus, as
opposed to the function itself, the Lipschitz constant and the modulus of
continuity do not depend on N. If we consider the Lipschitz constant or the
modulus of continuity of f as a measure of how strongly f varies, then this
measure does not depend on N. Hence we have a family of functions which
all vary equally strongly. Let us now consider the integration errors of these
functions.
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Figure 1.4 The function f(z) = 55 (1 + cos(2rNz)) for N = 10.

We have

and hence

2n+1 c

A convergence of O(N 1) is reasonable in many practical applications, which
makes the quadrature method a useful tool in dimension s = 1.
Consider now the case s > 1. Choose a function

c
g(x1,22,...,25) = =—(1 + cos(2mmxy)),
2m

see Figure 1.5. Again, the functions g vary equally strongly for each m.
Then we have

C C
/ / .’131,..., dl’l d :%:2]\]—1/5

% Z g(zg) = 0.

kENO
[k|oo<m

and
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Figure 1.5 The function g(z1,22) = 5% (1 + cos(2mma)) for m = 3.

Hence we obtain an integration error of

1 c
fle)de — — g(xp)| = ———.
o 15 2 9| =

[k|oo<m

Motivated by the above examples we show the following unpublished re-
sult due to G. Larcher. In the following we call a uniformly continuous func-
tion M : Ry — R, where R = {z € R : 2 > 0}, which is nondecreasing,
subadditive, and for which we have lims_, o+ M (J) = 0 a modulus.

Theorem 1.3 For any modulus M and any o, ...,xny—_1 in [0,1)%, there
is a uniformly continuous function f : [0,1]° — R with modulus of continuity
My < M, such that

>N/ M(|z]) da.

2 1/S

flx)de — = fxn)
o (x) N

Proof Consider the Voronoi diagram Vj,...,VNx_1 of xg,...,&xy_1 with
respect to the maximum norm, i.e.,

Vo=A{x€[0,1]° : |z — xp|eo = 0211<I1N\:1: — Tjloo}

for 0 < n < N, and define f : [0,1]° — R by f(z) := M(|Jz — ©,|) for
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x € V,. Then f is uniformly continuous since M is continuous, Vy, ..., Vy_1
is a Voronoi diagram, and f is defined on a compact domain.
We show that My < M. Let x,y € [0,1]° and assume that f(x) > f(y).
If &,y are in the same Voronoi cell, say V,,, then we have
[f(x) = f(y)l = M(|z — @n|oc) = M(Jy — @ploo)
< M(max(|z — Tnloo — Y — Tnloo,0))
< M(|z = yloo),

where we used that M is subadditive and nondecreasing. If x,y are not in
the same Voroni cell, say € V,, and y € Vi with n # k, then we have

[f (@) = f(y)l = M|z — 2n|oo) = M(ly — @k|oo)
< M|z — @pfoo) = M(ly — 2k|oo)
< M(max(|@ — @k|oo — |y — @k|oo, 0))
< M|z = yloo),

where we again used that M is subadditive and nondecreasing. Hence we
have My < M.
It remains to show the lower bound on the integration error. We have

1 N-1 N-1
/[o,us fl@)de — - nZ:O f@n)| = nz:;) /V M(|z — ploo) dw. (1.4)

Let W, := {z € [0,1]* : |z — Tp|oo < 1/(2N'/%)}. Then we have

N-1
Z/ M(|z — p|oo) de
n=0 7 Vn

N—-1
= > (/mwﬂ M(|z — mnloo)dm+/vn\wn M(|z —azn|oo)d;c> L(1.5)

n=0

Let y € V,, \ W, for some n and let & € Wy, \ V}, for some k. Then we have
|y — Tploo > 1/(2NV*) and | — ;| < 1/(2NY/#). Since M, by definition,
is nondecreasing it follows that M (|y — @n|eo) > M (| — Tk|eo)-

We also have 252—01 As(V) = 1 and Zi:fz_ol As(Wy) < 1, where Aq is the
s-dimensional Lebesgue measure. Hence we have

=z

-1

(]

N—-1
A(Va) = D7 As(Wha)
0 n=0

3
Il

N—-1 N—-1
= Vo \ W) + AV 0 W)] = D~ AW \ Vo) + A (Ve N T
n=0 n=0
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N-1 N-1
=D AV \ W) = > AW\ Vo),
n=0 n=0

from which it follows that SN "' A\ (W, \ Vi) < SN AV, \ W), From
these considerations it follows that

Z/n\Wn (le — &p|oo) d > Z/n\vn (|le — xn|0) de.

Inserting this inequality in (1.5), then we obtain

N-1

Z M(|x — xp|o0) dx

n=0"Vn

M
1
B(le/S )
Now the result follows by (1.4). O

Combining Theorem 1.3 with (1.2) we obtain the following result from
G. Larcher, which states that the centred regular lattice yields the smallest
possible integration error for the class of uniformly continuous functions
with a given modulus of continuity.

Corollary 1.4 Let N =m?® and let M be any modulus. Then we have

/{071]5 de — — Z f(xn) N/ M (|x|s) de,

2N1/s
where the infimum is extended over all point sets P consisting of N points in

inf su
P fp

[0,1)® and the supremum is extended over all uniformly continuous functions
:10,1]% — R with modulus of continuity = M. Moreover, the infimum
0,1]* — R with modul tinuity My = M. M the i
1s attained by the centred regular lattice.

The problem in the upper bounds (1.2) and (1.3) respectively is that
the integration error depends strongly on the dimension s. For large s the
convergence of N~/ to 0 is very slow as N — oco. This phenomenon is
often called the curse of dimensionality. The question arises whether one
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can choose “better” quadrature points xg,...,xn_1, i.e., for which the in-
tegration error depends only weakly (or not at all) on the dimension s.
The question can be answered in the affirmative, which can be seen by the
following consideration.

Assume we want to approximate the integral of a function f : [0,1]® — R
by

| V-1
~ > Flxn)
n=0
where xg,...,xzn_1 € [0,1)°. Then one can ask how large the integration
error
/[ ] f(x dm——Zfa:n =: Ry f(x0,...,TN-1)
0,1
is on average. That is, if one chooses the quadrature points xq,...,xy_1 €

[0,1)® uniformly distributed and i.i.d., how large is Ry, s on average, i.e.,
what is the expectation value of Ry ¢?

Let f:]0,1]° — R be a square integrable function, i.e., f € Ls([0,1]%). In
the following we calculate the expectation value of R?\L 2 ie., E[R]ZV f] and
then use the inequality

E[RN,f] < E[R?\/,A

Let g(x) — Jio1)s f(z) dz. Then we have

/ g(x)dx = 0. (1.6)
(0,1}

Now we have

n—0 [0,1]®
| Nl 2
= (N Z g(mn)>
n=0
;N , 5
= N2 9 (xn) + N2 Z 9(@m)g(@m).
n=0 0<m<n<N
Hence
| Nl
E[RY (] = 5 / / 9 (@) dao -+ dzy—y
[0,1]* [0,1]*
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2o
+-— g(xm)g(x,)dey - dey_
N2 [ o @l dao o day

0<m<n<N
=: 21 + 2.

We consider ¥. For any 0 < m < n < N, (1.6) implies that

/ e / g(mm)g(wn) dxg - dey_1

[0,1]° (0,1}

= / g(xm) d:z:m/ g(xy,)dx, =0.
[0,1] [0,1)

Hence ¥5 = 0 and therefore E[R?V ] = E1. Further for every 0 <n < N we
have

/ / g(xp)? dag - dey_y = / ¢*(z)dz
(0,1} [0,1]¢ [0,1]¢

2
-/ (f(w)— /o,l]sf(y)dy> dz.

Hence we have the following theorem.

Theorem 1.5 Let f € Ly([0,1]*). Then for any N € N we have

2
2 _ i o d dx = UZ(f)
ElRNsl = o (f(fﬂ) ol f(y) y) T =

where we set o2(f) := f[O,l]S (f(:c) — ‘[[07118 f(y) dy>2 de.

Theorem 1.5 can now be understood in the following way. The absolute
value of the integration error is, on average, bounded by o(f)/vN, where
o(f) = /o?(f) is the standard deviation of f. Note that the integration
error does not depend on the dimension s (although for some functions o(f)
may depend on s). We have N—1/2 < N=1/s for s > 2. Hence, roughly
speaking, for s > 2 it is on average better to use random points for the
approximation of the integral of f than using the centred regular grid (f
does not even have to be continuous if one chooses random samples). This

method of using random sample points xg,...,xy_1 is called Monte Carlo
(MC) method.
Nevertheless the MC method also has some disadvantages:

e The error bound is only probabilistic, that is, in any one instance one
cannot be sure of the integration error. However, further probabilistic
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information is obtained from the central limit theorem, which states (see
co(f)
N

[175]) that, if 0 < o(f) < oo, then
vl \/g/ce‘ﬁ”dt,
T Jo

for any ¢ > 0, where Prob[-] is the infinite-dimensional Lebesgue measure

lim Prob |Ry f(xo,...,2Ny-1) <
N—oo

Aoo Of all sequences xg, x1, . . . of elements of [0, 1)® that have the property
indicated between the brackets.

e A second problem is that the generation of random samples is difficult.
This problem is a topic on its own. For more information in this direction
we refer to the books of Lemieux [152], of Niederreiter [175], or to the
overview article of L’Ecuyer & Hellekalek [150].

e The convergence rate of O(N~'/2) is for some applications too slow and
it does not reflect some regularity of the integrand.

For more information concerning the MC method we refer to the books
of Niederreiter [175], of Lemieux [152] or of Glasserman [83]. The later one
deals with the application of MC for financial problems.

The aim is now to find deterministic constructions of quadrature points
which are at least as good as the average. This method is called quasi-Monte
Carlo (QMC) method as opposed to MC, where one uses randomly chosen
quadrature points. In the deterministic case we hence need quadrature points
which are in some sense “well” distributed in [0, 1)®. We consider this prob-
lem in the next two chapters. There we also specify the space of integrands
first, since this also determines what the correct distribution properties of
the quadrature points should be. Chapter 3 motivates the distribution prop-
erties of the quadrature points from a geometrical point of view and presents
some classical constructions of “good” quadrature points.

Exercises

1.1 Define a modulus M by M(J) = ¢ for all § > 0. Find a function
f :[0,1] — R which has modulus of continuity My < M. Verify the
lower bound on the integration error of Theorem 1.3 for this function.

1.2 A well known measure of how strongly a function f : [0, 1] — R varies is
the so-called total variation V(f). For functions whose first derivative
f! is continuous it is known that the total variation can be computed

by

1
V(f) = /0 (@) da
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(Note that this is a semi-norm of f which should be compared to the
norm in the Koksma-Hlawka inequality, which is presented in the fol-
lowing chapter as Proposition 2.18.)

Compute the total variation of the function f(r) = 55 (1+cos(2rNz)).
Remark: Observe that the total variation of this function is independent
of N.

Assume that the function f : [0,1]° — R satisfies a Holder condition,
ie., |f(z) — f(y)| < Cflz — y|A for some constant C; > 0 which only
depends on f and 0 < A < 1. Show that then

1 Cy
flx)de — — flaeg)| < ,
/[0,1}8 (@) ms kg;g () 22mA
[k|oo<m

where xp, with k € Nj and |k|o, < m is a centred regular lattice.

Let m* < N < (m + 1)%, and in particular m!(m + 1)*7! < N <
m!= (m +1)**1 for some 1 <1 < s, say N =m! (m +1)*~! 4+ k with
some 0 < k < m!='(m + 1)*=". Consider m!~" (m + 1)*~ intervals

-1 s—1

a; a; +1 b; bi+1

— 1
H[m’ m )XH[m+1’m+1>X[O’)

i=1 i=l

with 0 < a; < mand 0 < b; < m + 1. For m'~Y(m + 1)*~t — k of
these intervals divide the last coordinate into m equal parts and for
the remaining k intervals divide the last coordinate into m + 1 equal
parts. This gives N boxes. Take the N mid points of these boxes. This
gives a centred quasi-reqular lattice. See Figure 1.6 for an example.

Figure 1.6 Centred quasi-regular lattice in [0,1)? with s = 2 N = 11,
m=3,l=2,and k = 2.
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1.5

1.6

1.7

Introduction

Let f : [0,1]° — R be continuous with modulus of continuity My
and let r(f) := supge(g1)s f(z). Show that for a centred quasi-regular
lattice xo,...,xy_1 with m* < N < (m + 1)° we have

d:c——Zf:vn

Let f : [0,1]° — R be Lipschitz continuous. Show that for a quasi-

1
<N/ (lo0) dz -+ () 7

[0,1]5

regular lattice xg,...,xny_1 with m® < N < (m 4+ 1)° we have
| Nl
fl@)yde — = > f(@,)| = O(N /).
/[0,1}5 N ,;)
For a Borel set E C [0,1]* we say a point set P = {xq,...,xy_1} in

[0,1]* is fair with respect to E if the portion of points of P that belong
to E is equal to the volume of E, i.e., if A(E, N, P) := 27];7;01 XE(x,) =
As(E)N. We say that the point set P is fair with respect to a nonempty
collection £ of Borel sets in [0,1]° if P is fair with respect to every
Ecé.

Let &€ = {E1,..., E;} be a partition of [0,1]* into nonempty Borel
subsets of [0, 1]®. For a Lebesgue integrable function f : [0,1]® — R and
for 1 < j <k put

G;(f) :=sup f(t) and g;(f):= inf f(2).
teE; ter;
Show that for any P = {xq,...,xN_1} which is fair with respect to €
we have

fla dw——wan

[0,1]°

k
< Z —g;([f))-

Remark and Hint: This is a special case of [179, Theorem 2] where one
can find a proof.

Let f : [0,1]° — R be continuous and let & = {Ei,...,E} be a
partition of [0,1]® into nonempty Borel subsets of [0, 1]°. Show that for

any P = {xo,...,xn_1} which is fair with respect to & we have
L V-l
flx)de — =Y  f(zn)| < M(6(E)),
|/[0,”5< y 2 )] < M(6(E)

where §(&) 1= maxi<;<j SUPg yep; [T — Yloo. Hint: Compare with [179,
Theorem 3.
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Prove an analogue of Theorem 1.5 for functions f : D — R defined
on an integration domain D C R?® which has Lebesgue measure 0 <
As(D) < 0.

Let f :[0,1]> — R, f(x1,22) = 1 if 22 + 22 < 1 and 0 otherwise.
We are interested in fol fol f(z1,22) dzy dzgy (Which is 7/4). Write a
computer program (for instance with MATHEMATICA) which applies
the MC method to this problem. Run some experiments and compare
the integration error with 1/ V/N, where N is the sample size.

Let f:[0,1] — R and g(z) = 2[f(2) + f(1 — z)]. Show that o2(g) <
%JQ(f). Hint: This is [175, Proposition 1.3].
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Quasi-Monte Carlo integration, discrepancy and
reproducing kernel Hilbert spaces

In this chapter we motivate the ideas behind concepts such as discrepancy,
uniform distribution, quasi-Monte Carlo algorithms and others from the
point of view of numerical integration. Most discrepancies considered here
can be derived from numerical integration and can therefore be understood
as worst-case errors of numerical integration of functions from certain func-
tion spaces. Using reproducing kernel Hilbert spaces as function spaces re-
moves many technicalities and gives a nice pathway to the connections be-
tween discrepancies and worst-case errors of numerical integration.

2.1 Quasi-Monte Carlo rules

We consider the problem of integrating a high dimensional Lebesgue inte-
grable function f : [0,1]° — R where this cannot be done analytically and
therefore one has to resort to numerical algorithms. Indeed we consider the
simplest of possible algorithms, namely we approximate

N-1
1
fle)de =~ — flxn), (2.1)
0,1)¢ N 7;]
where xq,...,zy_1 € [0,1]° are the quadrature points which one needs to

choose. Because the volume of the unit cube [0,1]® is one, the value of the
integral is just the average value of the function, which is exactly what the
algorithm tries to approximate.

If the quadrature points xg,...,xy_1 € [0,1]° are chosen deterministi-
cally, the algorithm + Zflvz_ol (@) is called a quasi-Monte Carlo (QMC)
algorithm or a QMC rule. On the surface the algorithm looks simple, but
of course, the difficulty is how to choose the quadrature points. The follow-
ing two main questions arise from this: how can we assess the quality of
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some given quadrature points? And, how can we find quadrature points of
particularly high quality?

In order to answer these questions, we need to specify which integrands
f:]0,1]* — R we want to consider. Indeed, we want our algorithm to work
not just for one specific integrand, but for a whole class of functions, that is,
for a set of functions which have certain properties, so that, if we know that
the integrand satisfies a certain property, i.e. is “smooth”, then we know
that the method we use works well. In other words, the point set is chosen a
priori and we apply the QMC algorithm to an arbitrary function belonging
to a certain class.

As we know from classical integration rules in dimension s = 1, like Simp-
son’s Rule, the smoother the integrand the faster the error (which for QMC
rules is given by ‘f[o,l}s f(x)dx — %Zﬁfz_ol (x,)|) goes to zero as N in-
creases. The same can of course be observed for QMC rules. We first de-
velop the classical theory on QMC methods, which deals with integrands of
bounded variation [175]. In order to avoid too many technicalities though,
we deal with absolutely continuous functions with partial first derivatives
which are square integrable, instead of functions of bounded variation (see
[175, p. 19] for an equivalence or [37, Section 3.1] for a discussion of the
similarities between those two concepts).

2.2 Numerical integration in one dimension

As a first example, consider a one-dimensional function f : [0,1] — R with
continuous first derivative which is bounded on [0, 1]. For a subset J C [0, 1]
let xs(x) denote the characteristic function of J, i.e.,

(z) = 1 ifxed
XETZ 0 ifa¢ J

Considering the integration error of a QMC rule using a point set P =
{zo,...,zn-1} C [0,1], we obtain, by substituting f(1) — fxl f'(y)dy for
f(x), that

1 1 N—-1
| r@ar-5 > 7o

| flie , 1 ry /
=, ¥ 2 X)) dy - /0 /0 F(y) de dy

0
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1 1 N-1
Z/ f'(y) [N D Xwn](¥) — y] dy.
0 n=0

(Note that alternatively we could use X[, 1)(y) instead of x(,,,1)(y), but the
latter is used more commonly.) Note that

N-1 N—-1
> Xeni®) =Y Xio)(@n) =1 A([0,), N, P),
n=0 n=0

the number of points of P which lie in the interval [0,y). The expression
between the squared brackets above leads to the following definition.

Definition 2.1 For a point set P consisting of N points in [0,1) the
function Ap : [0,1] — R,

is called the discrepancy function of P.

The discrepancy function permits a geometric interpretation which gives
us some insight. Namely: A([0,y), N,P)/N is the proportion of points of P
which lie in the interval [0, y). The length or Lebesgue measure of the interval
[0, %) is of course y and so, for a given y € [0, 1], the function Ap(y) measures
the difference between the proportion of points of P in the interval [0,y)
and the length of the interval [0,y). We see that the discrepancy function
is small when the points xzg,...,xxy_1 are evenly spread over the interval
[0,1]. A more detailed discussion of this geometric interpretation is given in
Section 3.

Hence we have

1 N-1

1 r
Flayde — < 3 f(oa) = /0 7' @) Ap(y) dy. (2.2)

0 n=0

This equation is a simplified form of Hlawka’s identity [110], which is also
known as Zaremba'’s identity [270].

Thus the criterion for P should be to choose it such that Ap(y) is small
for all y € [0,1], then (2.2) guarantees that the error committed by P is also
small for the class of functions which have continuous first derivative. To
make the statement “Ap(y) small for all y € [0,1]” more tangible, we can
take the absolute value on both sides of (2.2) and apply Hélder’s inequality
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to the right hand side to obtain

1 1 N-1
| -5 > s

< [rwnaswians ([ |f'<y>|‘fdy)l/q ([ 1arwra) v

forp,g>1land 1/p+1/q=1.
The last inequality (2.3) now separates the effects of the function and the

(2.3)

1/q
point set on the integration error. Note that ( fol |f(y)]4 dy) is a semi-

1/
norm on the function space, while || f||, := <|f(1)\q + fol |f’(y)\qdy> Tisa

norm on the function space.
Two choices of p received particular attention, namely, p = oo and p = 2.

Definition 2.2 Let P = {xg,...,zy_1} be a point set in the unit-interval
[0,1). The star discrepancy of P is defined as

Dy (P) := sup |[Ap(y)|
yE[O,l]

and the Lo-discrepancy of P is defined as

Lo n(P) = (/01 \Ap(y)\Qdy> 1/2-

From the definition of the discrepancy function, we can now see that the
star discrepancy D3 (P) and the Lo-discrepancy Lo n(P) of a point set P
are small if the points in P are evenly spread over the interval [0,1] (see
Exercise 2.1).

We can write (2.3) as

1 1 N-1
[ IR

for p =00 and ¢ = 1 and for p = ¢ = 2 we can write

1 1 N-1
[ DN

We remark that (2.4) is a simplified version of Koksma’s inequality (see
[128, Theorem 5.1] for the original version).

< [If[lhDx(P) (2.4)

< || fll2L2,n(P). (2.5)
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Remark 2.3 Note that (2.4) and (2.5) are slightly weaker than (2.3) be-
cause we switched from a semi-norm to a norm. On the other hand, the QMC
algorithm integrates all constant functions exactly so that for all ¢ € R we

have
1 1 N-1 1 1 N—-1
|| Fdn =y 3 st = | [ ()= dz = 3 (faa) =

< (irw=er+ [ \f’(y)!qdy>l/q

([ 1arwra) "

By choosing ¢ = f(1) we see from the last expression that in our error
analysis we could restrict ourselves to consider only functions for which

F(1) = 0.

We now aim to develop this theory for arbitrary dimensions s > 1. Re-
producing kernel Hilbert spaces make this generalisation somewhat simpler,
hence we introduce them in the following section.

2.3 Reproducing kernel Hilbert spaces

Before we introduce reproducing kernel Hilbert spaces in a general setting,
we work out an example which we already used implicitly in the previous
section.

A first example

As we have seen from the one-dimensional example, the error analysis hinges
on the substitution

f(z) = £(1) - / f(y) dy, (2.6)

i.e., the analysis works for all functions which have such an integral repre-
sentation. For functions f, g permitting such a substitution, and for which
1',d" € Ly([0,1]), we can introduce an inner product by using the value of
f, g at one and the derivatives of f, g, that is

1
(F.9) = F(1)g(1) + /0 /(@) (x) da. (2.7)
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The corresponding norm || f||2 := /{(f, f) is exactly the norm used in (2.5).
This defines a Hilbert space

A ={f:]0,1] — R: f absolutely continuous and || f||2 < oo}

(hence the fundamental theorem of calculus applies) whose first derivative
is square integrable. With this, we can introduce a proper criterion for how
well a given QMC rule Qn(f) = % ZT]L_OI (z,,) works by looking at the
worst performance of @y for all functions in J# with norm at most one.

Definition 2.4 Let 7 be a Hilbert space of Lebesgue integrable functions
on [0, 1] with norm || -|| for which function values are well-defined, and let P
be the quadrature points used in the QMC rule Q. The worst-case error
for QMC integration in the Hilbert space 7 is then given by

e(A#,P) = sup
feA | fll<1

1
/0 f(x)de — Qu(f)] .

A particularly nice theory now develops when we combine Equation (2.6)
and (2.7), i.e., for each y € [0, 1] we want to have a function g, : [0,1] — R
such that (f,g,) = f(y). As we modelled the inner product after (2.6) in
the first place (we used f(1) and f’ which both appear in (2.6)), it is not
hard to see that this can be done. Indeed, g,(1) = 1 for all y € [0,1] and
gy(x) = % = —1for all x € [y, 1] and g, (x) = 0 for = € [0, y). This implies
that g, has to be of the form

c for0<x <y,
x fory<az<1,

9y(@) :2_{

for some arbitrary fixed constant ¢ € R.

We add one more sensible condition on g,, namely, that g, € J# for each
y € [0,1]. Then the condition that g, is an absolutely continuous function
of x completely determines g,, and we obtain that ¢ =y, i.e.

g9y(@) 22{

which we can write as g,(z) = 2 — max(z,y) =1+ min(l —z,1 — y).

To summarise, for each y € [0,1] we now have a function g, € ¢ such
that (f,g,) = f(y). The function (x,y) — g,(x) is called a reproducing
kernel [4] and has several useful properties. In the following we denote the
reproducing kernel by K, so in our case

y for0<zx<uy,
x fory<az<l1,

K(z,y) = gy(z) =1+ min(l —z,1 —y).
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Definition 2.5 A Hilbert space 7 of functions f : X — R on a set X
with inner product (-,-) is called a reproducing kernel Hilbert space, if there
exists a function K : X x X — R such that

P1: K(-,y) € S for each fixed y € X and
P2: (f,K(-,y)) = f(y) for each fixed y € X and for all f € 7.

Note that here we consider K as a function of the first variable denoted
by - and in (f, K(-,y)) the inner product is taken with respect to the first
variable of K. Sometimes we indicate this by writing (f(x), K(z,y))z. The
last property, i.e. P2, is the reproducing property, i.e. the function values of
f can be reproduced via the kernel and the inner product.

It follows that a function K with these properties must also be symmetric,
unique and positive semidefinite:

P3 (symmetry): this holds as
K(z,y) = (K(,y), K(-,2)) = (K(;,2), K(-,y)) = K(y,2),

P4 (uniqueness): this holds since for any function K satisfying P1 and
P2 we have

K(z,y) = (K(.y), K(2)) = (K(,2), K(y)) = K(y.2) = K(2,y),

P5 (positive semidefiniteness): this holds as for all choices of ag, ..., an_1 €
R and zg,...,zny_1 € X we have
N—-1 N—1
Z A K (T, ) = Z aman (K (-, 20), K(-y2m))
m,n=0 m,n=0
N-1 N-1
= <Z anK (zp, ), Z am K (2, )>
n=0 m=0
N-1 2
= ZamK(zm, )N >0
m=0

As was shown in [4], a function K which satisfies P3 and P5 also uniquely
determines a Hilbert space of functions together with an inner product for
which P1 and P2 (and hence also P4) hold. Thus it makes sense to speak of a
reproducing kernel without explicitly specifying a Hilbert space of functions.

Remark 2.6 In our example, according to the construction of K (z,y) =
gy(z) the conditions P1 and P2 are satisfied and hence 2 = {f : [0,1] —
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R : ||f|le < oo} is a reproducing kernel Hilbert space. We wrote K (z,y) =
1+ min(1 — z,1 — y) rather than K(x,y) = 2 — max(x,y), as the function
min(1 — z,1 — y) is a reproducing kernel of the Hilbert space of absolutely
continuous functions with square integrable first derivative for which f(1) =
0 for all f in this space (see Exercise 2.5).

Remark 2.7 We note that if we include complex functions f : X — C,
then (f,g) = (9, ]), {f.ag) = a(f,g) for a € C, P3 becomes K(z,y) =
K(y,x) and we call a function positive semidefinite if for all choices of
ap,...,any—_1 € Cand zg,...,zny_1 € X we have

Z U an K (T, 25) > 0.

Example 2.8 We give another example of a reproducing kernel Hilbert
space which was considered in [50]. This reproducing kernel Hilbert space is
based on Walsh functions.

We recall some notation from Appendix A. Assume that z,y € [0,1) have
b-adic expansion & = &b +&b 24 and y = m b~ 41m9b 24 - - . Further
let k € Ny have b-adic expansion k = kg + k10 + - - - + k10" 1. Further let
wp = €2™/0 Then the kth Walsh function in base b is defined by

bwalk( )_wgo§1+m£2+ K- 15a

Further we set
G, G
WS} Yy = 3 + b2 + -
where (; = & +mn; (mod b) for all j > 0. See Appendix A for more informa-
tion on Walsh functions.

Let Kyai(z,y) = Y 5o Twalba(k) pwaly(z © y), where ryaipo(0) = 1 and
for k > 0 with base b (b > 2) representation k = ko + k1b+ -+ + Kg_1b% 1
and kq—1 # 0, we define rya1po(k) = b7, where a > 1. The reproducing
kernel Hilbert space with kernel K, is called a Walsh space and consists

of Walsh series > 77 f(kz) pwaly(x). The inner product in this space for two
Walsh series f(z) = Y 2, F(k) ywaly,(z) and g(z) = Y oreo G(k) pwalg(x) is
given by <f’ g> = ZZO:() Twal,b,a(k)_lf(k;) ( )

The reproducing property can be verified in the following way: the kth
Walsh coefficient of Ky,i(-,y) (considered as a function of the first variable)
is given by 7walp.q (k) pwali(©y) and hence

alba (k) pwaly(
(f, Kwal(-,y Zf wel k) vl (Op) Zf ) pwali(y) = f(y).

=0 Twalba( )




36 QMC integration, discrepancy and reproducing kernel Hilbert spaces

Numerical integration in one dimension revisited

Using the framework of reproducing kernel Hilbert spaces we can now revisit
Section 2.2. Hence we define the reproducing kernel K as in Section 2.2 by

K(z,y) =14 min(l —z,1 —y)

and the inner product by (f, g) = ) + fo x) dz. We have

/f /<f Ky >dy:<f,/01K<-,y>dy>,

where the second equality is obtained by a change of the order of integration,
and

1 N—-1 1 N—-1 1 N-—1
QN(f)_Nz(]f(xn)_ﬁzo<fv[((7wn)>_<f7NZK(7xn)>7

where the inner product is taken with respect to the first variable of K.
Thus, using the Cauchy-Schwarz Inequality, we have

y)dy — Qn(f ‘ ‘< /K dy——ZK xn>‘
/K dy——ZK T

Note that we have Ap(x) = d%c (fol K(z,y)dy — ZN ! K(m,azn)> and
hence

<712

2

Lo n(P) =

1 N—-1

Let us now calculate the worst-case error. For short we write now h( ) =
fo (z,y) dy—+ S0 K (2, 2,). Since K (-, y) E%andalsofo y)dy €
S it is clear that h € . We have equality in (2.8) if f(z) = h(x ) Let

2

1
P) = /0 1) dy — Qn ()

1 1 N-1
_ <f, RCVLEEDS K(-,xn>> = (f.h).

n=0

Then for all f with [|fls # 0 we have ShP) = e(f/[|f[l2, P) < e(h/|[h]l2,P) =
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e|(|}fll’||7;) by a property of the inner product and hence
e(h,P)  (h,h)
e(A,P) = = = 17 f2-
VP =T, = T, ~

This means, that for a given point set P, among all functions in the space
A, the function h € 7 is the hardest to integrate. For the function h we
have equality in (2.8).

The worst-case error for arbitrary reproducing kernel Hilbert
spaces

In the following we use the approach of Hickernell [99] and Sloan & Wozniakowski [247].
Let us now consider an arbitrary Hilbert space 7 of Lebesgue integrable
functions f : [0,1]° — R, s > 1, with inner product (-,-) and norm || - || =

V/ (-, ). Consider the functional T} which evaluates a function at the point

y, i.e.

Ty(f) = fly) Vfen.

Because we want to approximate the integral f[o 1) f(y)dy by the average

of some function values + Zi\[:—ol (x,), it is reasonable to demand that
|f(xn)] < oo, which is ensured by the condition that the functional T, is
bounded, i.e., that there is an M < oo such that |Ty(f)| < M for all f € J#
with || f|| < 1. Riesz’ representation theorem now implies that there exists a
unique function K(-,y) € J such that Ty(f) = (f, K(-,y)) for all f € 2.
Properties P1 and P2 now imply that K is the reproducing kernel for the
Hilbert space # (and hence S is a reproducing kernel Hilbert space).

An essential property which we used in the previous section is the fact

that
/ K () dy = <f, / K() dy>

for the reproducing kernel K(x,y) = 1 4+ min(1 — z,1 — y), as this repre-
sents only a change of the order of integration. As changing the order of
integration and inner product is essential for our error analysis, we consider
in the following under which conditions this holds for arbitrary reproducing
kernels.

Let now T' be another bounded linear functional on .7 (not necessarily
integration), then, again by the Riesz representation theorem, it follows that
there exists a unique function R € J¢ such that T'(f) = (f, R) for all f € JZ.
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On the other hand we have
R(z) = (R, K(,@)) = (K(,z), R) = T(K(,,z)),

where in the first equality we used the reproducing property of K and in the
third equality we used that R is the representer of the functional T' (note
that R € 7 and for any given « also K(-,x) € J¢). Here the inner product
and the operator T are applied to the first variable of K. Thus, for any
bounded linear functional 7" we have

T(f(zx), K(x,y))x) = T(f) = {f, B) = {{ (@), T(K(y, ©)))z,

where the inner product is always with respect to the variable @ (which is
indicated by writing (-, ), instead of (-,-)) and the operator T is always
applied to the variable y.

Example 2.9 Consider the operator I(f) = f[o 1 f(y)dy. First we have

1= fwdy=[ (f.KCw)dy
[0,1]* [0,1]*
By the above, the representer R of the functional I is given by
R(z) = I(K(,z)) = K(y,z)dy = K(z,y)dy.
[0,1]° [0,1]*

Hence we obtain

/[0 1]5<f,K(.,y)> dy =I(f) = (f.R) = <f, K(-,y) dy> . (29)

[0,1]*
Hence integral and inner product in a reproducing kernel Hilbert space can
always be interchanged as long as the integration functional I is bounded.

We are especially interested in two operators:

e the integration operator I(f) := f[o 1 f(x)dx and
e the QMC rule Qn(f) = %ZQZ@I (z,) using the quadrature points

xo,...,xN—-1 € [0,1]°.
For an arbitrary f with || f|| # 0 we have

% /1AL K]
< (K 9)/IKCy)]L K )

= V(K(,y),K(,y)) = VK(y,y).
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Thus we have [Ty (f)|/||f]] < K (y,y) and that
G / F@)ldy/lIf]| < / VE@ .y dy
s [0,1]5

[0,1]
for all f € s with | f|| # 0.

First note that reproducing kernel Hilbert spaces are defined as Hilbert
spaces of functions in which pointwise evaluation is a continuous linear func-
tional, in other words, in which point evaluation is a bounded linear func-
tional as introduced at the beginning of this subsection. As K(-,y) € J we
have K(y,y) < oo for all y € [0,1]° by the definition of reproducing kernel
Hilbert spaces. Hence |f(y)| < || f|lv/ K (y,y) < oo and the QMC rule is well
defined for integrands which lie in some reproducing kernel Hilbert space.

If a reproducing kernel also satisfies

C: Jous VE(y.y)dy < o0,

then, by the above, the integration operator and the QMC rule are both
bounded linear functionals. In this case (2.9) always holds.

Like the reproducing kernel from the previous section, the other repro-
ducing kernels considered in this book also satisfy condition C.

Definition 2.10 Let .57 be a reproducing kernel Hilbert space for which
I is a bounded linear functional. Then the initial error is defined as

e(A,0) =[]l = sup |I(f)]
fest ifls1

and the worst-case error for a QMC rule based on the quadrature points
P ={xo,...,xn—_1} C[0,1]® is defined as

e(,P)=|I-Qnll= sup [I(f) = Qn(f)]
fest |fll<1

The initial error is introduced as a reference. We always assume that the
initial error is finite, which is equivalent to saying that the integral operator
is bounded.

With this, the same error analysis as in the previous section applies,

I(f) - <f;/[01}SK('7y)dy>7

where we used the fact that the representer for the functional I is given by

namely:
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I(K(> m)) = f[O,l]S K(ma y) dy and

where we used that the representer for the functional @y is given by Qn (K (-, @)) =
N-1
% Zn:O K(wv :Bn)

The initial error is thus given by

e(A,0)=|1I]= sup [I(f)
fe | flI<i
[0,1]*

K(') y) dy>7

= sup
Fex |flI<1

= < K(-,y)dy,
[0,1]¢ [0,1]%

since the largest value of the supremum occurs for H%ll’ where g(x) =

f[o 1) K(x,y)dy € s is the representer of the integration functional. There-
fore we have

(A,0) = |1))? = / / (K(,2), K (y)) dzdy
[0,1]¢ J[0,1]¢

—/ K(z,y)dxdy.
[0,1]25
The integration error is given by

I(f) = Qn(f) = (f,h), (2.10)

where the representer of the integration error is given by

N—-1
1
)= [ Key)dy-— 3 K@),
o V2

We can estimate this error using the Cauchy-Schwarz Inequality with

1(f) = @n (A < IR

From (2.10) it is then clear that the function in the unit ball of .7 which
is hardest to integrate is h/|/h| and hence the worst-case error is given by

(A, P) = ||hl]-

For the square worst-case error e(#,P) = (h, h).
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Proposition 2.11 Let 57 be a reproducing kernel Hilbert space whose
reproducing kernel K satisfies condition C. Then the square initial error is
given by

(A, P) = K(z,y)dzdy
(0,13
and the square worst-case error for QMC integration of functions from
using the quadrature points P = {xo,...,xN_1} is given by
g N-1
62(%,77)2/ K(z,y)dedy — = > K (2, y) dy
2s s
[071} n=0 [0)1]
=
n,m=0

We give a modification of a classical result for the star discrepancy (see
Proposition 3.16). The following result, called the triangle inequality for the
worst-case error, which was first proved in [103], gives a bound for the worst-
case error in 7 of a QMC rule using a point set P which is a superposition
of several smaller point sets.

Lemma 2.12 Let 7 be a reproducing kernel Hilbert space of functions on
[0,1]°. For 1 < i < k let P; be point sets consisting of N; points in [0,1)°
with worst-case error e(J€,P;). Let P be the point set obtained by listing in
some order the terms of P;, 1 <i < k. We set N = Ny + -+ Ny, which is
the number of points of P. Then we have

Le(AH,P).

==

k
e(A,P) <>
=1

Proof We have

k
Ne(#,P)=|N [ K@y dy—Y > K(zy)
[0,1]° i=1 yeP;
k
i=1 [0,1] yeP;
k
i=1

The formulas in this section give us a convenient method for finding the
worst-case and initial errors of arbitrary reproducing kernel Hilbert spaces.
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In the following section we obtain some classical results by making use of
reproducing kernel Hilbert spaces and the results in this section.

2.4 Connections to classical discrepancy theory

We now turn to classical results on numerical integration in arbitrary di-
mension s > 1, which we already considered for dimension s = 1 in Sec-
tion 2.2. Let the quadrature points be given by P = {xg,...,xn_1}, where
Ty = (Tpi,...,Tns).

In the previous section we have already analysed the worst-case error
for arbitrary reproducing kernel Hilbert spaces. An interesting as well as
practical feature of the worst-case error is that we only need to know the
reproducing kernel for the space to obtain formulas for the worst-case and
initial error. To generalise from the one-dimensional case, considered at the
beginning, to arbitrary high dimensions, we consider tensor product spaces
of the one-dimensional spaces considered before. From [4, Section 8] we
know that the reproducing kernel for this space is simply the product of
the one-dimensional reproducing kernels. Hence, for the one-dimensional
reproducing kernel K(z,y) = min(1l — z,1 — y) considered in Section 2.3
(see in particular Remark 2.6), we obtain that the reproducing kernel of the
s-fold tensor product is given by

s
T y):HK(ﬂfzvyl Hmln xj) yj)7
=1

where © = (z1,...,25),y = (y1,...,ys) € [0,1]*.

What functions are in this space? The one-dimensional space contains all
absolutely continuous functions f : [0,1] — R for which f(1) = 0 and the
first derivative is square integrable The inner product in one dimension is

given by (f,g) fo x) dz.
For the tensor product space we then have, for example, if fq,..., fs are
functions in the one-dimensional space, then f(x1,...,zs) = [[7_ fi(z;) is

in the tensor-product space. The inner product of two such functions f and
g(xla cee 7:68) == Hle gz(ﬂfz) is then

T oy TT L i oy de. — [ 2L 100
o) =1lo) =11 [ swidierani= [ Gl@5] @

The tensor product space contains not only those products, and sums of
those products, but also its completion with respect to the norm induced by
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the inner product

B o°f, (0%
o= [ @ gt

Note that, as for the one-dimensional space we have f(1) = 0, it follows
that %Lg(mu, 1) =0forall u C 7 := {1,..., s}, where (x,, 1) is the vector
whose ith component is z; if ¢ € u and 1 otherwise.

We now consider numerical integration in this space. From the previous
section we know that

1(F) = Qu (NI < IR,
where e(s,P) = ||h|| with

N-1
1
h(x) = K(x,y)dy — — K(x,z,)
[0,1]5 N nzo
s N—-1 s
1—2? 1 ~
RICS RS o) R
i=1 n=0 i=1

where we used fol K(z,y;) dy; = fol min(l — x;,1 — y;)dy; = (1 — 2?)/2.
Then

o5 s | V-1
oz @) = =1 <H Ti TN > X[O,w)(mn)> , (2.11)
i=1 n=0

where [0, x) denotes the interval [[;_,[0,z;).

Apart from the factor (—1)%, the right-hand side of (2.11) permits some
geometrical interpretation. We write A([0,x), N,P) := Zg;ol X[0,2)(Tn),
which is the number of points of P = {xq,...,zxy_1} that belong to the
interval [0, x).

Definition 2.13 For a point set P consisting of N points in [0,1)° the
function Ap : [0,1)° — R,
A([0,z),N,P) ++
Ap(a) = 2O NP) I~
=

denotes the s-dimensional discrepancy function of P.

It generalises the one-dimensional discrepancy function given in Defini-
tion 2.1 in Section 2.2. The geometrical interpretation also generalises from
the one-dimensional example, i.e., it measures the difference between the
proportion of points in a cube [0, ) and the volume of this cube.
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(A, P) = [Ih]] = ( /[0

and this is the classical Ly-discrepancy.

Hence

)

1/2
\AP($)!2dﬂ3> :
1

Definition 2.14 For a point set P = {xq,...,xy_1} the Lo-discrepancy
Ly n(P) is given by

1/2
Lon(P) = (/ |A7><w>|2d:c> ,
[0,1]®

and the star discrepancy is given by

Dy (P):= sup |Ap(z)|.
x€(0,1]®
There is a concise formula for the classical Lo-discrepancy due to Warnock [261],
which we derive in the following. We have fol K(z,y)dy = fol min(l—z,1—
y)dy = (1 — 2?)/2 and fol fol K(z,y)dzdy = 1/3. Thus Proposition 2.11
yields the following formula for the Lo-discrepancy.

Proposition 2.15 For any point set P = {xo,...,xn_1} in [0,1]° we
have
1 2N7181*ﬂf2~ 1 N-1 s
n,i .
(L27N(P))2 = ? - N Z H 9 + m Z Hmln(l—xmyi,l—xnvi),
n=0 i=1 m,n=01=1

where T, ; s the ith component of the point x,.

Remark 2.16 Using the formula in Proposition 2.15 the Lo-discrepancy
of a point set consisting of N points in [0,1)* can be computed in O(sN?)
operations. Based on this formula Heinrich [90] introduced an asymptoti-
cally even faster algorithm using O(N (log N)#) operations for fixed s, which
has been further improved to O(N (log N)*~!) operations by Frank & Hein-
rich [80]. It should be remarked that there is no concise formula which allows
a computation of the star discrepancy (apart from the one-dimensional case,
see [128, Chapter 2, Theorem 1.4] or [175, Theorem 2.6]). It was shown by
Gnewuch, Srivastav & Winzen [85] that the computation of star discrepancy
is an NP-hard problem. For a more detailed discussion of this topic we refer
to [85] and the references therein.

The condition on the integrands is rather stringent. As we can see from
the definition of the space, lower dimensional projections are ignored. Hence
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one often considers the reproducing kernel Hilbert space with reproducing
kernel

s

K(z,y) = [[(1 + min(1 — 2,1 —5,)).
=1

Again from Section 2.2 we know that the inner product for the one-dimensional
space is given by (f, g) = 1)+ fo x) dz. Hence the inner prod-
uct in the tensor product space Hs for functlons f(x) =TI, fi(z;) and

g(xz) = Hle gi(x;) is then

S S 1
(f,9)= H(fi,gz'> = H (fi(l)gi(l) +/0 fi(@i)gi(x:) de‘i)
= xi i i\ L i dmu
L; /[0 1 )iell_sl\uf gg zelI:I\ug

In general the inner product for arbitrary functions f, g in this space is given
by

Z /0 1]l 8scu 1)w—($u, 1) dx,.

uCZs u

From (2.10) we know that I(f) — Qn(f) = (f, h), with

h(w)—/ K(wydy——ZK:ca:n
[0,1]¢

1N 1 s
:H 5 ZH +min(1 — z;, 1 — x5,)).

=1 nOzl

Then for u C Z, we have

ol
6wuh($ua \u\ <H Ty — o7 Z XOu,a:u) wnu ) s

(S

where [0y, x,) denotes the interval [].. [0,x;). Note that gl | h(xy,1) =
(=D Ap (2, 1).

The following formula due to Hlawka [110] is called Hlawka’s identity (but
it is also known as Zaremba’s identity [270]), and follows from I(f)—Qn(f) =

(f,h) by substitution.

IS

Proposition 2.17 The QMC integration error for any function f € I
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18 given by

ol f

[0,1]1u] 0xy,

Qn(f)=I(f) =D (=M (@4, 1)Ap(2y, 1) dzy.

uCTZg
Note that we have Ap(xy,1) = Ap(1) = 0 and hence the case u = () can
be excluded in the above sum.
Applying the estimate |Ap(zy, 1)| < supgepo s [Ap(z)| = Dy (P), the
star discrepancy of the point set P, to Hlawka’s identity we obtain the
classical Koksma-Hlawka inequality.

Proposition 2.18 (Koksma-Hlawka inequality) Let P be the quadrature

points employed by the QMC rule Qn and for a function f : [0,1]° — R

for which all partial mized derivatives are continuous on [0,1]° let ||f|l1 =
olul

Zugzs f[o 1l ’Wuf(acu, 1)’ dx,. Then the integration error for functions with

| fll1 < oo can be bounded by

11(f) = Qu (N < [ F DN (P).

Remark 2.19 Koksma [120] proved the inequality for dimension s = 1 and
Hlawka [109] generalised it to arbitrary dimension s > 1. Those inequalities
in their original version consider functions of bounded variation in the sense
of Hardy and Krause (which is, in the one-dimensional case, the same as the
total variation) rather than functions f for which || f]|; < co. The variation
in the sense of Hardy and Krause and the norm considered here, without
the summand |f(1)], coincide whenever all the mixed partial derivatives are
continuous on [0, 1]°, see for example [175, p. 19] or [37, Section 3.1].

Further information concerning the relationship between integration and
discrepancy can be found in the books of Novak & Wozniakowski [198, 200]
and of Triebel [256].

2.5 Numerical integration in weighted spaces

We now generalise the function spaces considered above based on ideas from
Sloan & Wozniakowski [247]. The motivation is at least two-fold. One comes
from the observation that integrands appearing in applications are often
such that they vary more in some coordinates than in others and hence not
all variables are of equal importance for the integration problem. The second
one comes from the bounds on the various discrepancies. Here we introduce
the first motivation, the second motivation is given in Section 3.6. In the
following we use toy examples which highlight the features we are after (but
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which are not directly appearing in practice as it is not obvious there that
the integrand varies more in some coordinates than in others).

An extreme example of a function varying more in one coordinate than
in another would be f : [0,1]> — R given by f(z1,72) = g(z1), with
g : [0,1] — R. This function does not depend on the second variable z
altogether, so although it is defined as a two-dimensional function, it is, as
far as numerical integration is concerned, only a one-dimensional function.
Or, less extreme, we can have a function f(z1,22) = fi(x1) + fa(x2), with
fi,f2 : [0,1] — R. In this case we can apply the same rule to the first

and second coordinate simultaneously, i.e. Qn(f) = Zf::ol (T, Tpn) =

+ SNV i) + ~ SV fala,). Again, as far as numerical integration is
concerned, a one-dimensional rule would be sufficient.

More generally, we can have f(x) = 7 fu(zy), where f, depends only
on z; for which i € u, (this representation is of course not unique) and where
for some u we may have f, = 0, such that I(f) = > 7. I(fu). In general
we might not directly have f, = 0, but something “small” (for the purpose
of numerical integration). In this case our QMC rule does not need to have
“good” projections onto the coordinates in u if the contribution of f, to
the value of the integral f[O,l]S f(x) dz is negligible. That is, we do not need
to pay much attention to obtain good accuracy in approximating I(fy) by
QnN(fu), which allows us to focus more on the important projections.

In order to account for that, we want such properties to be reflected in the
reproducing kernel Hilbert spaces and thus also in the criterion for assessing
the quality of the quadrature points. This leads to weighted reproducing
kernel Hilbert spaces originating from [247].

In the following we introduce a decomposition f(x) = >,z fu(®u),
which has some further useful properties. These properties are then used
to introduce weighted reproducing kernel Hilbert spaces.

Orthogonal decomposition of a reproducing kernel Hilbert space

As an example we first consider the Hilbert space . of absolutely continu-
ous functions f : [0,1] — R whose first derivative is square integrable. The
inner product in 7 is given by

1 1 1
(f.9) = /O f() dy /0 o(y) dy + /0 F'(4)d (v) dy.

From the inner product one can see that constant functions are orthogonal
to functions which integrate to 0, i.e., for f(z) = ¢, with ¢ € R a constant
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and hence ' = 0, and a function g €  with fo y)dy = 0 we always have
(f,9) =0.

On the other hand, every function f € J# can be written as f(x) = c+g(z)
such that g € 7 with fo y)dy = 0. Thus if we set A = {f = c}, the
set of all constant functions in ., and % = {g € J : fo y)dy = 0},
we obtain an orthogonal decomposition of 7: (fi, fa) = 0 for all f1 €94,
fo € 5 and for every f € 2 there are unique functions f; € %”h fg €
such that f = f1+ fo. Indeed, for a given f € 7, we set f1 := fo y)dy and
fo = f—f1, then f; € 74 and f, € 7 with fo foly)dy = fo dy fi=
0, and so fy € 5.

It can be checked that (see Exercise 2.11) the reproducing kernel for J#
is given by
By(jz — yl)

5 ;
where By (t) =t—1/2 and Ba(t) =t —t+1/6 (B is the first and By is the
second Bernoulli polynomial). Hence we have

It is not too hard to see that we can obtain f; = fo y) dy using the inner
product. Indeed, there is a linear functional which maps f to fi, and its

K(z,y) =1+ Bi(z)Bi(y) +

representer is, as we have seen above, fol K(z,y)dy = 1. Thus

1>—/Olf(y)dy/()llder/Olf’(y)Ody—/Olf(y)dy

Therefore we can also obtain fo = f — f1. We have
fy) = fly) = fi={fK(,y)—(f£,1) ={f,K(,y) —1).
Hence we have
. ={f1 € A fr=(f1), for some f € 7}
and
My ={fo € A : foly) = (f,K(,y) — 1) Vy € [0,1], for some f € #°}.

Further, 77, %”2 are reproducmg kernel Hilbert spaces themselves with inner

products (f,g)1 = fo y) dy fo y)dy and (f,g)e = fo )¢ (y) dy and
reproducing kernels Kl(ac y) =1 and Ky (z,y) = Bi(z)Bi(y )—i—BQ(]x—y])/Q.
Obviously we have K = K + K». For a general result see [4].

Remark 2.20 We call the Hilbert space 5 considered in this section
the unanchored Sobolev space. The Hilbert space with kernel K (z,y) =1+
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min(1l — x,1 — y) is called anchored Sobolev space (with anchor 1), as the

inner product (f,g) = f(1)g(1) + fol f'(y)d' (y)dy is anchored at the point
1.

In the next section we consider now tensor products of the unanchored
Sobolev space and obtain orthogonal decompositions in this case.

Unanchored Sobolev spaces over [0,1]°

Let again K(x,y) =1+ Bi(z)B1(y) + Ba(|z — y|)/2 and let

K(z,y) = H K(xi,y:)
i=1

be the reproducing kernel of the s-fold tensor product of the one-dimensional
unanchored Sobolev space. We call the corresponding reproducing kernel
Hilbert space J#; with domain [0, 1]* again unanchored Sobolev space. The
inner product in this space is given by

(f,9) (2.12)
ol f / Blulg
- x)dxr,\y x)dxr\, | do,.
u;s /[Oyll“' </[0v115“ awu( oz ) ( [0,1]s~ 1! awu( ) dez,,

Remark 2.21 Note that f01 By(y)dy = fol Bs(y) dy = 0 (see Exercise 2.18).
Since Ba(y) = Ba(1 — y) we have [} Bo(lz — y)dy = [ Ba(x — y)dy +

f; By(1—(y—x))dy = fol Bs(z)dz = 0. Altogether we obtain that fol K(z,y)dy =
1.

Recall that for f € 5%, we want to have a decomposition of the form

fl@) =" ful®@y),

uCZs

where f,, only depends on the variables z; for ¢ € u. From the previous section
we know that we can decompose a one-variable function into a constant part
and a variable part. We can now apply this same procedure to each of the
s variables of f to decompose it into functions f,, which depend only on
the variables x; for which ¢ € u. For ¢ ¢ u the function f is constant with
respect to x;, i.e. does not depend on z;.

For u C 7, let

Ku(@u,y) = [ [(Bi(2)Bi(yi) + Ba(lzi — vil) /2),

Eu
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where Ky = 1. We write Ky(xy,y,) and Ky(x,y) interchangeably. Then

K(iB, y) = ZuQIS Ku(muy yu)'
Let now

i ={fu€ A+ fuly) = (f, Ku(-,y)) Vy € [0,1]" for some f € H}.

Then for 7 € u we have

/Olfu(y)dyi:/()l(f,K( dyz_< /K Ly dyl>=<f,0>:0,

as fo (z,y)dy = 1 according to Remark 2.21. Further, by definition, f,

does not depend on variables y; for ¢ ¢ u and thus g{/‘i‘ = 0 for 7 ¢ u. For
fu € FE, we often write fy(y,) instead of fy(y), to emphasise that f, only
depends on y; for i € u.

On the other hand, if f € 7 with fo x)dx; =0 for i € u and df =
for i ¢ u and g € S, then

(f,9)
olv! olvl
- Z/ / f(w) dzz,\, / 9 (x) daz,, | da,
o2 S \Jpagster 9% 0,151l Oy
ol f alulg
- dzz,\ daz,, | ey
/[‘071}11 </[VO 1]5= lul axu( ) wIS\> </[0,1}S—Iu &I:u (x) a;Is\ r
= <f’ g>u7

lol [v]
as we have f[o )= lol %mn (z)dzz\0 = gmn f[o,l]é'*\ul f(x)dzz,\, and therefore

fo x)dx; = 0 for i € u and af = 0 for i ¢ u imply that we obtain

lol

f[o )s=Iv] %m (x) dxz,\, = 0 for v 7é u. (That the order of integration and
differentiation can be changed can be seen in the following way: As the order
can be changed for the reproducing kernel it follows that (-,-)" given by

olul
Z /o A]lul Oy </0 o= lul f(z) deIS\u>

uCZs
ol / (z)d 4
X x)dx Ty,
Ozy \ Jjo,1)5- vl g Lo\u !

is also an inner product in ;. From [4] we know that the inner product is
unique and hence (f,g) = (f,g)’ for all f,g € ;. Therefore we can change
the order of integration and differentiation.)
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For such a function f we then have

f(y) = <va(7y)> = <fv Ku('ayu» = <fa Ku('7yu)>u-
Thus

1
%ﬂz{fé%”:/ f(x)dx; =0 for ¢ € u and gxf :Oforiqéu}
0 i

and for f, g € J%, we have the inner product

(f,9)u (2.13)

ol f / olulg
= x)dz x)dx da...
/[0,1]u| (/[0’1]su 8$u ( ) Is\u> ( 0,15l a$u ( ) Ts\u u

As for f € J#, and g € 7, we have (f,9) = (f,9)u, Ku(-,y,) € 4, and
flyy) = (f, Ku(-,y,))u it follows that K, is the reproducing kernel for J#,
with inner product (-, -)y.

Let f € 7 and let again

fu(y) = <f7 Ku('v y)>
Then f, € 4, and we have

Z fu(yu) - Z <fa Ku('7yu)> - <.f7 Z Ku('7yu)> - <f7K<7y)> - f(y>

uCZy uCZs uCZg

Further, for f,g € 7 we also have

(fi9) = Z(fag>u: Z(fuygu>u-

U.QI s ugIs

The first equality follows from (2.12) and (2.13) and the second equality
follows as, for v # u and f, € J%4,, we have (f,,g)y = 0 for all g € J4,. In
particular we have

1717 = D Iulld (2.14)

uCZs

ANOVA decomposition

The orthogonal decomposition of J#; considered in the previous section has
some other interesting properties, as shown in [54, Section 6]. The func-
tions f, can also be found in an inductive way by using the properties
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fol fu(z)dz; =0 for i € u and fol fu(z)dz; = fu(z) for i ¢ u (fy does not
depend on x; for ¢ ¢ u). Thus

| r@den =3 [ e der =3 fula)
[0,1]sIul oC T, [0,1]s—ul e

Starting with u = () we can obtain the functions f, inductively: f =
f[O 1s f(x)dx and if f, is known for all v C u we obtain

P = [ Stz 3 fba)

Example 2.22 Let f(z1,22) = "' — x9 + 1 sin(7wzy). Then

fo= [ [ 1@ aedn = e-1-1/24 - (os0)-costm)) = o324 1.

Now we can calculate fgy and f{s), we have

! = 2xq 1
f{1}(331>:/ flz1,z2)dag — fy =€ 1+7—e+1——
0

™

and

! I 11
f{z}($2):/ flar,z2)day = fy = —22 + gsin(mzz) + 5 — —.
0

77
Finally we can calculate f{; 9}, we have

faoy (@1, 22) = fz1,22) — fruy(z1) — floy(z2) — fo

1-2
= (21 — 1/2) sin(nzg) + — L.
T

The variance Var of a function f is given by Var(f) = f[O,l]S f(x)dx —
2
< f[o s fx) daz) . Using the decomposition of f we obtain

2
( ) ‘/[0,1]3 ( ) < [0,1)° ( ) )

- Z Ju(zw) fo(xy) daz.

P#u,0C T [0,1]°

Using the fact that fol fu(zy) dz; = 0 for i € uwe obtain f[o s fu(@w) fol@y) d =
0 for u # v. Further f[O,l]S fulzxy) fulzy) dae = f[o,l]\ul f2(zy) dz, = Var(fy)
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since f[o 1 fu(zy) dxy = 0. Therefore and since Var(fy) = 0 we obtain
Var(f) = Z Var(fy). (2.15)
uCZg

ANOVA decomposition stands for ANalysis Of VAriance. The decompo-
sition of f as used above can be used to analyse the contributions of lower
dimensional projections fy, to the total variance via the formula Var(f) =

Zugzs Var(fu).

Example 2.23 We calculate the variances of f, f1y, fiay, f{1,2) from Ex-
ample 2.22. We have

—4—8elmr+ 247 —27%e2 — 572 + 8eln?

Var(f) = = ,
Var(f1)) :12 elm? +36m — 97r627r—2 37m2e? +2—12 6171'7
Var(f(2}) :%77257#,

Vaf(f{1,2} :%—;;2,

and therefore Var(f) = Var(f1y) + Var(fyay) + Var(fqi,23)-

Weighted reproducing kernel Hilbert spaces

Equation (2.14) now holds the key to weighted reproducing kernel Hilbert
spaces. Recall that for the worst-case error we consider all functions in the
unit ball of the space, i.e. all f € 7 with || f|| < 1. Using (2.14) this amounts
to Yucr, Ifulld < 1, where f(x) = 3,7, ful@w):

The worst-case error is used as a criterion for choosing the quadrature
points. By a small change to the norm we can change the shape of the unit
ball considered in the worst-case error, and thereby also the criterion used
for measuring the quality of quadrature points.

It has been observed that many integrands from applications seem to
vary more in lower dimensional projections than higher dimensional ones.
We model this behaviour now in the following way: We can write f(x) =
ZuCIS fu(xy). Some of the f, are “small”, which we can now make more
precise by saying that | fu|. is small, compared with the norm of other
projections. In order to change the unit ball such that only functions for
which || fyl|y is small are contained in it, we multiply || fy||x by a real number
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Y Let v := {7y, : u C Z;}. Then we define a new “weighted” norm by

IF15 = > Al

uCZy

Then the condition || f||4 < 1 in the definition of the worst-case error (Def-
inition 2.10) implies that if v, is small, then also || fy|| has to be small in
order for f to satisfy || f||4 < 1. The corresponding inner product then has
the form

vy = Z 71?1<f7 g>u- (2'16)

uCZs

We now work out how this modification affects the theory which we es-
tablished until now. The Hilbert space %, with inner product (2.16) is a
reproducing kernel Hilbert space with reproducing kernel

Z Yl u(2y, yu

uCZs

Indeed we have K, (-,y) € 7, and

<f7 K’Y('??J))’Y - Z 71:1<f7 ’YuKu(Wyu»u - Z <f7 Ku('ayu>>u = f(y)

uCTZs uCZs

Using Proposition 2.11 we obtain the weighted square worst-case error

* (A5, P) = Z > K@, )

m,n=0 04£uCZs

N—-1
=2 2 Y WIIB @) B @) + Ballmi — 0i)/2)

m,n=0 0AuCTZs icu

N—-1
3 ,Yu% S TIB1(@mi)Bi(wni) + Bal|mi — nil) /2).

P#AuCZs m,n=0icu

The worst-case error is a measure for the quality of the quadrature points.
Observe that Zm 01 Licu(B1(Zmi)B1(2n,i) + Ba(|2m,i — pn])/2) is the
worst-case error for the reproducing kernel Hilbert space 7%, and hence
measures the quality of the projection of the quadrature points onto the
coordinates in u.

Recall that if for some () # u C Z, the value of v, is small, than || fy||, also
has to be small On the other hand, if v, is small (compared to 7, for v #

) then ’)/uNQ Zm n=0 zeu(Bl (.CUm ’L)Bl (Jf'n,i) + B2(|xm7i — :Enﬂ‘)/Q) is also
small, regardless of whether N2 Zmn —o [ Licu(B1(2m,i) B1(7n,:) + Ba(|Zm,i —
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Zn,il)/2) is large or small. This makes sense, since || fy|| small means we do
not need to focus on approximating the integral f[o,l]\ul fu(zy) dey, and so
the quality of the approximation does not matter much.

In the next chapter we look more closely at geometrical properties of the
discrepancy.

2.1

2.2

2.3

24

2.5

2.6

2.7

Exercises

Calculate the star discrepancy and the Lo-discrepancy of the point sets

0731—{]\, OSHSN—l},

o Py={2tl . 0<n<N-1},

.733—{2]\, OSHSN—I}.

Let P = {p(z) =ap+ a1z +---+aa" : ap,...,a, € R} be the space of
all polynomials of degree at most . We define an inner product on this
space by: for p(x) = ag+a1x+---+a,2" and g(x) = bg+brx+---+b.a”
let (p,q) = apbp + a1by + - - - + a,b,. What is the reproducing kernel for
this space? Prove properties P1 - P5 for this kernel.

Let P = {f(z) = ap+a1e*™ +- - - +a,e> " : qg,ay,...,a, € C} be the
space of all trigonometric polynomials of degree at most . We define an
inner product on this space by: for f(z) = ag + a1e*™* + - - - 4 @,e*™iT
and g(z) = bg+b1e?™ - +b,e2™7 let (f, g) = agbg+a1by+- - -+a,b,.
What is the reproducing kernel for this space? Prove properties P1 -
P5 for this kernel.

The one-dimensional Korobov space o for real a > 1 consists of
all one-periodic Li-functions f : [0,1] — C with absolute convergent
Fourier series representation such that |f(h)| = O(max(1,|h|*)) for
integers h. The reproducing kernel for the Korobov space is given by
K(z,y) = 14 heznto |h|~®e>™M(#=y) What is the inner product for
this space?

Verify Remark 2.6, by showing that K (z,y) := min(1—=z, 1 —y) satisfies
P1-P5 for a suitable inner product

Verify that Ap(y) = (fo dz — ZN 1K<:L'n, )), where
Ap is the dlscrepancy function and K(m, y) =1+ min(1l —z,1 —y).
Let %, be the Walsh space as defined in Example 2.8. Show that the
worst-case error for a QMC rule using a point set P = {zg,...,zn_1}
is given by

6 Wa17 E T'wal,b, a

N—1 2

i Z pwalg, (-rn)

n=0
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2.8
2.9

2.10

2.11

2.12

2.13

QMC integration, discrepancy and reproducing kernel Hilbert spaces

Hint: See Appendix A for more information on Walsh functions; see
[50, Section 2 and 4] for more information on the reproducing kernel
Hilbert space generated by K and numerical integration therein.
Evaluate the integral f[o,1]s |Ap(x)|? dz to obtain Proposition 2.15.
For s = 2 prove Proposition 2.17 directly by evaluating the integrals
on the right hand side of the formula.

Study the proof of the classical Koksma-Hlawka inequality in [128, p.
143-153).

Check that for K (z,y) = 14 Bi(x)B1(y) + Ba2(|x —y|)/2, with By (t) =
t —1/2 and Ba(t) = t? —t + 1/6 and an inner product (f,g) =

Jo F@)dy Jg 9(y)dy + [y f'(9)g(y) dy we always have (f, K(-y)) =
f(y) and thus conclude that K is the reproducing kernel of the Hilbert
space of absolutely continuous functions with square integrable first
derivative.

Obtain a Warnock type formula, Hlawka identity and Koksma-Hlawka
inequality for the reproducing kernel

S

K(z,y) =] [(1 + Bi(z:) Bi(yi) + Ballzi — wil)/2),
=1

where By (t) = t—1/2 and By(t) = t>—t+1/6 (this is the kernel consid-
ered in Section 2.5). The inner product in the associated reproducing
kernel Hilbert space is given by

B ol r
<fv g> - Z /[()J]Iu </[071]s_u| amu (m) dmIs\u>

uCZs
oy
- </£JFw3mu(x)deAu da,,.

(Note that the discrepancy function differs from the discrepancy func-

tion in Definition 2.13 in this case.) See [249] for more information on
this space.

The s-dimensional Korobov space o sa, s € N and a > 1, is the
reproducing kernel Hilbert space of complex-valued functions of period
one which is defined by

1 rihe(m—
Ka(m’y) — Z me2 h-(x y)’
hezs @
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where 74 (h) = [[;_; (max(1, |h;]))*. The inner-product is given by

~ PR

(f,9)a = ra(h)f(R)G(R).

hezs

Show that the worst-case integration error for a QMC rule in Jf; s o

using P = {xg,...,xN_1} is given by
1 L V-l 2
2 _ 2rih-axy,
CHonseP) = D, sl e
heZs\{0} n=0
Let E‘é,N = f[g,l]Ns 62(%“787&, {zg,...,xny_1})dxo - dey_1. Show

that for o > 1 we have
gi,N < QZC(a)S/N’

where ((a) = >°72, j~“. Hint: See [248, Theorem 1] or [100].

Let s > 1 and b > 2 be integers, @ > 1 a real and v = (7;)i>1 be a
sequence of nonnegative reals. The s-dimensional weighted version of
the Walsh space from Example 2.8 is the reproducing kernel Hilbert
space Hal sba~ Of b-adic Walsh series f(x) = ZkeNg f(k) pwalg ()
with reproducing kernel defined by

Kwal,s,b,a,‘y(ma y) = Z 7avval,b,oz(ka 7) bvvalk(m S/ y),
kENS

where for k = (ki1,...,ks) we put ryaipa(k,y) = [[1_] rwalb.a(ki, Vi)
and for k € Ny and v > 0 we write
Gy [ if k=0,
Twalba\%,Y) = b7 if k= kg 4+ K1b+ - - + Keb® and Kk, # 0.

The inner-product is given by

o~ —

<f7g> = Z Twal,b,a(k77)_1 (k)g( )

keNg

Show that the worst-case integration error for a QMC rule in 51 5 p,a,~
using P = {xo,...,xN_1} is given by

2

62 (%al,s,b,a,—yv P) = Z Twal,b,a(ky '7)
keNg\{0}

1 N-1
N Z bwalk(a:n)
n=0

Hint: Compare with Exercise 2.7. See [50, Section 2 and 4].
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2.16 Let fé?z,cx,'y,N = f[?},l]Ns 62(%21173,@&,77 {3307 v 7:DN—1}) dzg--- dey_1.
Show that for o > 1 we have

B < O T,

where () = 3202, bk = % and where a(k) = a whenever
k= ko + K1b+ -+ - + Kkob® with k, # 0. Hint: See [50, Theorem 1].

2.17 Obtain an orthogonal decomposition of the reproducing kernel Hilbert
space with reproducing kernel K(z,y) = 1+ min(1 — z,1 — y). What
are the spaces J7, 7%, K1, K> and respective inner products in this
case?

2.18 Show that fol By(xz)dz =0 and fol By(z)dxz = 0.

2.19 Let f(z1,m2) = e"17%2 — g9cos(m(z1 + 23)). Calculate the ANOVA
decomposition and the variances of f,, and check that (2.15) holds.

2.20 Using similar arguments as in Section 2.4 and 2.5, obtain a weighted
version of the Lo-discrepancy, Warnock’s formula, Hlawka’s identity
and the Koksma-Hlawka inequality for the reproducing kernel Hilbert
space with reproducing kernel K (x,y) = [[7_; (1 + min(1 — z;, 1 —y;)).
Hint: See [247].

2.21 Calculate the worst-case error for numerical integration in the repro-
ducing kernel Hilbert space .4, from Section 2.5.
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Geometric discrepancy

In this chapter we introduce the theory of uniform distribution modulo one,
for which the main motivation is the application of equidistributed points
for numerical integration with QMC algorithms as we have seen in Chap-
ter 2. The quality of the equidistribution of a point set is measured by the
so-called discrepancy. We introduce different notions of discrepancy includ-
ing the rather new weighted discrepancies now from the perspective of their
geometrical properties. Because of their geometric interpretation these dis-
crepancies are also often called geometric discrepancies. We provide some
classical as well as new results for geometric discrepancies. A standard ref-
erence for the theory of uniform distribution modulo one is the book of
Kuipers & Niederreiter [128] to which we refer for a further, more detailed
discussion (mainly from a number-theoretic view point). See also the book
of Drmota & Tichy [61].

3.1 Uniform distribution modulo one

As discussed in Chapter 2 we are concerned with approximating the inte-
gral of a function f over the s-dimensional unit cube [0, 1]* with a QMC
rule, which gives the average of function values f(x,), where the points
xg,...,xN_1 are deterministically chosen sample points from the unit cube,
see (2.1).

For Riemann integrable functions f we would, of course, demand that for
growing N the error of this approximation goes to zero, i.e., for a sequence
(Tn)n>0 in [0,1)% we would like to have

lim — > f(xn) :/ (@) da. (3.1)

Hence the question arises, how the sequence of sample points has to be cho-
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sen such that this is indeed the case? Let us, for a moment, assume that the
function f to be integrated comes from the class of finite linear combinations
of characteristic functions of axes-parallel rectangles. This is probably one
of the simplest sub-class of Riemann-integrable functions. Then our ques-
tion leads directly to a branch of Number Theory, namely to the Theory of
Uniform Distribution Modulo One, which goes back to a fundamental work
of Weyl [263] from the year 1916.

Intuitively, one may consider a sequence of points in the unit cube as uni-
formly distributed, if each set E from some suitable subclass of measurable
sets contains (asymptotically) the right portion of points, namely NAs(FE),
where A is the s-dimensional Lebesgue measure (see Figure 3.1). This leads
to the following exact definition of uniform distribution modulo one.

Figure 3.1 The number of points in E should be approximately NAs(E).

For a sequence S = (x,,),>0 in the s-dimensional unit cube [0,1)* and a
subset E of [0, 1]° let A(E, N,S) be the number of indices n, 0 <n < N—1,
for which the point x,, belongs to E. That is, A(E, N,S) = Zg:_ol XE(Ty).

Definition 3.1 A sequence § = (x,)n>0 in the s-dimensional unit cube
[0,1)% is said to be uniformly distributed modulo one, if for every interval
[a,b) C [0, 1]* we have

 A(fa,b). N, S)
Jim 2O (fa, b)), (3:2)

or in other words, if (3.1) holds for the characteristic function y(q4p) of any
sub-interval [a, b) C [0, 1]°.

We remark that the choice of half-open intervals in the above definition
and in the following is of minor importance.

Remark 3.2 There is also the stronger concept of well-distribution modulo
one. For a sequence S = (&, )n>0 in the s-dimensional unit cube [0,1)® and
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a subset E of [0,1]°, let A(E,k, N,S) be the number of indices n, k < n <
k+ N —1, for which the point x, belongs to E. Then the sequence § is said
to be well-distributed modulo one, if for every sub-interval [a,b) C [0, 1]° we
have

. A([a’ b)7k7 N7S)
R N

= As([a, b)) (3.3)
uniformly in £ =0,1,2,....

It is obvious from the definition that a sequence (), >0 in the s-dimensional
unit cube [0, 1)® is uniformly distributed modulo one, if (3.1) holds for every
finite linear combination of characteristic functions of axes-parallel rectan-
gles f:[0,1]°* — R.

Now it is well known from analysis that any Riemann integrable func-
tion on [0, 1]° can be approximated arbitrary closely in L;([0,1]%) by finite
linear combinations of characteristic functions of axes-parallel rectangles.
From this fact we obtain the following equivalence (see [128, Chapter 1,
Corollary 1.1] for a more detailed proof).

Theorem 3.3 A sequence S = (xy,)n>0 i [0,1)° is uniformly distributed
modulo one, if and only if for every Riemann integrable function f : [0,1]* —
R we have

i ! = x)dx
i, 7 3 f(en) = /[0,1}sf( ) de. (3.4)

Note that there is no sequence such that (3.4) holds for all Lebesgue inte-
grable functions. For a given sequence S with support S the characteristic
function of [0,1]° \ S is a counterexample. Furthermore, it was shown by
de Bruijn & Post [31] that for every function f € L1([0,1]), which is not
Riemann integrable, there exists a sequence which is uniformly distributed
modulo one but for which (3.4) does not hold.

One can also show the following theorem whose proof is left as an exercise
(see Exercise 3.4).

Theorem 3.4 A sequence (x,)n>0 in the s-dimensional unit cube [0,1)*
is uniformly distributed modulo one, if and only if (3.4) holds for every
continuous, complez-valued function f :[0,1]* — C with period one.

For example, let f : [0,1]° — C be given by f(x) = *ih=

h € Z* is some s-dimensional integer vector. If a sequence (x,)p>0 in the
s-dimensional unit cube is uniformly distributed modulo one, then by The-

, where
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orem 3.4 we have

1 N—-1
]\}lm N § eQﬂ'lh-mn — / e‘27r1h-a: d$,
e n=0 [0,1]3

where the last integral is 0 if h € Z*\ {0} and 1 if h = 0. Astonishingly, the
opposite is true as well: That is, the relation limy_, % 27];[:_01 e?rihan —
for all h € Z*\ {0} is also a sufficient condition for the sequence (&, )n>0 to
be uniformly distributed modulo one (for b = 0 we trivially have equality for
any sequence). This fact is the famous Weyl criterion for uniform distribution
modulo one.

Let us make this assertion a bit more plausible. We consider the one-
dimensional case and we identify the unit interval [0,1) equipped with ad-
dition modulo one, i.e., R/Z, with the one-dimensional torus (T,-), where
T = {z € C : |z| = 1}, via the group isomorphism z — e*™%. Let (z,,)n>0
be a sequence in [0,1). Then + Zsz;Ol e?™in i5 nothing else than the cen-
troid of the N points e*™®0__ e?™«N-1 ¢ T If the centroid is now close to
the origin then the points are evenly balanced on the torus T whereas this
is not the case when the points are badly balanced (see Figure 3.2). How-
ever, this need not mean that the sequence (z,,)n>0 is uniformly distributed
modulo one. For example consider the case where z9;, = 0 and z9r11 = 1/2
for all £k € Ng. Then (zy,)n,>0 is obviously not uniformly distributed but
the centroid of the points ™0 . e?™%N-1 tends to the origin when N
grows to infinity. Thus for uniform distribution one needs more than just
the property that the centroid of the points, transformed onto the torus, is
close to the origin. The Weyl criterion states that it is enough to demand
this property for the sequence ({hz,})n>0 for all integers h # 0.

Theorem 3.5 (Weyl criterion) A sequence S = (xy,)n>0 in the s-dimensional
unit cube [0,1)% is uniformly distributed modulo one, if and only if

1 N-1
li - 2rih-x, _ .
Jim ;0 e 0 (3.5)

holds for all vectors h € 7\ {0}.

Proof The Weyl criterion follows from the criterion in Theorem 3.4 by using
the fact that the trigonometric polynomials of the form Z‘ hle<R ape’ih®
with complex coefficients ap and arbitrarily large R € Ny, are dense with
respect to the uniform norm in the space of all continuous, complex-valued
functions on [0, 1]°. A detailed proof for the case s = 1 can be found in the

book of Kuipers & Niederreiter [128, p. 7,8, Theorem 2.1]. See also [61]. O
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Figure 3.2 Ten points on the unit-circle. The points on the left are perfectly
balanced and hence the centroid is exactly the origin. For the points on the
right the centroid is far away from the origin.

Example 3.6 Applying the Weyl criterion to the sequence ({na}),>o,
where @ = (a,...,a5) € R® and where {-} denotes the fractional part
applied component wise to a vector, we find that this sequence is uniformly
distributed modulo one, if and only if the numbers 1, aq, ..., as are linearly
independent over Q. Namely, if we assume that this holds true, then for each
nonzero integer vector h we have h -« & Z. Therefore, using the periodicity
of the fractional part and the formula for a geometric sum, we have

N-—1 N-—1
§ :627r1h-a:n § :eQﬂlnh-a
n=0 n=0

and hence by the Weyl criterion it follows that the sequence ({na}),>o is
uniformly distributed modulo one.

If, on the other hand, h* - @ € Z for some integer vector h* # 0, then
% ZnNgol erinh’a — % Zi:[;[)l 1 =1, which implies that the Weyl criterion
is not satisfied and the sequence ({na}),>o is not uniformly distributed.

eQﬂiNh-a -1 ‘ 9

eQﬂ*ih-a -1 < ’627Tih-a _ 1|

As Walsh functions play a very important role in this book, we present
also the Weyl criterion for the Walsh function system in more detail. See
Appendix A for the definition and basic properties of Walsh functions.

Before we state the Weyl criterion for the Walsh function system, let
us consider an example in dimension s = 1 and base b = 2. For k € Ny
with 2-adic expansion k = kg + k12 + - - - + K,-2" the 2-adic Walsh function
is given by gwalg(z) = (—1)5tFot+&r+1rr for € [0,1) with canonical 2-
adic expansion z = €271 4+ 272 4+ ... This is of course a step function
defined on the unit interval [0, 1); see Figure 3.3 for some examples. Hence,
if a sequence (zp)p>0 in [0,1) is uniformly distributed modulo one, then
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we have imy_.o % 27]:[;01 owaly(z,) = fol owaly(z) dz. This can be seen

in the following way: if £ = 0 then swalg(x) = 1 and fol owalg(z)dz =1
and the equality holds trivially. If k£ > 0, then the last integral is zero, the
Walsh function is 1 on a union of intervals with combined length 1/2 and —1
on a union of intervals with combined length 1/2. As (x,,),>0 is uniformly
distributed it follows that the equality also holds for £ > 0.

/ A

1 1

0 1 0 1
~1 ~1

/ A

1 - .

0 1 0 1
~1 I I O O O

Figure 3.3 The 2-adic Walsh functions owaly(x), awala(x), owals(x) and
2W&14 ((E)

On the other hand, assume that for a given sequence (z,)p>0 in [0,1)
we have limy_.oo + Zf:[;ol owaly(z,) =0 = fol owaly (z) dz. The first Walsh
function owal;(z) is constant with value 1 on the interval [0,1/2) and con-
stant with value —1 on the interval [1/2,1); see Figure 3.3. Hence, asymp-
totically, in each of these two intervals we must have the same propor-
tion of points of the sequence, namely 1/2. Assume further that we also
have im0 2711\/;01 awalg(z,) = 0 for k € {2,3}. The Walsh functions
owalg(z) and gwals(z) are both constant on the intervals J; = [0,1/4),
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Jy = [1/4,1/2), J3 = [1/2,3/4) and Jy = [3/4,1) of length 1/4; see again
Figure 3.3. Let j; be the proportion of points of the sequence (x,),>0 that
belong to the interval J;, [ € {1,2,3,4}. Then we have from the above
that j1 + j2 = 1/2 and js3 4+ j4 = 1/2, and from the asymptotic relation
for the third and fourth Walsh function we obtain (see Figure 3.3) that
Jj1—Jo+js—ja = 0 and 51 — jo — j3 + ja = 0. From these four equa-
tions we easily find that j; = jo = j3 = j4 = 1/4. Hence each interval Jj,
I € {1,2,3,4}, contains in the limit the same proportion of points of the
sequence (zp)n>0-

If limNHoo%ZnNz_ol owalg(xz,) = 0 for all 0 < k < 27, then, by an
extension of the above argument, one can conjecture (and we see below
that this does indeed hold) that each interval of the form [2%, “52.1), with
a € {0,...,2" — 1}, of length 27", contains in the limit the same propor-

tion of points of the sequence, namely 27", and hence (3.2) holds for all of
these intervals. As one can approximate any subinterval [z,y) C [0,1) arbi-
trary closely by intervals of the form [2%, “2—‘*;1), it follows that (3.2) holds
for any subinterval [x,y) C [0,1) which means that the sequence (z,)n>0 is
uniformly distributed modulo one.

Now let us state the general result together with a detailed proof.

Theorem 3.7 (Weyl criterion for the Walsh function system) Let b > 2 be
an integer. A sequence S = (xy)n>0 in the s-dimensional unit cube [0,1)% is
uniformly distributed modulo one, if and only if

1 N-1
Jim ;::O pwalg(x,) =0 (3.6)

holds for all vectors k € N \ {0}.

From the point of view of Definition 3.1, the Weyl criterion for the Walsh
function system seems to be more natural than the classical Weyl criterion
using trigonometric functions, since by using the Walsh function system one
measures directly the proportion of points of a sequence in certain intervals.
However, if we identify the unit-interval [0, 1) with the torus, and therefore
define uniform distribution on the torus, then the classical Weyl criterion
using trigonometric functions becomes more natural.

For the proof of the result we need some preparation. The following fun-
damental definition is used throughout the book.

Definition 3.8 Let b > 2 be an integer. An s-dimensional, b-adic elemen-
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tary interval is an interval of the form
u a; a; +1
I |5 =5
i=1
with integers 0 < a; < b% and d; > 0 for all 1 <i < s.If dy,...,d, are such

that di + --- + ds = k, then we say that the elementary interval is of order
k.

Lemma 3.9 For b > 2 consider an s-dimensional, b-adic elementary in-

terval J = []7_, [;Tii, ag;?) with integers 0 < a; < b% and d; € Ny for all
1 < i < s. Let further k = (k1,...,ks) € N3\ {0} be such that k; > b%
for at least one index 1 < i < s. Then for the kth Walsh coefficient of the

characteristic function of J we have
xJ(k) =0.

Proof First we show the one-dimensional case. Let k > ¢ and 0 < a < b?
be integers with b-adic expansions k = kg + k1b+ - - -+ kgb? with kg # 0 and
g>d,and a = ag+ a;b+ --- + ag_1b%L. For z € [fd, “gr—dl), we have that
the b-adic expansion of z is of the form

Qg1 Qg2 Qg &j
T=—r+ +'”+b_d+,z o
j>d+1

where §; € {0,...,b— 1} are arbitrary b-adic digits for j > d 4 1. Therefore
we obtain

a+1)/b? a+1)/b?
/( )/ KoOg—1+FKg_100 /( )/ Ka€ar1t+rg€g+1 dax

pwaly(z) dr = w, w
a/bd a/bd
g b—1
_ Foa—1ttha—100 HZWHJC
=Wy ngrl
j=d¢=0

as for k # 0 we have ZC Owb = (W’ —1)/(wp — 1) = 0.
Now let k = (k1,...,ks) € N with k; > b% for at least one index 1 < i <
s. Then we obtain from the above that for J = [[;_; [ﬂ ai“) we have

pdi? pdi

X7 (k) :/[ ] xJ(x) bwalk(w)dl‘:/ pwalg(x) do
0,1]¢ J

s

(ai+1)/b%
= H/ pwaly, (z) dz = 0. 0
ai/bdi
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Proof of Theorem 3.7 Assume first that the sequence S = (x,,)p>0 is uni-
formly distributed modulo one. As the Walsh function ,walp, with k =
(k1,...,ks) € N§, 0 <k; <b" for all 1 <i <s, is constant on each interval

of the form
a; G +1
J = | |

with integers 0 < a; < 0" for all 1 <1 < s, we can write pwalg as a step

function, i.e.,

pwalg(x) = > ex (@
leM

with a finite set M, ¢; € R and pairwise disjoint intervals J; C [0,1]*. Then
we obtain

lim — Z pywalg(x;,) ch hm — Z X, (n) Z ars(Jr),

N—oo N
leM leM

as the sequence (&, )n>0 is uniformly distributed modulo one. Since for k # 0
we have

0= / bwalk(w) de = Z cl)\s(Jl)
[0,1]°

leM

we find that (3.6) holds for all k # 0.
Now we show the other direction. Assume that (3.6) holds for all k # 0.
Let first J be a b-adic elementary interval with dy = --- =ds =7 € Ny, i.e.,

of the form
s a; a; +1
J_iHl[y, o ) (3.7)

with integers 0 < a; < b" for all 1 < ¢ < s. Then it follows from Lemma 3.9
that the characteristic function of J has a finite Walsh series representation,
i.e.,

xa@) = > Rs(k)pwalg(),

keENG
[k]oo <bT
where for k = (ki,...,ks) we write |k|o := max;<j<s|k;|. Hence
. A(J,N,S) .
i A5 3 i) = 0 =00
[k]oo <bT

by our assumption. Let now [z,y) C [0, 1) be an arbitrary interval with z =
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(x1,...,zs) and y = (y1,...,ys). For r € Ny choose u;,v; € {0,...,0" — 1}
such that u; < x;b" < u; +1 and v; < ;0" <v; +1 for 1 <i < s. Then we

have
S

u;+1 v; u; v +1
J1 = —_—— ) C =:J
) i) o
and A(J1,N,S) < A([z,y),N,S) < A(J2,N,S). As both, J; and Jy are
disjoint, finite unions of b-adic elementary intervals of the form (3.7), we
obtain from the above considerations that

S S
v; —u; — 1 . A(xz,y),N,S) v; —u; + 1
[t < o AEGNS) )
i=1 i=1
But, as for all 1 <1 < s we have lim,_, o ”i_gﬁ"_l = lim, %ﬁ'l = y;—x;,
it follows that
A([z,y),N,S)
lim —~—=———=
Jim SV ) (),
and hence the sequence S is uniformly distributed modulo one. O

Now we can easily give a further example for a uniformly distributed
sequence.

Definition 3.10 Let b > 2 be an integer. For any n € Ny with b-adic
expansion n = ng + n1b + ngb? + - - (this expansion is obviously finite) the
(b-adic) radical inverse function ¢, : Ng — [0,1) is defined as

ng

gob(n) = ?—l- b2 + -

Then the b-adic van der Corput sequence is defined as the one-dimensional
sequence S = (zp,)n>0 with x,, = pp(n) for all n € Ny.

Example 3.11 For b = 2 the first elements of the 2-adic van der Corput

11315371
sequence are 0, 3,7, 7,585 8 167 - -

Example 3.12 Using Theorem 3.7 we show that the b-adic van der Corput
sequence is uniformly distributed modulo one. Let & € N with & = kg+r10+
4 kp_1b" L, where K, 1 # 0. For the b-adic van der Corput sequence the

nth element is of the form x,, = ngb~! +n1b~2 + --- and hence we have
N-1
Z bwalk CUn _ Z gono+~~~+nr71m71.
n=0

Let first N = b". Then we have E(b") = H;;(l) St w w,”" =0 as at least
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kr—1 # 0 and the same holds for each multiple of ", i.e., E(vb") = 0 for all
v € N. From this we find that |[E(N)| < b" for all N € N and hence

L Nl
lim — Z pywaly (x,) = 0.
n=0

N—oco N
Now it follows from the Weyl criterion for the Walsh function system that
the b-adic van der Corput sequence is uniformly distributed modulo one.

3.2 Discrepancy

In the last section we found that a sequence should be uniformly distributed
modulo one to satisfy our purpose of approximating the integral of a Rie-
mann integrable function arbitrarily closely with a QMC algorithm using
the first NV points of this sequence. In practice, however, we can only use
finite sets of sample points (where here and throughout this book by a set
of points we always mean a multi-set where the multiplicity of elements
matters). But a finite sequence can never be uniformly distributed modulo
one. Nevertheless, Theorem 3.3 and the results from Chapter 2 suggest to
use point sets whose empirical distribution is close to uniform distribution
modulo one.

In the following we introduce several quantitative measures for the de-
viation of a finite point set from uniform distribution. Some of them have
already been introduced and used in Chapter 2. Such measures are usually
called discrepancies. The definition of uniform distribution modulo one leads
directly to the following definition.

Definition 3.13 Let P = {@¢,...,zn_1} be a finite point set in [0,1)*.
The extreme discrepancy Dy of this point set is defined as

Dy (P) :=sup A N)

“ (D],
up |55 = M)

where the supremum is extended over all sub-intervals J C [0,1)® of the
form J = [a, b). For an infinite sequence S the extreme discrepancy Dy (S)
is the extreme discrepancy of the first N elements of the sequence.

It can be shown (see Exercise 3.9) that a sequence S is uniformly dis-
tributed modulo one, if and only if limy_,o Dy (S) = 0. Hence, for uniformly
distributed sequences, the extreme discrepancy goes to zero as N tends to
infinity. However, this convergence to zero cannot be arbitrarily fast. Con-
sider, for example, an interval of volume € > 0 which contains exactly one
point of the first N elements of the sequence S§. Then by choosing € > 0
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arbitrarily small, we find Dy (S) > 1/N. This gives a first lower bound on
the extreme discrepancy.

Very often one uses a slightly weaker version of the extreme discrepancy
which is commonly known as the star discrepancy. Here the supremum in
Definition 3.13 is only extended over all subintervals of the unit cube with
one vertex anchored at the origin. The star discrepancy D} of a finite point
set P has been introduced in Definition 2.14 as the sup-norm of the discrep-
ancy function Ap(x) := A([0,x), N,P)/N — Xs([0,2)) (see Definition 2.13),
which can be considered as a local measure for the deviation from uniform
distribution. That is, for a point set P = {xg,...,zx_1} in [0,1)° the star
discrepancy is given by

DN(P) == sup |Ap(x)].
x€(0,1]®
For an infinite sequence S the star discrepancy D73, (S) is the star discrepancy
of the first NV elements of the sequence.

From these definitions we immediately obtain the following relation be-

tween the extreme discrepancy and the star discrepancy.

Proposition 3.14  For any point set P consisting of N points in [0,1)°
we have

Dy(P) < Dn(P) < 2°Dy(P).

Proof The left inequality is obvious. For the right inequality we mention
that any subinterval of [0,1]® can be written as composition of at most 2°
subintervals of [0,1]* with one vertex anchored in the origin. For example,
for s =2 and a = (ay,a2) and b = [by, bs) we have

[a‘v b) - ([07b1) X [O, bg) \ [0,@1) X [07 b2))\([07 bl) X [07@2) \ [0, al) X [0,@2)) :
From this composition the result immediately follows. O

On account of Proposition 3.14 we mainly deal with the simpler star
discrepancy instead of the extreme discrepancy in the following. A further
motivation for concentrating on the star discrepancy is its appearance in
the Koksma-Hlawka inequality (Theorem 2.18). Results for the extreme dis-
crepancy can be obtained from results for the star discrepancy together with
Proposition 3.14.

Obviously this also holds in the other direction. From our results for the
extreme discrepancy we find now that a sequence is uniformly distributed
modulo one, if and only if its star discrepancy tends to zero. Furthermore
we find the (weak) lower bound D3/ (S) > 1/(2°N) for the star discrepancy
of any sequence S in [0, 1)°.
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In the following we present three important statements on the star dis-
crepancy which are often used (sometimes implicitly) within this book.

Sometimes, it is very useful to know that the star discrepancy is a contin-
uous function on [0, 1)"V¢. This is more or less the assertion of the following
proposition.

Proposition 3.15 Let P = {xg,...,xn_1} be a point set in [0,1)° with
star discrepancy D3 (P). Let @y := (zp1,...,2Tns) for 0 <n < N —1, and
let 6,,, 0 <n <N —1,1<1i<s, be nonnegative reals with 0,; < €, such
that xy; + 0p; < 1 for all0 < n < N —1 and 1 < i < s. Then for the
star discrepancy D}“\,(ﬁ) of the shifted point set P = {Zo,...,xN_1}, with
Ty = Tni+ Opi for all0 <n < N —1and 1 <i<s, we have

Dy (P) — Di(P)| < es.

Proof For an arbitrary interval B = [[;_,[0,;) C [0,1)° we define for
j € {0,1} the intervals

Ej = H [0, az(»j)>
i=1
with
| 0 it a; + (—1)e <0,
a?.=1¢ 1 if o + (—1)e > 1,
a; + (—1)7e  otherwise.

Then one can prove, by induction on the dimension s, that |As(B)—As (EJ)| <
es holds for j € {0,1}. B
Then we have A(B;,N,P) < A(B,N,P) < A(B,N,P) and hence
<

A(B,N,P) — N\y(B) < |A(B,N,P) — N\y(B)| < D% (P)

Therefore we have |[A(B,N,P) — NAy(B)| < D} (P) + Nes. Since B is an

arbitrary interval, we get from this inequality that D&(ﬁ) < DN (P) +es.
In the same way we can show that D} (P) < Dy (P) + es, which shows

the result. O

Sometimes it is possible to split a given point set into smaller point sets
with low star discrepancies. In this case the following result, which is often
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called the triangle inequality for the discrepancy, may be very useful to get
an upper bound on the star discrepancy of the superposition of the small
point sets (see [128, p. 115, Theorem 2.6]).

Proposition 3.16 For 1 < i < k, let P; be point sets consisting of
N; points in [0,1)* with star discrepancy D3, (P;). Let P be the point set
obtained by listing in some order the terms of P;, 1 < i < k. We set
N = Ny + -+ Ng, which is the number of points of P. Then we have

-Dy, (Pi),

==

k
Dy(P) <Y
=1

and the same result holds with the star discrepancy replaced by the extreme
discrepancy.

The third statement on the star discrepancy gives the error when we re-
place the supremum in its definition by a maximum over a finite, equidistant
grid with given mesh-size. For an integer m > 2 let '), := %Zs (mod 1) be
the equidistant grid with mesh-size 1/m.

Proposition 3.17 Let 6 > 0 and define m = [s/d]. Further let T, be
the equidistant grid on [0, 1]° with mesh-size 1/m. Then for any point set P
consisting of N points in [0,1)* we have

Dy/(P) < max |Ap(y)| + 6.
yeln,

For the proof of this result we need the following lemma.

Lemma 3.18 Let u;,v; € [0,1] for 1 <i < s and let 6 € [0,1] be such that
lu; —vi| <6 for1 <i<s. Then

S

S
[[w—1Tw
i=1

i=1

<1-(1-6)° < s6.

Proof As in [175] we prove the result by induction on s. Trivially, the result
holds for s = 1. Let s > 1. We may assume that us; > vs. Then, by assuming
that the result holds true for s — 1, we have

s s s—1 s—1 s—1
Hui_HUi (us—vs)Hui—l-vs (Huz—Hw)‘
i=1 i=1 i=1 i=1 i=1
< |us —vs| + vs(1 — (1 — 5)571)
= uy —vg(1—0)% !
=ug(1— (1= 6) ) + (us —v5)(1 —6)**
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<1—(1 =61 +601—-06)°"
=1-(1-96)".

This shows the first inequality. For the second inequality we consider the
real function x +— x°. According to the Mean Value Theorem, for all reals
y > z we have y° — 2° = s (y — 2) for some ¢ € (z,). Now we obtain
the result by using this insight with the choice y =1 and z =1 — 4. ]

Proof of Proposition 3.17 For € > 0 we choose y* = (yi,...,ys) € [0,1)*
such that

Dx(p) = | MNP 0.y

+ €.

Now choose & = (z1,...,25) and y = (y1,...,ys) in 'y, with z; < yF <
T; + % =: 9, for all 1 <i < s. Using Lemma 3.18 we obtain

° i 1\° s
o[l (1) <22
i=1 i—1 m m

Hence we get —0 + [[7_; vi < [[;_; y; <I[i=; #; + ¢ and therefore we have

AR 0,2)) 5 < AOYIRPL 10,47
< AOVLNP) ) (f0.9)) +5
From these inequalities we get
A([0,y), N, P)

< Inax ~ —Xs([0,9))| + 0+ e

Since € > 0 can be chosen arbitrarily small, the result follows. U

Similarly, as the star discrepancy is defined as the supremum norm of the
discrepancy function we may now introduce other notions of discrepancies
by taking different norms of the discrepancy function. In particular, we take
the L, norm in the following (the special case of Lo-discrepancy has been
introduced in Definition 2.14 already).

Definition 3.19 Let 1 < ¢ < oo be a real number. For a point set P
in [0,1)° the Ly-discrepancy is defined as the L, norm of the discrepancy

function, i.e.,
1/q
Lgn(P) = (/ |Ap ()| diL‘) -
[0,1]¢
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For an infinite sequence S the Lg-discrepancy Lg v (S) is the Ly-discrepancy
of the first NV elements of the sequence.

Obviously, for any point set P and any 1 < ¢ < oo we have L, nv(P) <
D3}, (P). Conversely, it is also possible to give an upper bound for the star
discrepancy in terms of L,-discrepancy, see, for example, [61, Theorem 1.8].
From this it follows that a sequence is uniformly distributed modulo one, if
and only if its L,-discrepancy tends to zero.

We gave already some (trivial) lower bounds for the extreme and the star
discrepancy of finite point sets in the unit cube. While it can be shown
that these bounds are best possible in the order of magnitude in IV for one-
dimensional point sets (compare with Exercise 2.1) this is by no means true
in higher dimension. The following remarkable result was first proved by
Roth [226] in 1954.

Theorem 3.20 (Roth’s lower bound on Lo-discrepancy) For any dimen-
sion s € N and for any point set P consisting of N points in the s-dimensional
unit cube we have

1 llogg N +s+1Y\ 1 (log N)(s=1)/2
> — >
Ly n(P) > N\/( Cs N ;

s—1 225+4 —

1
2254 (log 2)(s=1)/2 /(s—1)!

where ¢y =

Remark 3.21 The inequality in the above theorem also applies to the
extreme- and the star discrepancy as Dn(P) > Dx(P) > La n(P).

The original proof of Roth’s result can be found in [226] (this proof is in
dimension s = 2 only, but can be easily generalised to the general case).
A detailed proof (in arbitrary dimension) using the orthogonality relation
of Rademacher functions can be found in the book of Kuipers & Niederre-
iter [128]. We also refer to the book of Beck & Chen [11].

The constant in Theorem 3.20 here is better than that in Kuipers &
Niederreiter, see [128, p. 104]. This can be obtained by a few slight modifi-
cations in the proof as in [128], which we describe in the following.

For the proof of Theorem 3.20 we need several lemmas and some notation
which we introduce in the following. Thereby we follow the proofs of [128,
Chapter 2, Lemma 2.1-Lemma 2.5].

Let P = {=o,...,xn_1} with @, = (2n1,...,2n) and let Y(z) =
—owal(z) = (=1)5F! for € R with 2 = X +&271 +&272 + -+ where
X €Z,&,&,...€{0,1} and infinitely many of the &, &a, ... are 0. Further,
let ¢ be a natural number such that 28=! > N, which will be specified below.
For a vector r = (71,...,rs) € Nj we define |r|; =71 +--- 4+ rs.



3.2 Discrepancy 75

For a vector r € Nj with |r[; =t — 1 we define a function G, on R? as
follows: if there exists an 0 < n < NN such that

([2%znal, s (20 2ns]) = (L] L)),

then we set G.(r1,...,xs) = 0. Otherwise we set
Gr(x1,...,x5) = Y(x1) -+ P(x5).
Furthermore we define
Fr(zy,...,25) = Gp(2 2, ..., 2" x5)

and

F(xy,...,x5) = Z Fr(zy,...,zs).

rENg

[r|p=t—1

Lemma 3.22 For a given vector r € N with |r|; =t — 1 and for some i
with 1 <1 < s let a = h27" and b = m2~", where hym € Z and h < m.
Then, for any fized x1,...,T;—1,%it1,...,Ts, we have

b
/ Fr(zy,...,zs)dx; = 0.
a

Proof Using the substitution ¢ = 2" z; we have

b b
/Fr(xl,...,:vs)dxi:/ Gr(2"2,...,2"xs)dx;
a

a

1 m
o / Gr(2Mxy, ... t,. .., 2" ) dt.
" Jh

Split up the interval [h, m] into subintervals of the form [c,c + 1] with in-
tegers c¢. Then the integrand G,(2"xq,...,t,...,2"x) is zero on certain
subintervals of these intervals. On the remaining intervals the integrand is
equal to (2™ xq) - (t) - - - (2" x). But for any ¢ we have

c+1 1
/ Y(t)dt = —/ owaly (t)dt =0
c 0
and hence the result follows. O

Lemma 3.23 We have

1 1 t—1
t—1+s—-1\2"" =N
/0 A l‘l"'SL'SF(JI]_,...,.TS)d.T]_"'d]?sz< s—1 >m
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Proof First we show that for all » € N§ with |r|; =¢ — 1 we have

1 1 t—1
2+ —N
/(; /0v .Z'l"'.Z'SFr(xl,...,.’lfS)dl'l"'deZm.

Using the substitution ¢; = 2"x; for 1 <i < s we have

1 1
// x1- o wsFp(xy,. ., xs)dey -+ - dag
2m1 s
22%/ / Gr(ty, ... ts)dty - dt,

hi1+1 h+1
/ / Go(tr, ..t dty -+ dty, = 0
hy s

whenever (hi,...,hs) € N with
(B, he) = (1270 ) 127200 )

for some 0 < n < N — 1. Therefore we have

1 1
// x1- o wsFp(zy, ... xs)day - - dag

hi1+1 hs -‘rl
/ / Gty ) dty - dty, (3.8)
h1 s

where the sum Zh is over all lattice points h = (hq,...,hs) with 0 < h; <
2" for1 <i<sandwithh # (|2"zp1],..., |22y 4]) forall0 <n < N-1.
Hence this sum is extended over at least 2"t — N = 2t=1 — N lattice points.

We have

For any integer h we have

h+1 h+1/2 h+1
/ t)(t) dt = —/ tdt+/ tdt = =
h h h+1/2
and hence

Z / / Gr(t1,. ..,ts)dtl---dtSzT.
hy .

From this together with (3.8) it follows that

1 1 t—1
27— N
A /0v xl..-xsFr(ajl,...,xS)dml dxs_m

To obtain the final result note that the number of vectors r € N§ with

|rly =t —1 is given by (t_ii_l). O
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Lemma 3.24 We have

1 1 _ _
/ / F2(m1,...,ms)d$1---dm8§<t 1+ 1>.
0 0 s—1

Proof We have

1 1
/ / FQ(ml,...,ws)dzcl---da:s
0 0

1 1
= Z // Ff(a:l,...,xs)dzl"-dxs
0 0

S
reNg
[rli=t—1

1 1
+ Z /0.”/0 Fr(xy,...,25)Fyw(x1, ... 25)dey - - das.

r,weNg

r#W
[rlp=lwlp=t-1

Now F2(z1,...,2s) <1 and hence the first sum is bounded by (t_}:sl_l). It

remains to show that the second sum is zero.
We show that each term in the second sum is zero. Choose r,w € N,

r # w,and r = (ry,...,rs) and w = (wy,...,ws). Then there exists an
index 1 < i < s such that r; # w;. Without loss of generality we may
assume that r; < w;. For fixed z1,...,2;-1,%;41,...,2s we show that

1
/ Fr(z1,...,25)Fy(r1,...,zs)da; = 0.
0

The result then follows.
Using the substitution ¢ = 2%ix; transforms the above integral into

1 2

T Gr(2Mxy, .., 2" 2 ) G (2 gy oty 2% ) dE
0

Split the interval [0,2"%) into subintervals [c,c + 1)with integers c. In such
an interval the integrand is either identical to zero or equal to

) -+ BT (@ (2 ) (1) (2 ).

Here the only dependence on ¢ is in 1(2"~"it)¢(t) and hence it suffices to
show that fcc+1 P(2" i)y (t) dt is zero. Since r; —w; < 0 it follows that
P(2riTWit) = — gwaly (27 "it) is constant on the interval [¢,c+ 1) and hence
we have

c+1 1
/ B2 Wit )p(t) dt = pwal, (27 ic) / owal () dt =0. O
c 0
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Lemma 3.25 For 0 <n < N, we have

1 1
/ / F(zq,...,z5)dzy -+ daxg = 0.
Tn,1 Tn,s

Proof It suffices to show that

1 1
/ / Fo(z1,...,z5)dxy - dxg =0
Tn,1 Tn,s

forall 0 <n < N —1 and all » € N§j with |r|; =t — 1. For fixed n and for
1 <i < s, let a; be the least integral multiple of 27" that is > ;. Then
we have fxln,l e fxlns = f;rjl e ff:s +(sum of integrals in which for at least
one variable x;, we integrate over an interval [a;, 1]). The first integral on the

right-hand side is zero, since for all (z1,..., ;) in the interval [];_; [z, /]
we have

(12721, 12721 )) = (127 0], 127 @0 ])

and hence by definition Fi.(z1,...,x5) = Gr(2™x1,...,2™x5) = 0.
The remaining integrals however are zero by Lemma 3.22 and hence the
result follows. O

Proof of Theorem 3.20 For 0 <n < N —1, let J,, := []7_; (2, 1] and let
X, () be the characteristic function of this interval. Then A([0,x), N, P) =
27]:]:_01 XJ, (x), where = (z1,...,x5) € [0,1]°. Therefore,

/ A(]0,z),N,P)F(x)dx =
[0,1]¢

by Lemma 3.25. Hence, using Lemma 3.23 we obtain
1 1
/ (=NAp(x))F(x)dx = N/ / 1 xsF(xy, .. ws)day -+ dag
(0,1} 0 0

t—14+s—1\2"1 - N

Then

N1 ot=1 _ N\ 2
s—1 92(s+t—1)
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2
/ <—NAp<w>>F<w>dw)
0,1]¢

“(
[
< (/ (—NAp(a:))2dx) ( F(:B)2dw>
[0,1)¢ [0,1)¢

< < /[O ,1]s<—NAp<w>>2dw) (t_ e 1)

by Cauchy-Schwarz’ inequality and by Lemma 3.24. Hence we obtain
-1 -1
/ (NAP(ZD))2 dx > N2 (t +s >2—4(s+t—1) (225—1 _ N)Q

[0,1]¢

s—1

Let t now be the unique integer for which 2N < 2¢=! < 4N. Then

/ (NAp(x))?de > Nig~4-1) A
[07115 s—1

t—14+s-1 1
= < s—1 )24s+8'
Further, 1 +1logy N < t—1 < 2+logy, N, which implies 2+ |log, N| =t —1
and substituting on the right hand side above yields

logy N| +s+1\ 1
2 > [logy
/[071}5(NA7>(:1:)) de = ( s—1 24s+8
(log N)*—*
~ (log2)s—1(s —1)! 24587

o s—1 o s—1
log, N+s+1y > (L1 gz(;\iJ;)rf) > ( %;ﬁ)), and logy N =

where we used (L

log N
log 2

in the last inequality. Thus the result follows. O

As the L, norm is monotone increasing in ¢ it follows that Roth’s lower
bound holds for all L,-discrepancies with ¢ > 2, too. Furthermore, it was
shown by Schmidt [236] that the same is true for all 1 < ¢ < 2. Summing
up, for any 1 < ¢ < oo and any dimension s there exists a c5 4 > 0 with
the following property: for any point set P consisting of N points in the
s-dimensional unit cube we have

(log N) (s—1)/2
N .

On the other hand, it is known that this bound is best possible in the
order of magnitude in N as was shown first for the Lo-discrepancy by Dav-
enport [29] for s = 2 and by Roth [227, 228] and Frolov [82] for arbitrary

Lq,N(P) > Csyq
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dimensions s € N and by Chen [21] for the general L, case. But we know
even more. For any ¢ > 1, any dimension s € N and any integer N > 2
there is an explicit construction of a point set P consisting of N points in
the s-dimensional unit cube such that

(log N) (s—1)/2
—N .

Such a construction was first given by Davenport for ¢ = s = 2 and by

Lq,N(P) < Cs,q

Chen & Skriganov [22] for the case ¢ = 2 and arbitrary dimension s. Later
Skriganov [242] generalised this construction to the L, case with arbitrary
q > 1. We are concerned with this topic in Chapter 16.

For the star discrepancy the situation is quite different. For s = 2 we have
an improvement due to Schmidt [235] (see also [128]) or Béjian [12] who
showed that there is a ¢ > 0 (for example ¢ = 0.06 as shown in [12]) such
that for the star discrepancy of any point set P consisting of N points in
the two-dimensional unit square we have

DY(P) > clOfVN |
In dimension s = 3 it was shown by Beck [10] that for any € > 0 there exists
an N (g) such that for any point set P consisting of N > N(¢) points in the
three-dimensional unit cube we have

log N (loglog N)/8¢
N .

An improvement of Becks result in dimension s = 3 has been shown by Bilyk
& Lacey [15]. They showed that there is a choice of 0 < 1 < 1/2 such that
for any point set P C [0,1)? of cardinality N we have

Dy(P) =

(log N)'+7

N
for some constant ¢ > 0. This breakthrough led then to the paper of Bilyk,
Lacey & Vagharshakyan [16] where it is shown that for any s € N, s > 2,
thereisacs >0 and a0 < ns < % with the property that for any point set
P consisting of N points in the s-dimensional unit cube we have

DN(P) > ¢

N .

This is the best result for dimensions s > 3 currently known.

Dy(P) = ¢

If we consider infinite sequences, then it follows from Roth’s lower bound
that there exists a ¢; > 0 such that for the star discrepancy of any sequence
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S in the s-dimensional unit cube we have

(log N)*/?
N
for infinitely many values of N € N. For a proof see, for example, [128,
Chapter 2, Theorem 2.2].
However, the exact lower order of the star discrepancy in N is still one

DN(S) > ¢

of the most famous open problems in the theory of uniform distribution
modulo one. It is widely believed that there exists some ¢s > 0 such that for
any point set P consisting of N points in the s-dimensional unit cube [0, 1)*
the inequality
(log N)*~!

N

holds true. This lower bound would be best possible for the star discrepancy
D3 as we see later. For infinite sequences a lower bound for the star discrep-
ancy of order (log N)*/N for infinitely many values of N € N is conjectured.

DN (P) > ¢

3.3 General bounds for the discrepancy

From the Weyl criterion (Theorem 3.5) we know that the behaviour of ex-
ponential sums is closely related to uniform distribution modulo one. The
following important result, which is usually attributed to Erdds, Turdan and
Koksma, gives a quantitative version of this insight.

Theorem 3.26 (Erdés-Turan-Koksma inequality) For the discrepancy of

any point set P = {xg,...,xn_1} in [0,1)° we have
N-1
3\° 2 1|1 .
Dnv(P) < (2 - 2mih-xy ,
@< (3) |t S v L
0<|h|oo<m "

where m is an arbitrary positive integer and where r(h) = [];_; max(1,|h;|)
for h = (hy,...,hs) € Z°.

A proof of this bound can be found in [61, Section 1.2.2]. See also [128,
Chapter 2, Section 2| for the special case of s = 1.

In practice one is mainly concerned with point sets whose elements only
have rational components. For such point sets Niederreiter [175, Theorem 3.10]
proved a general upper bound for the discrepancy in terms of exponential
sums. To formulate this result we need some notation.

For an integer M > 2, let C(M) = (—M/2,M/2] N Z and let Cs(M)
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be the Cartesian product of s copies of C'(M). Furthermore, let C¥(M) =
Cs(M) \ {0}. For h € C(M) put

M sin(w|h|/M) if h #0,
r<h’M):{1 I ifhio.

For h = (hy,...,hs) € Cs(M), put r(h, M) = [1;_; r(hi, M).

Theorem 3.27 Let P = {xq,...,xN_1} be a point set in the s-dimensional
unit cube where x, is of the form x, = {y,/M} with y, € Z° for all
0<n< N, and let M > 2 be an integer. Then we have

s N—-1
1 1 1 N
<1 (1oL S 2 e/
Dn(P) =1 (1 M) r(h, M) anoe ‘

heCi (M)

For a proof of this theorem we refer to [175, Chapter 3.

In the following we consider point sets for which all coordinates of all
points have a finite digit expansion in a fixed base b > 2. A bound sim-
ilar to that of Theorem 3.27 on the star discrepancy of such point sets
was first given by Niederreiter [168, Satz 2] (see also [175, Theorem 3.12]).
An approach to this result by means of Walsh functions was described by
Hellekalek [94, Theorem 1]. To formulate the result of Hellekalek we again
need some notation.

Let b > 2 be an integer. For a vector k = (ki,...,ks) € N we put
pu(k) :== 117, po(ki) where for k € Ny we set

" 1 if k=0,
po(k) == L ifpy<k<pt! where r € Ny

b+l sin(mwryr/b)
and where £, is the most significant digit in the b-adic expansion of k.

Theorem 3.28 Let P = {xq,...,xnN_1} be a point set in the s-dimensional
unit cube where x,, is of the form x,, = {y,,/b"™} with y,, € Z°, and integers
m >1 and b > 2. Then we have

1\° 1=
DTv(P)él—(l—b—m) P ak)| s Y vl
n=0

keNS
0<|k]oo<b™

The proof of this results is based on the following idea. We only consider
elementary b-adic intervals since we know from Lemma 3.9 that the charac-
teristic functions of such intervals have a finite Walsh series representation.
The remaining Walsh coefficients can be bounded independently of the cho-
sen elementary interval. Then we approximate each interval with one corner
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anchored in the origin by elementary b-adic intervals and in this way the
result will follow.

For the complete proof of Theorem 3.28 we need the following lemma
which provides the announced bound on the Walsh coefficients for the char-
acteristic function of an interval.

Lemma 3.29 Let J =[0,8) with 0 < 8 <1, and let b" < k < b"!, where
r € Ng. Then for the kth Walsh coefficient of the characteristic function of
J we have

IXa(F)| < po(k).

Proof Let 3 = f1b~! + Bab~2 + --- be the b-adic expansion of § and let
B(r) == b=t + -+ + B.b7". Then we can write the interval [0, 3(r)) as a
disjoint union of finitely many one-dimensional b-adic elementary intervals
J(a,b") =[ab™", (a+1)b"") of order r. As k > b" it follows from Lemma 3.9
that for each of these intervals J(a,b") we have [ J(ab) pwalg(z)dx = 0.
Therefore we obtain

B

Xu(k) = / pwaly(z) dz.
B(r)

Let k = ko + k1b+ - - + kb with k, # 0 and let k(r) := k — K,0". Then the

Walsh function ,waly) is constant on the interval [3(r), 3(r) + b~") with

value ywaly(,)(6(r)). Hence with & = £1b™1 + &b™2 + - -+ we obtain

&) B
xs(k) = / pwalg(z) dz = / w§1”0+”'+§m”1+&“m dx
B(r) B(r)

B
= ywaly) (B(r) /ﬁ ( )wgrw d. (3.9)

For the last integral we split up the integration domain in 3,11 one-dimensional,
b-adic elementary intervals of order r + 1 and in a rest interval with length
of at most b~ ("™ Then we obtain

8 Bry1—1 51_,_ +§; lr+1 8
/ r+1"‘€r dLU _ Z / £r+1f‘€r dCC +/ w§r+1’€r de’
B l B1 Br41
B(r) ==,

Bt o
514»1 1

- o D g )

1 wbﬁ'r+1’fr‘ _ 1 ﬁ .
= wy, (B = B(r +1)). (3.10)
b
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From (3.9) and (3.10) we now obtain

1 ﬁr«kll‘ir . ) ﬁ .
X (h)| = 5 (B = B 1)
= ooy | e HVT BB+ 1) ) -
br-i-l wf’“—l

= br+1 (

For any 0 <y <1 and any z € C, z # 1, with |z\:1wehave‘ﬁ+’y’§

r+1 1
wg 1+b+(ﬂ ﬁ(?“—f— ))“FW)

1/|z — 1]. Applying this inequality to the term above we find that

1 2 1 1
Xa (k)| < e = . :
brtjwpt — 1] brtl |sin(wk, /D)

Since k, € {1,...,b — 1} it follows that 0 < 7wk, /b < m and hence we can
omit the absolute value for the sine function in the above term and the
lemma is proved. O

Remark 3.30 In Lemma 14.8 below we provide the Walsh series expansion
of the function Xjg ) (k).

Proof of Theorem 3.28 Let © = (x1,...,x5) € [0,1]°. For 1 < i < s define
a; == minf{a € {1,...,b™} : z; < a-b "} and set y = p-a with a =
(ai,...,as). Then we have

|Ap(z)| < [Ap(x) — Ap(y)| + [Ap(y)].

As P C = Z° (mod 1) it follows that A([0,z),N,P) = A([0,y), N,P) and
hence

|Ap(@)| <oy a5 =y s+ [Ap(y)l- (3.11)
Since |z; — y;| < 7 for all 1 < i < s we obtain with Lemma 3.18 that

1 S
I:c1~~a:s—y1~~ys\§1—<1——> . (3.12)

pm
It remains to estimate |Ap(y)|. Obviously, the interval G := [0, y) can be
written as a finite disjoint union of b-adic elementary intervals of the form
I, [bc—rfl, C;’)Zl) with integers 0 < ¢; < b™ for all 1 < ¢ < s. Hence it follows
from Lemma 3.9 that Yg(k) = 0 for all k € N with |k|o > ™. Therefore,
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and by invoking the identity X5 (0) = As(G), we find

L N L V-
Ar(y) =« > xaln) = X(@) = DY Ralk) (N > bwalk(xn)> :
n=0 kENG n=0

0< k] oo <b™

Using Lemma 3.29 it follows that |Ya(k)| < pp(k) and hence we obtain

1 N—-1
~ > pwalg(an)| . (3.13)
n=0

Ap)l < D pe(k)

kENG
0< |k]oo <b™

From (3.11), (3.12) and (3.13) we now get

S N—-1
Ap(z) < 1— (1 - bim) + S k) %Z pwalg ()|
n=0

keNg
0< k| oo <b™

As this bound holds for any @ € [0, 1]°, it follows that the star discrepancy

of P also satisfies this bound and hence the result is proved. ]

Remark 3.31 Note that for the point set P as considered in Theorem 3.28
we also have

Dy(P) > 1 - <1—bim>s.

This follows easily from the assumption that the components of the points of
P are of the form a/b™ with a € {0,...,b™ —1} and hence P C [0,1—b"""]".

3.4 Discrepancy of special point sets and sequences

In this section we analyse the discrepancy of some classical constructions of
point sets in [0, 1)%.

The regular lattice

If we think of a point set whose points are very uniformly distributed in the
unit cube one immediately might have a regular lattice (or equidistant grid)
in mind.

By a regular lattice of N = m?® points in the s-dimensional unit cube we
understand the point set

I, = L7 (modl):{(ﬂ,...,E> :Ogni<mf0r1§i§s}.
m m m
(3.14)
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Figure 3.4 Regular lattice I'g in [0,1)?, i.e., s = 2 and m = 6.

However, we show in the next result that, with respect to discrepancy,
this is not a good choice.

Proposition 3.32 Let m > 2 be an integer. For the star discrepancy of
the regular lattice Ty, consisting of N = m?® points in [0,1)° we have

DY(T) = 1— (1 - l)s.

m

Remark 3.33 Note that N=1/5 <1 — (1 —1/m)* < s/m = sN~'/* and
hence for the star discrepancy of the regular lattice (3.14) we have

1 X s
wis < Piilm) < S

Proof of Proposition 3.32 As in Remark 3.31 we find that

Di(T) > 1 — <1 - l>s.

m

Now consider an arbitrary interval of the form J = [0,a1) X --- x [0, ag).
For 1 <i <slet a; € {0,...,m — 1} be such that a;/m < a; < (a; +1)/m.
Then we have A(J,N,T'y,) =[] (a; + 1) and

A(J,N,T,,) Sai+1 roa

< Brhom) < | | N

0< N As(]) < . m Lim

=1 1=1
Therefore, and by invoking Lemma 3.18, we obtain
A(J,N,T,,) Sai+1 roa 1\°
_— - | | — | | — | <1—=(1-—] .
N )\S(J)’ - om m - ( m)
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As J was chosen arbitrarily the result follows. (Alternatively, one may also
use Theorem 3.27; see Exercise 3.21.) O

For dimension s > 1 the star discrepancy of the regular lattice is very
poor. But for dimension s = 1 the order of the star discrepancy of the
regular lattice is best possible.

For the centred regular lattice IS, consisting of N = m? points defined by
(1.1) one can show in the same way as above (see Exercise 3.22) that

1 S
DyITS)=1—(1——] .

Moreover, in dimension s = 1 it can be shown that the centred regular
lattice ISy = {z, = 22 : 0 < n < N} has star discrepancy Dy (I'S) = 5k
(see Exercise 2.1). This is best possible among all point sets consisting of N
points in [0,1). For a proof we refer to [128, Chapter 2, Corollary 1.2] or to
[175, Theorem 2.6].

The van der Corput-Halton sequence

Now we turn to another construction which is a multidimensional generali-
sation of the van der Corput sequence as introduced in Definition 3.10.

Definition 3.34 Let by,...,bs > 2 be integers. The van der Corput-Halton
sequence is the sequence S = (&y)n>0 with x, = (s, (n),..., ¢, (n)) for
all n € Ng. Here ¢ is the b-adic radical inverse function as defined in
Definition 3.10. The integers by, ...,bs are often called the bases of the van
der Corput-Halton sequence.

Example 3.35 For dimension s = 2 and bases by = 2 and by = 3. The
first points of the van der Corput-Halton sequence are given by x¢ = (0,0),
x1 = (1/2,1/3), ©o = (1/4,2/3), x3 = (3/4,1/9), =4 = (1/8,4/9), and so
on. The first 1000 points of this sequence are shown in Figure 3.5.

It was known for a long time that, provided that the bases bq,...,bs
are chosen to be pairwise relatively prime, the star discrepancy of the first
N elements of the van der Corput-Halton sequence can be bounded by
c(by,...,bs)(log N)*/N + O((log N)*~1/N). For example, this was shown in
[64, 87, 112, 161, 175]. Informally, one calls a sequence in the s-dimensional
unit cube a low-discrepancy sequence, if its star discrepancy is of order
(log N)*/N. While it is widely believed that this order of convergence is
best possible for any infinite sequence in the s-dimensional unit cube, those
results have a disadvantage for practical applications. Namely, the constant
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Figure 3.5 The first 1000 points of the two-dimensional van der Corput-
Halton sequence in bases by = 2 and by = 3.

¢(bi,...,bs) > 0 depends very strongly on the dimension s. The minimal
value for this quantity can be obtained if one chooses for by, ..., bs the first
s prime numbers. But also in this case ¢(by, ..., bs) grows very fast to infinity
if s increases.

This deficiency was remedied by Atanassov [6] who proved the following
result.

Theorem 3.36 Let by, ...,bs > 2 be pairwise relatively prime integers and
let S be the van der Corput-Halton sequence with bases by, ...,bs. Then for
any N > 2 we have

s s—1 k
1 Lbz/ZJ IOg N bk—i—l LbZ/QJ log N
NDj < — —— k).
NS) = 1»21( ogb; | ° +kzo i 1;11 logb;

In the following we present the proof of this result due to Atanassov [6].
From now on let by,...,bs > 2 be pairwise relatively prime integers and let
S be the van der Corput-Halton sequence with bases by, ..., bs.

Lemma 3.37 Let J be an interval of the form J = [];_; [u;/b]"", v; /b"")
with integers 0 < u; < v; < b;n" and m; > 1 for all 1 < i < s. Then for the
van der Corput-Halton sequence S the inequality

|A(J, N, S) = NA)| < [ (vi — wi)
=1

holds for every N € N. Furthermore, for every N < [[7_,b/" we have
A(J, N, 5) < Hle(vi — uz)



3.4 Discrepancy of special point sets and sequences 89

Proof For n € Ny we denote the b;-adic expansion by n = néi) —i—n?bi +e
Choose I = (l1,...,ls) € Nj with 0 < [; < b"" and with b;-adic expansion

li = lim;—1 + lim;—2bi + -+ + li,ob;’“*l for all 1 < 4 < 5. We consider the

interval
2 L L;+1
n=11 g 5 )

Then the nth element x,, of the van der Corput-Halton sequence is contained
in J, if and only if

li0 liymi—1 néi) nﬁ” L0 limi—1 1
L0y oy micl o770 T Y T~ —
b; Tt bt T b + b? + b; Tt b + b
for all 1 < 4 < s. This, however, is equivalent to n(()i) = lio,-.. ,ngl)ﬁl =

lim;—1 which in turn is equivalent to n = l; o + l;1b; + -+ - + li’mi_lb;n"fl
(mod ;") for all 1 <i <.

As by,...,bs are pairwise relatively prime we obtain from the Chinese
Remainder Theorem that among every b]"' --- b7 consecutive elements of
the van der Corput-Halton sequence exactly one element is contained in J;
or, in other words, A(Jy,tby" --- 07", S) =t for all t € N and hence

A(Jy, tb]"™ -+ b7 S) — tb" - b A (Jy) = 0.
Therefore, for every N € N we obtain
|A(Jy, N,S) — NXs(Jp)| < 1.

Now we write the interval J as a disjoint union of intervals of the form J,

v1—1 vs—1
U U
lh=u1 ls=us
where I = (I1,...,ls). Then we have
v1—1 vs—1 s
JA(,N,S) = NAII < Y - > AL N,8) = NA(R)] < [ (vi—
li=uq ls=us =1

which proves the first assertion.
For N < b/" --- b7 we have A(J;, N,S) <1 foralll = (Iy,...,l5) € N§
with 0 <; < b for 1 < i < s and hence

v1—1 vs—1
A(J,N,S) Z Y A(Ji,N,S) <H i — ).
li=u1 ls=us

This was the second assertion of the lemma. O
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Lemma 3.38 Let k € N and let by,...,bp > 2 be integers. For N €
N let d(b,...,br; N) be the number of tuples (ji,...,jr) € N* such that
bl' - b)F < N. Then we have

N) < b log N
- k' - logb; )

d(by, ... by

Proof Assume that j = (ji,...,jx) € N¥ satisfies b{l bik < N. Then
the interval Fj := Hle[ ji — 1, 7;) of volume one is entirely contained in the

simplex

S = {(zx1,...,x) € [0,00)% : z1loghy +--- 4z} logb; < log N}

of volume 4 [T5_; llgiév Hence
log N
d(by,...,bp; N) = A E; | <X . U
( 1, » Uk ) k U 7 ~ k ]{?' H lOgbZ

E;CS

Lemma 3.39 Let N € N and let by,...,by > 2 be integers. Furthermore
for1 <i<klet c(()z),cgz),... > 0 be given such that c(()) <1 arde < fi for
all > 1 and all 1 < ¢ < k. Then we have

ST < AT (s )

bjll b”C <N

Proof Let u C {1,...,k}. Then the number of k-tuples (j1,...,jx) with
ji>0ificu j;=0if i ¢ uand [], Vi< Nis by Lemma 3.38 bounded

ST

above by |Tl|' [Licu llgg é\; . Furthermore, each of these k-tuples contributes at

most [ [, fi to the sum on the left hand side in the statement of the lemma.

From this, and invoking the inequality T < —kk d , we obtain
1 log N
SRR | (D D | g o
: lul! 4 log b;
(15000 Jk)€N§Z 1 uC{l,...,k} i€u
bjll bjng

1 ] 14071 N,
< X g = (g o).

uC{1,....k} €u bi

and this is the desired result. O
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Now we need to introduce some notation: let J C R® be an interval. Then
a signed splitting of J is a collection of not necessarily disjoint intervals
J1, ..., J. together with signs e1,...,&, € {—1,1} such that for all x € J we
have

r
ZEZ‘:L

z€J;

As a consequence, for any additive function v on the class of intervals in R*
we have

=> ew()
i=1

Here, as usual, a function v on the class of intervals in R?® is said to be
additive if, whenever A and B are disjoint intervals, then v(AUB) = v(A)+
v(B).

Lemma 3.40 Let J = [[7_,[0,2;) be an s-dimensional interval and let
for each 1 < i < s be given a finite sequence (2j;)j=1,..n; 0f numbers in
[0,1]. Define further zp; == 0 and zn,41,; := 2; for all 1 < i < s. Then the
collection of intervals

S
T tmin (2,6, 25, 41.6) s max (25,6, 25, 41.40))
i=1
together with the signs €j, .. j, = [ 17 sgn(zj,+1,i — 25,,i) for 0 < ji < n; and
1 < i < s defines a signed splitting of the interval J.

Proof First we show the result for s = 1. For simplicity we omit the index
i for the dimension. Let J = [0, 2) and let zp,..., 2,41 € [0,1) with 29 =0
and 2,41 = z. Assume we are given a point x € [0,2). If z; < z for all
j=0,...,n+ 1, then it follows that x ¢ J. Now we define finite sequences
J.k=0,...,K and Ji, k=0,..., K —1 in the following way: let j, > 0 be
minimal, such that Z o> and let Jo > Jo be minimal such that 2j, <z, let
J1 > Jo be minimal, such that 2, > and let j, > j1 be minimal such that
zj, < x. We repeat this procedure and finally we choose jj > j Jp_q to be
minimal, such that 2, > and z; > z for all j > jg. Since z,11 = z > =,
we always end in such a case.

With this definition we have % -1 <z < . for k = 0,...,K and
zZj, <£L‘<ZJ_1fOI"k—0 K —1

‘For Jj = [mm(z],zﬁl) max(z],zﬁl)) and €; := sgn(zj41 — 2;) we then
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have x € ij—l with z-:i—-k_l =+land z € Jlk—l with €j,~1= —land z ¢ J;
forj;éik—lorj;éjk—l. Hence

n n K-1
E &5 = E 1— E 1= E 1-— 1=
j= Jj=0 k=0 k=0
.’L‘EJ]' zj§z<zj+1 J+1<z<z

and thus we have a signed splitting of the interval J = [0, z).
Now we turn to the multi-dimensional case: assume we are given a point
x = (21,...,25) € J. Then we have

Tjrsjs = HJM i—H [min (2,.i, 2j,+1,6) » MaAX (25,35 2j;41,4)) -
=1

if and only if z; € Jj, ; for all 1 <4 <s. Then we have

ni Ns
E : E :Ejh--sz H E SgN(2j,+1,i — 2j;,i) = 1,

71=0 js=0 =1 31—0
N——— T, EI

where the last equality follows from the fact that for each 1 < i < s the
collection of intervals Jj, ; together with the signs €;, = sgn(zj,+1,i — 2j,.i)
for 0 < j; < n;, defines a signed splitting of the interval [0, z;) as shown
above. O

For the proof of Theorem 3.36 we need a digit expansion of reals z € [0, 1)
in an integer base b > 2 which uses signed digits. The next lemma shows
that such an expansion exists.

Lemma 3.41 Let b > 2 be an integer. Then every z € [0,1) can be written
in the form
—ag+ 2424
Z = ap b b2
with integer digits ag, a1, aso, ... such that — L J <aj < L J for all j € Ny.
This expansion is called the signed b-adic dzgzt expansion of z.

Proof For b =2 we may use the usual b-adic digit expansion. For b > 3 let
c=%andz=cbt+cb2+cb 3+ €[0,1). For z € [0,1) we have
z+x € [0,2) with b-adic expansion z +x = ug + u b +usb 2+ - -+, where
uo € {0,1} and wuy,ug,... € {0,...,b— 1}. Hence

Uy — C U9 — C

z =ug+ b + 12
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with —[#51] <0 <wp <1< [3)and —[%51] Swj—e<b=1-[%5] = |3

for j € N. O

Proof of Theorem 3.36 Let J = [0,z) C [0,1)% with z = (21,...,25). Ac-
cording to Lemma 3.41 for all 1 <4 < s we consider the signed b;-adic digit
expansion of z; of the form z; = a; o + ai,lbi_l + a,;72bl-_2 + aijgbi_3 + ... with
—[(bi = 1)/2] < a;; < |bi/2].

For all 1 < i < s let n; := [logN/logb;| and for 1 < I < n; define
the truncations of the expansions z;; = Zé‘;lo a; ;b; 7 and let zp; = 0 and
Zng4li = Zi-

According to Lemma 3.40 the collection of intervals

S
Ji =[] min (25,4, 2, 114) , max (25,4, 25, 41.0))
i=1
together with the signs e; = []7_; sgn(zj,+1,i — 2j,,i) for j = (j1,...,Js) and
0 <ji <mn;, 1 <i<s defines a signed splitting of the interval J = [0, z).
Since both, A\ and A(-, N, S) are additive functions on the set of intervals,
we obtain

A(J,N,S) — N Z Zea Ji, N,S) — NAs(J)) =: 21 + o,
71=0 7s=0

where Y1 denotes the sum over all j = (j1,...,Js) such that b{l W< N
and Yo denotes the remaining part of the above sum.

First we deal with the sum 1. For any 1 < ¢ < s the length of the interval
(min (2j, 4, 2j,+1,i) , Max (25,4, Zj,+1,1)) 1 |ai j;b; jl\ and also the limit points of
this interval are rationals with denominator bf . Hence, the intervals J; are
of the form as considered in Lemma 3.37 from which we obtain now

|A(JJ,N,S) - N)\S(JJ)| < H |a’i7ji| :

We have |a; j,| < |b;/2] =: fi. An application of Lemma 3.39 yields then
|bi/2]log N
=9 H ( Tog b, +s .
It remains to estimate 5. To this end we split the set of s-tuples j =
(j1,--.,Js) for which b]' --- b > N into disjoint sets By, ..., Bs_1, where,
for 1 <k <s-—1, we set

By={j €Ny : b]' - bl* < Nand bbb > N}
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and By = {j € N : b]' > N}.

For a fixed 0 < k < s—1 and a fixed k-tuple (j1, ..., jx) with bj1 . bj’“ <N
define 7 to be the largest integer such that b{l b”‘b}; +11 < N. Then the
tuple (J1,..., 7k, Jk+1,---,Js) is contained in By, if and only if jriq1 > 7
(and jg19,...,Js can be chosen arbitrarily).

Therefore, for any k£ > 0 and fixed j1, ..., jir € Ng such that b{l - bf;’“ <N,
we have

Y €A N,S) = NA(J5) = £(A(K, N, 8) = NA(K)),

Jk415ds €N
JEBy

where
k
K= H min ZJM? Zhit1yi ) max (ij‘,i’ Zj¢+1,i))
=1
S
X [mln (Zr,k+17 Zk‘-‘rl) , max (zr,k-i-la zk’-i—l)) X H [07 Zi) .
i=k+2
Let j € By. As

bk—i—lJ 1 bt < 1
b

|2h+1 — Zr 1] < { 5

I
1 k41 — bql;+1
it follows that the interval [min (2, k41, 2k+1) , max (2, k41, 2k+1)) is contained
in some interval [ml/bz+1,m2/bz+1) for mq1,ms € Ny and with mo —mq <
br+1 and hence K is contained in the interval

k
. mp M2 —k—
K = H [mm (Zji,i, Zj¢+1,i) ,max (zjm, Zj¢+1,i)) [br o ) x [0,1)° k=1
i=1 k+1 Yk+1
Note that 3 € B and hence N < b{l . bfc’“b’,; +1- Thus, an application of
Lemma 3.37 yields
k
A(K,N,S8) < A(K',N,S) < b1 [ [ lai. -
i=1

But on the other hand we also have NAs(K) < by Hle |a; j,| and hence

k k
JA(K, N, 8) = NAJ(K)| < by [ [ laigi] < brsr [ [ cigis

where ¢; j, = 1if j; = 0 and ¢; j, = [b;/2] otherwise.
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Summing up we obtain

‘22‘ <Z Z Z Ej(A(Jj7N7S)_N)‘s(Jj))

k=0 J1,----Jk€No |jEBy

bt bjk <N
s—1 k s—1 k
b1 [bi/2] log N
SZ | Z bk+1Hci,ji SZ ol H Tog b; +k|,
k=0 J1:---J}€No i=1 k=0 i=1
bl bk <N
where we used Lemma 3.39 again. Hence the result follows. U
Corollary 3.42 Let by,...,bs > 2 be pairwise relatively prime integers

and let S be the van der Corput-Halton sequence with bases by, ..., bs. Then
for any N > 2 we have

DY(S) < clbr, .. by BN L ((logN)S‘l) |

N N
with
17 [bi/2]
b bs) = —
( 1, ) ) sl 1111 IOg bz
Furthermore, if by, ..., bs are the first s primes, then c(by,...,bs) < 2Zs'

Proof The first part of the corollary follows immediately from Theorem 3.36.
Hence let us assume that by, . .., bs are the first s prime numbers in increasing
order. Then by, ..., bs are odd and hence [b;/2| = (b; —1)/2 for 2 < i < s.
Let 7(x) denote the prime counting function, i.e., 7(x) counts all prime
numbers less than or equal to z. For any = > 11 we have 7(x) > z/logx;
see [229, Chapter VIIJ. Therefore we find that for i > 6 we have i — 1 =

(b —1) > log?(l:l I > 1Ogb Consequently, for i > 6, we have Zh’)gb <=
and hence, for s > 6 we have
PALri—1
C(bl,...,bs) < 95 H ;
=6
_ 2:3-5 5 545
where A = 5og 2-log 3-log 5-log 7-log 11 Since 2 AHz—G i =2 A <5 lt fol-
lows that
C(bl,...,bs) <

for all s > 6. The bound c(by,...,bs) < 557 for 1 < s < 5 can be shown
numerically. O
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Remark 3.43 For s = 1 we have the one-dimensional van der Corput
sequence S as introduced in Definition 3.10. In this case Faure [65] proved
that

b—1 : :
ND%(S =7 if b is odd,

lim sup ¢ = 4ls 22 e
N—o00 log N m if b is even.

For more exact results in the case b = 2 we refer to [13]. A Central Limit
Theorem for the star discrepancy of the van der Corput sequence in base 2
can be found in [60, Theorem 2|. Concerning results on the star discrepancy
of generalisations of the one-dimensional van der Corput sequence we refer,
for example, to [65, 68, 69, 70, 71, 125].

Based on the (infinite) (s — 1)-dimensional van der Corput Halton se-
quence one can introduce a finite s-dimensional point set which is known as
Hammersley point set.

Definition 3.44 For dimensions s > 2 the Hammersley point set with
integer bases by, ...,bs_1 > 2 consisting of N € N points in the s-dimensional
unit cube is the point set P = {xq, ..., xn_1} where the nth element is given
by x, = (n/N, wp, (n), ... ,SDbS,l(n)) for0<n<N —1.

We deduce a discrepancy bound for the Hammersley point set with the
help of Theorem 3.36 in combination with the following general result that
goes back to Roth [226] (see also [175, Lemma 3.7]).

Lemma 3.45 Fors>2letS = (y,)n>0, where y, = (Yn.1,-..,Yn,s—1) for
n >0, be an arbitrary sequence in the (s—1)-dimensional unit cube with star
discrepancy D3 (S). For N € N consider the point set P = {xg,...,xN—-1}
in the s-dimensional unit cube given by x, = (n/N,yn1,...,Yns—1) for
0 <n < N —1 with star discrepancy D} (P). Then we have

* 1 *
Dy (P) < N (énn?meDm(S) + 1> )

Proof Consider a sub-interval of the s-dimensional unit cube of the form
E =1;_,[0,u;). Then a point x,, 0 < n < N —1, belongs to E, if and only
if 0 <n < Nu and y,, € [[]_5[0,u;). Denoting E' = [[;_,[0,u;) we have
A(E,N,P) = A(E',m,S) with m := [Nuy]| and therefore

|A(E,N,P)=NXs(E)| < |A(E",m,S)—mAs1(E")|+[mAs—1(E') = NAs(E)|.
We have |mAs_1(E') — NAs(E)| < |([Nui| — Nup) [[;_5 ui| <1 and hence
|A(E,N,P) — NAy(E)| < mD7,(S) + 1

and the result follows. O
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Now we can give an estimate for the star discrepancy of the Hammersley
point set. The proof of the subsequent result follows directly from Theo-
rem 3.36 and Lemma 3.45.

Theorem 3.46 Let by,...,bs—1 > 2 be pairwise relatively prime integers
and let N € N. Then the star discrepancy of the Hammersley point set P
with bases by, ...,bs_1 consisting of N points in the s-dimensional unit cube

s bounded by

NDj(P) < — 'H<Lb/2“"gN+s_1>

(s —1)! paler log b;
s—2
br41 [bi/2] log N
— —— 4k 1
T2 1;[1< ogh, )T

It follows from Theorem 3.46 that for the star discrepancy of the s-
dimensional Hammersley point set P in pairwise relatively prime bases
b1,...,bs_1 consisting of IV points we have

* loe N s—1 log N 52
DR(P) < efbrseon b BT 0 (LTS

where ¢(by,...,bs—1) = = 1), [LZ 11 1Zg/§ In the case that by,...,bs_1 are
the first s — 1 prime numbers we have ¢(by,...,bs_1) < WL”

An exact formula for the star discrepancy of the two-dimensional Ham-
mersley point set can be found in [32], see also [88, 142] for the base 2 case
and [67, Theorem 1] for a bound and [72] for exact results on the star dis-
crepancy of generalised versions of the two-dimensional Hammersley point
set.

Informally, one calls a point set consisting of N points in the s-dimensional
unit cube a low-discrepancy point set, if its star discrepancy is of order
(log N)*~1/N. In this sense the Hammersley point set in pairwise relatively
prime bases is a low-discrepancy point set. Recall that it is widely believed
that this order is the best possible for the star discrepancy of a finite point
set.

Lattice point sets

Now we turn to a further construction of finite point sets with low star
discrepancy which is often called the method of good lattice points. Those
point sets originated independently by Hlawka [111] and Korobov [121].
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Definition 3.47 Let g € N*andlet N € N. A point set P = {xo,...,ZNn_1}
in the s-dimensional unit cube with x,, = {ng/N} for all 0 <n < N — 1

is called lattice point set and g is called the generating vector of the lattice

point set. A QMC rule that uses a lattice point set as underlying quadrature

points is often called a lattice rule.

Example 3.48 For example if we choose N = 34 and g = (1,21), then
we obtain the point set shown in the left picture of Figure 3.6. For N = 144
and g = (1,89) we obtain the point set shown on the right of Figure 3.6.

Figure 3.6 Two-dimensional lattice point sets with N = 34 and g = (1, 21)
(left picture) and with N = 144 and g = (1, 89) (right picture).

For a lattice point set P = {xo,...,xny_1} consisting of N points and
with generating vector g € N® we have that each point x, is of the form
x, = {y,/N} with y,, = ng € Z*. Hence we can apply Theorem 3.27 from
which we obtain

DN(P>§1—<1—%>S+ 2 (h%N)

”
heC:(N)

1 N—-1

E : 2mwinh-g/N
- (§]
N

n=0

Using the formula for a geometric sum we obtain

Nzle%rinh-g/N _ { N ifh-g=0 (mod N), (3.15)
— 0 ifh-g#0 (modN).
Furthermore, for h € C¥(N) we have r(h,N) > 2r(h) where r(h) =
[[;_,7(hi) for h = (hq,...,hs) and r(h) = max(1, |h|). This follows from
the fact that sin(7t) > 2t for 0 <t < % Altogether we obtain the following
bound on the extreme discrepancy of a lattice point set.
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Proposition 3.49 For the extreme discrepancy of a lattice point set P
consisting of N points and with generating vector g € N we have

S 1 1

D < — — .

NP S Fty Z* (h)
heCZ(N)

h-g=0 (mod N)

Starting from this bound one can show (see, for example, [175, Section 5])
by using an average argument that for every dimension s and every N €
N there exist generating vectors g = (g1,...,9s) with 0 < ¢g; < N and
ged(gi, N) = 1 for all 1 < i < s such that the corresponding lattice point
set has extreme discrepancy of order (log N)*/N. Such a vector is often
called a good lattice point. However, this result is by no means constructive,
i.e, it is not known how a general construction principle for a good lattice
point can be deduced from it. For a long time one had to rely on time
consuming computer searches for good lattice points. A considerably faster
search algorithm was introduced by Sloan & Reztsov [246] which allows one
to find good lattice points in reasonably high dimension with a reasonably
large number of points. This method is nowadays known as component-by-
component construction or short cbe-construction. Here the basic idea is to
start with a good one-dimensional lattice point and then one appends step
by step a further dimension to the already constructed good lattice point
such that also the new lattice point is a good one. Joe [113] was the first who
used this approach for searching for lattice point sets with low discrepancy.

First we mention that by using (3.15), the sum which appeared in Propo-
sition 3.49 can be written as

Rv@) = Y o

hecT(N)
h-g=0 (mod N)

1 N-1 s eZﬂ’ihngi/N
= -1+ E 1 E —_— 3.16
* N H t ) ( )
n=0 i=1 —N/Q};hogN/z

Therefore, for given dimension s, the calculation of Ry(g) would require
O(N?s) operations which can be reduced to O(Ns) operations by using an
asymptotic expansion due to Joe & Sloan [116].

Now we use the following component-by-component algorithm for the con-
struction of a good lattice point.

Algorithm 3.50 Let N € N and let Gy ={1,...,N —1}.
1. Choose g1 = 1.
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2. For d > 1, assume we have already constructed gi,...,94—1. Then find
9q € Gn which minimises Ry ((g1,---,9d—-1,94)) as a function of gq.

If N is a prime number, then one can show that Algorithm 3.50 provides
a good lattice point. (For results concerning composite N we refer to [240].)

Theorem 3.51 Let N be a prime number and suppose that g = (g1,...,9s)
is constructed according to Algorithm 3.50. Then for all 1 < d < s we have

1
Rx((g1, - 90) < 5= (1+8n)",

where Sy = Zhecl*(N) ||t

Proof Since N is a prime number it follows that Ry(g1) = 0 for all g1 € Gy.
Let d > 1 and assume that we have
1

d

Rn(g) <

where g = (gla s agd)‘ Now we consider (gvgd-i-l) = (917 <5 9ds gd+1)'
As ggq41 minimises Ry ((g,-)) over Gy we obtain

Rn((9,9d+1))
N—-1
1 1 1
< > >
N1 ga+1=1 (hihqy1)€CT 4 (N) r(h) r(hat1)

h-g+hgi19441=0 (mod N)
1 1 1

= X Wi VT 2 L

(hhat1)€Cy, | (N) 9d+1€ON
h-g+hgi19q41=0 (mod N)

where we just changed the order of summation. Separating out the term
where hgy1 = 0 we obtain

Rn((g,9411))

1 1 1
<Ryn(@)+ Y. — — > 1.
(9) N r(h) r(hay1) N =1
€Cy(N) ha+1€CT(N) 94+1€GN
hq4194+1=—h'g (mod N)
Since N is a prime, the congruence hgy19411 = —h-g (mod N) has exactly

one solution gg11 € Gy if h-g # 0 (mod N) and no solution in Gy if
h-g=0 (mod N). From this insight it follows that

1
7(hay1)

RN((g,gdH))SRN(gHﬁ > T%h S

heCy(N) hd+1€Cf (N)
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B S 1
= Rn(g) + N_1 Z ()
hGCd(N)

S
= Rn(g) + N—fl(l + Sn)?
1

(1+Sy)% + SN

N -1

< (1+ Sy)?

N -1

— 1 d+1

=

where we used the induction hypotheses to bound Ry(g). This completes
the proof of Theorem 3.51. O

It can be shown that Sy < 2log N +2y—log4+4N 2, where v = 0.577. ..
is the Euler constant (for a proof of this fact see [166, Lemmas 1 & 2]).
Therefore, from Proposition 3.49 and Theorem 3.51 we obtain the following
bound on the extreme discrepancy of the lattice point set whose generating
vector is constructed with Algorithm 3.50.

Corollary 3.52 Let N be a prime number and suppose that g = (g1, ..., gs)
is constructed according to Algorithm 3.50. For 1 < d < s let Py to denote
the lattice point set generated by the lattice point (g1,...,94). Then we have

d
Dn(Pg) < % + % (210gN—|—27+ 1 —log4 + %) )

Hence, with Algorithm 3.50, one can construct a lattice point set in the
s-dimensional unit cube whose extreme discrepancy is of order (log N)*/N.
This is not quite as good as possible. For example, for the Hammersley point
set we had an order of (log N)*~1/N. Nevertheless, the bound on Ry(g) is
best possible in the order of magnitude in N. This follows from a general
lower bound due to Larcher [130], which states that for every s > 2 there
exists a ¢; > 0 such that for all N € N and all lattice points g we have
Rn(g) > c¢s(log N)*/N. For dimensions s > 3 it is still an open problem
whether there are lattice point sets with discrepancy of order (log N)s~1/N.
For dimension s = 2, such an order can be obtained with so-called Fibonacci
lattice rules; see [175, Section 5].

Lattice point sets can have small extreme- and star discrepancy. However,
one should mention that the full power of lattice point sets lies in QMC
integration of smooth, one-periodic functions. For a detailed treatment of
this topic we refer to [175, Section 5] or to [243].
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3.5 Tractability of discrepancy

In many applications the dimension s can be rather large. But in this case,
the asymptotically very good bounds on the discrepancy from the previous
section are not useful already for modest cardinality N of a point set. For
example, assume that for every s, N € N we have a point set P,y in the
s-dimensional unit cube of cardinality N with star discrepancy of at most

(log N)*
N Y

for some ¢ > 0. Hence for any € > 0 the star discrepancy behaves asymp-

Dy (Ps,n) < cs

totically like N~1*¢ which is of course excellent. However, the function
N — (log N)*/N decreases to zero not until N > e%. For N < e° this
function is increasing which means that for cardinality N in this range our
discrepancy bounds are useless. But already for moderately large dimension
s, the value of e° is huge, and even as huge, such that point sets with car-
dinality NV > e® cannot be used for practical applications. For example the
case s = 10, which is not considered to be large in practical applications, is
shown in Figure 3.7.

450000

375000

300000

0 50000 100000

Figure 3.7 The function N — (log N)*/N for s = 10.

Hence we are also interested in the discrepancy of point sets with not too
large cardinality. To analyse this problem systematically we introduce the
following quantity.

Definition 3.53 For integers s, N € N let
disc*(N, s) = i%f DN (P),

where the infimum is extended over all point sets P consisting of N points
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in the s-dimensional unit cube. Then disc*(N, s) is called the Nth minimal
star discrepancy. Furthermore, for € > 0 we define

N*(s,e) =min{N € N : disc*(N,s) < e},
the so-called inverse of star discrepancy.

For example, consider point sets consisting of N = 2° points in the s-
dimensional unit cube (for s > 30 this is already a huge cardinality). Can we
say then that in each dimension s there exists a point set of such a cardinality
such that its star discrepancy tends to zero as s grows to infinity? In terms of
Definition 3.53 this would mean whether we can say that disc*(2°,s) goes to
zero as s — oo or not? But from the upper bounds on the star discrepancy
of special point sets that we know so far, it is not known how to deduce an
answer to such a question.

The best bounds on the star discrepancy that we know are all of asymp-
totic order (log N)*/N. If we insert here for the cardinality N = 2%, then we
obtain upper bounds of order

(log2°)® rs\s
25 (5)
which goes rapidly to infinity with s (and also the small constant ¢, =
7/(s2%) from the star discrepancy bound for the van der Corput-Halton
sequence cannot invert this behaviour).

As another example (see [196]) consider for an integer m > 2 the regular
lattice I';;, with N = m?® points in the s-dimensional unit cube as defined
in (3.14). From Proposition 3.32 we know that the star discrepancy of this

point set is exactly
* ]' ’

Hence to obtain a star discrepancy of at most € > 0 one needs a regular

( )

points. This number grows superexponentially in the dimension s. For ex-
ample, N has to be at least (1.45s)° to obtain a star discrepancy smaller
than one half.

Nevertheless, in spite of our negative results we found so far, the answer
to the initially stated question whether there exist point sets consisting of
N = 2° points in the s-dimensional unit cube whose star discrepancy tends
to zero as s grows to infinity is Yes, and even much more is possible. This
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was shown first by Heinrich, Novak, Wasilkowski & Wozniakowski [93]. They
showed that there exists a constant ¢ > 0 such that

s
isc*(N,s) < cy/— 1
disc*(N,s) < ¢ I (3.17)
for all N, s € N from which it follows that
N*(s,e) < Cse™2 (3.18)

for some constant C' > 0. Hence, the inverse of star discrepancy depends
only polynomially on s and e~!. In Complexity Theory such a behaviour is
called polynomial tractability.

Furthermore it is known that the dependence on the dimension s of
the upper bound on the Nth minimal star discrepancy in (3.18) cannot
be improved. It was shown by Hinrichs [107, Theorem 1] that there ex-
ist constants ¢,e9 > 0 such that N*(s,e) > es/e for 0 < ¢ < ¢p and
disc*(N, s) > min(eg, cs/n).

In comparison to (3.17) the law of the iterated logarithm for the star
discrepancy (see [61, Theorem 1.193]) states that

. V2ND}(S)

limsup ————— =

N—o0 \/W
for almost all random sequences S in [0, 1)°. However, this result gives abso-
lutely no information about the dependence of the star discrepancy on the
dimension s.

Here we show a slightly weaker bound than those given in (3.17). This
result, which was also shown first in [93], has the advantage that its proof
is more or less elementary and that it contains no unknown constants. Im-
provements can be found in [57, Theorem 3.2] (see also Exercise 3.28) and
in [84, Theorem 2.1]. A similar result for the extreme discrepancy can be
found in [84, Theorem 2.2].

Theorem 3.54 For all N,s € N we have
1/2
2\/5 sx/ﬁ
C s < 2v2 _sVIN
disc*(N, s) < N (s log ({2(log2)1/4 + 1) +10g2> . (3.19)
For all s € N and all € > 0 we have
N*(s,e) < [8 %(slog([2s/c] +1) +log2)]. (3.20)

Proof 'The proof is based on Hoeffding’s inequality from Probability Theory
which states the following: assume that X1,..., X,, are independent random
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variables with expectation 0 and X; € [a;, b;] almost sure for 1 < i < n,
where a; < 0 < b;, and let S, := X7 + --- + X,,. Then for every t > 0 we
have

Prob [|Sy| > #] < 22/ S (bi—ai)”,

Now let 71,...,7n be independent, identically and uniformly on [0,1)*
distributed random variables. For @ = (z1,...,25) in [0,1]° and 1 <i < N
let

a(ci) = X[O,w)(Ti) — X1 Tse

Then the expected value of géf) is E[QS )] = 0 and further we obviously have
|C$)| <lforall1<i<N.Letd>0. Using Hoffding’s inequality it follows
that for all € [0,1]° we have

1 o ()
Prob ”NZQE

i=1

> 5] < 96 9°N/2,

Let T, be the equidistant grid on [0, 1]* with mesh-size 1/m, where m =
[s/d]. Using Proposition 3.17 we obtain now

Prob [Dy({71,...,7n}) < 26]

A(]0,x),N,{T1,..., TN })
N

> Prob {max — X1 Ts

:BEFm

< 5]
>1—2(m+1)fe N2,

The last expression is strictly larger than ¢ > 0, if

2 S N
log ([ 2] +1) —*=- <. 21
1_C+sog 5 + 52<0 (3.21)
This inequality holds for all § > §y = d9(N, s) where

2 2
5(2] = <s log <[%—‘ + 1) + log - c) . (3.22)

1/2

Hence & < < - 2) and substituting this result back into (3.22), it follows
0 og

that

2 sv N 2
2

< N SR BT () S .
% N (8 log ({2(log 2)1/2—‘ 1) log 1- c)

Choosing ¢ = 0, it follows that for all 6 > dy there exist 71,...,7x € [0,1)*
such that D3 ({71,...,7n}) < 2. Therefore we obtain (3.19).
We also have that there exist 71,..., 75 € [0,1)° with Dy ({71,...,7n}) <

log
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¢ whenever inequality (3.21) with ¢ = 0 is fulfilled with 6 = &/2. This is the
case for

N > 8¢ 2(slog(|2s/| + 1) + log2)
and hence (3.20) follows. O

Remark 3.55 From the proof of Theorem 3.54 we even obtain a little bit
more. Namely, for ¢ € [0,1) we have that the probability to choose randomly
a point set P consisting of N points in the s-dimensional unit cube with star
discrepancy of at most

. 2/2 svVN 2 \"*
Dy(P) < ﬁ <slog ({W-‘ +1> + log 1—C>

is strictly larger than c.

The main disadvantage of Theorem 3.54 is that it is purely probabilistic
and therefore by no means constructive. A first constructive approach is
given in [57] which is further improved in [55]. Here a deterministic algorithm
is presented that constructs point sets Py s consisting of N points in the
s-dimensional unit cube satisfying

Dy (Pn,s) = O <

in run-time O (s log(sN)(oN)?), where 0 = o(s) = O((log s)?/(sloglog s)) —
0 as s — oo and where the implied constant in the O-notation is independent
of s and N. This is by far too expensive for high dimensional applications.
An implementation and numerical tests of the algorithm can be found in
[59].
A further improvement is presented in [56]. Here a component-by-component

approach is used to construct point sets Py s consisting of N points in the
s-dimensional unit cube satisfying

. $3/2 N 1/2
DN(Pn,s) = O (W (log (? + 1))

in run-time O(c*N+3)/2 (log g)_(sﬂ)ﬂ s1/475/2) where ¢ > 0 is a constant
and where the implied constant in the O-notation is independent of s and
N. The improved run-time has to be payed with a worse dependence of the
bound for the star discrepancy on the dimension s. Nevertheless, numerical

tests of the component-by-component algorithm in [58] suggest that the star

discrepancy only grows linearly in s rather than with s3/2.
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An overview of many open questions concerning this topic can be found
in [91, 200]. An effective construction of point sets whose star discrepancy
satisfies a bound like in Theorem 3.54 is still not known. An answer to this
question would be certainly a major contribution, especially for users of
QMC rules.

Let us turn now our attention to this problem but for the Lo-discrepancy
instead of star discrepancy. Similarly as for the star discrepancy we define
the following quantity.

Definition 3.56 For integers s, N € N let

disco(N, s) = i]%f Ly N(P),

where the infimum is extended over all point sets P consisting of N points
in the s-dimensional unit cube. Then disca(N, s) is called the Nth minimal
Lo-discrepancy.

In contrary to the star discrepancy here it makes little sense to ask for the
smallest cardinality of a point set with Lo-discrepancy of at most some & > 0.
The reason for this is that the Lo-discrepancy of the empty point set in the s-
dimensional unit cube is exactly 37%/2, which follows from Proposition 2.15,
or in other words, discs(0,s) = 37%/2. Thus for s large enough, the empty
set has always Lo-discrepancy smaller than . (This is not the case for the
star discrepancy which is always one for the empty set.) This may suggest
that for large s, the Ls-discrepancy is not properly scaled.

We define the following quantity.

Definition 3.57 For ¢ > 0 we define
Ny(s,e) =min {N € N : disca(N, s) < edisca(0,5)},
the so-called inverse of La-discrepancy.

Here the situation is quite different. The inverse of Lso-discrepancy depends
at least exponentially on the dimension s. This was shown in [247, 264] in a
much more general setting. In Complexity Theory this exponential depen-
dence on the dimension is called intractability or the curse of dimensionality.

Proposition 3.58 Fore € (0,1) we have

No(s,e) > (1 — £2) (g)

Proof Proposition 2.15 states that for any point set P = {xg,...,xn_1}
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in [0,1)* we have

N—-1 s

N—-1 s
(LQ,N(,P 3———21_[ % Z Hmin(l—xm7i,1—xn7i),

n=0 i=1 m,n=01i=1

where x,,; is the 7th component of the point x,.
With

8 s/2
ke = sup 3°/2 < >
x€[0,1]8 H2V1_xz

(note that the function z — (1 —x )/\/ z for z € [0, 1] attains its maxi-

1-
mum at x = 1/3) we obtain [[7_; —™* < 3% [[7_; /1 — Zn, and hence

N—-1 s 1— ) N-1 s
w211 —38/2NZHV
n=0 i=1 n=0 =1
Ko 1N—ls
< 3s/2 N Z H (1 - x"’i>’
n=0 i=1

where we used Cauchy-Schwarz’ inequality for the second estimate.
On the other hand we have

S

N—
% Z Hmin(lfxm,i,lfmnz Z ZH 1—2p,).

1/2
Letting y := ( Z Hz L (1 mm)) we therefore obtain

2

1 2K Y
2 s
(L2,N(,P>) > ? - 38/2y ~T

The last term becomes minimal for y = Nx,37%/2 and hence,

1 1 8 s
2 2
(Lo (P)? 2 - (1= Ni2) > o <1 N <§> > _
If we assume now that Ly n(P) < e - 375/2 then it follows that 2 >
— N (8/9)° and hence
9

N> (1-¢%) <§>S. O

For a more detailed discussion of tractability of various notions of discrep-
ancy we refer to the work of Novak & Wozniakowski [197, 198, 199, 200].
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3.6 Weighted discrepancy

Apart from the classical concept of discrepancy there is also the idea of
weighted discrepancy as introduced by Sloan & Wozniakowski [247], who ob-
served that different coordinates may have different influence on the quality
of approximation of an integral by a QMC rule.

We assume that we are given nonnegative real numbers v, , for u C Z, the
so-called weights corresponding to the projection on the coordinates whose
indices are in u. We collect these weights in the set v = {7, : u C Z,}.

Definition 3.59 For a point set P consisting of N points in the s-dimensional
unit cube and given weights -, the weighted star discrepancy D}kV,'y is given
by

Dy ~(P)= su max Ap((zy, 1))].
Wa(P) = st e uclAp((2u 1)

For 1 < q < oo, the weighted L,-discrepancy Ly n of P is given by
1/q

Lona(P)= | D0 s [ 18p((z0 1) d2
071 u

Here Ap is the discrepancy function of P as defined in Definition 2.13.
In the literature, mainly the following kind of weights are studied:

e Product weights which are weights of the form v, s = [[;c, Vi,s, for 0 #
u C 7, where v; ¢ is the weight associated with the ith component. In
this case we simply write v = (;5);_;. Often the weights ~; ¢ have no
dependence on s, i.e., Vi s = Vi-

o Finite-order weights of fixed order k € N which are weights with v, s =0
for all u C 7 with |u] > k.

Within this book we restrict ourselves mainly to the case of product weights.

If it is not important, we suppress a possible dependence of the weights
on the dimension s in the following and we simply write -, instead of v .

Note that for vz, s = 1 and 7, s = 0 for all u C 7 we obtain the usual def-
initions of L4- or star discrepancy. Hence Definition 3.59 is a generalisation
of Definition 2.14 and Definition 3.19, respectively. Furthermore, in the case
of product weights, we also have Di’ N = Dy when 1 = (1);>1, the sequence
of weights where every weight is equal to one.

The two most important cases for weighted discrepancies are those of
the weighted Ls-discrepancy and the weighted star discrepancy. Many re-
sults for the classical definitions can easily be generalised to results for the
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weighted discrepancies. For example, also here we have a compact formula
for the evaluation of the weighted Lo-discrepancy of a finite point set (see
Proposition 2.15 for the unweighted case).

Proposition 3.60 For any point set P = {xo,...,xn_1} in [0,1)*

have
(LanaPP = 3 s
P#uCTs
1 N—-1
3\11\ Z H m Z Hmln(l — Tmiy 1- xn,i) ,
n=0 i€u m,n=0 icu

where x,, ; is the ith component of the point x, .

For the weighted star discrepancy we have the following generalisation of
Theorem 3.28.

Theorem 3.61 Let P = {xg,...,xn_1} be a point set in [0,1)° with x,
of the form x, = {y,/b"} with y,, € Z° and integers m > 1 and b > 2.
Then we have

1 lul
* < o .
DN,'y(P) (Z);Iéri%}i Yu,s (1 <1 bm> )

+omax s Y
0#uCTs
kent!
0<|k|oo<b™

where x, , is the projection of x, to the coordinates given by u.
Proof We have

D% _(P) = A 1) < D% (Py),
N~ (P) z:(%lilsﬂggiwsl P((zu ))\_@ggsvu,s ~(Pu)

where Py = {xoy, ..., N1} n [0, 1)/* consists of the points of P projected
to the components whose indices are in u. For any () # u C Z; we have from
Theorem 3.28 that

[u]
pxPa<i- (1) + X mik)

keN‘“
0< k| oa<b™

)

1 N-1
N Z bwalk(a:nyu)
n=0

and the result follows. O
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One of the reasons for introducing a weighted Ls-discrepancy is that
with this concept one can overcome the curse of dimensionality for the
Lo-discrepancy under suitable conditions on the weights . And also for
the weighted star discrepancy one can obtain a weaker dependence on the
dimension for suitable choices of weights.

Definition 3.62 For integers s, N € N let
disc (N, s) = i%f Dy ~(P),

and let

disco (N, s) = i%f Ly n~(P),
where the infimum is in both cases extended over all point sets P consisting
of N points in the s-dimensional unit cube. Then discZ (N, s) is called the

Nth minimal weighted star discrepancy and disca ~(N, s) is called the Nth
minimal weighted Lo-discrepancy. Furthermore, for € > 0 define

Ni(s,e) = min{N € N : disci(N,s) < ¢}
and
N ~(s,e) =min{N € N : discy (N, s) < e - disca (0, 5)},
the inverse of weighted star and weighted Lo-discrepancy, respectively.

Definition 3.63 We say that the weighted star discrepancy and the weighted
Lo-discrepancy, respectively, is polynomial tractable, if there exist nonnega-
tive C, o and (3 such that

Ni(s,e) < Cs®e™P,  and  No(s,e) < Cs% P,

respectively holds for all dimensions s € N and for all ¢ € (0,1). This
behaviour is also called tractability. The infima of o and 3 such that such an
inequality holds are called the s-exponent and the e-exponent of tractability.
We say that the weighted star and the weighted Lo-discrepancy, respectively,
is strongly tractable, if the above inequality holds with a = 0. In this context
one also speaks of strong tractability.

We consider the case of the weighted Lo-discrepancy first.
Theorem 3.64 Assume that the weights v are such that

1 1
2 04uCT, s (W - W)
By :=sup T
seN Z@;&ugzs Vs 3T

< 00,

then the weighted Lo-discrepancy is strongly tractable and the e-exponent is
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at most two. Moreover, in the case of product weights (independent of s)
with decreasing weights, the weighted Lo-discrepancy is strongly tractable, if
and only if .21 vi < 00.

Proof Averaging the squared weighted Lo-discrepancy over all 74,...,7n
from the s-dimensional unit cube yields

9 1 1 1
/[0,1]81\’ (L2,N,7({Tlv oo ﬂ'N})) d'rl cee dTN - N @7&%1 Tu,s w - m .

Hence there exists a point set P consisting of N points in the s-dimensional
unit cube such that

1/2 1/2
1 11 VB Vs
Lo n~(P) < \/—N Z Yu,s <W - m) < Vi Z 30

0#uCTs

1/2
The last term is smaller than ¢ (Z@;éugIs %) if N > By,e 2 This

means that Na~(s,e) < [Bye 2] and hence we have strong tractability
with e-exponent of at most two.
Assume that we are given product weights which are independent of the

dimension s, i.e. yys = [[;c, 7 with a sequence 71,72,... > 0. In this case
we have
1 1 , ,
Socz s (37 - 77) I (04 3) - T, 0+ B)
Z@;&ugzs Yu,s 3|1u\ Hf:l (1 + %)

I+ %) - i
mo oy =0 G)

=1 i=1
< e2im1108(1+7i/6)  o(325_17:)/6

Hence By < oo if > 72, 7; < oo and we obtain strong tractability.
On the other hand, using the lower bound on the unweighted Lo-discrepancy
from the proof of Proposition 3.58 we have

[yl
(La,nH(P))? > Z %’Sﬁ (1 - <§) )

D#uCTs
S S
:—1+H(1+%)+N—NH<1+%>.
=1 i=1

Assume we had strong tractability, i.e., there exist nonnegative C' and [
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with the property that Ny ~(s,e) < Ce= P for all s € N and all € > 0. Then
for N = Ny (s,€) we have

52}2[1(1—%%)_—1—#1—[( %)+N NH(H%)
ZZH1<1+%) H( 2).

Hence, for 0 < € < 1, we have

Ce > N> (- [[ 0 =<1—52>f[<1+L>

87i
z:11+% 27 + 8;

1=
Obviously, the sequence (7;);>1 must be bounded since otherwise we would

have #is% > 11—6 for infinitely many ¢ € N and hence Ce™? > (1 —

£2) (1 + 1—16)d for infinitely many d € N which is certainly a contradiction.
For bounded ~;’s, say v; < M for all ¢« € N we obtain

s

1 1 -
BT (14— ) >0 - ) S,
cez( 6)}_[1<+27+8M%>_( 8)27+8M;%

and thus we must have > -2, 7; < oo. O

For the star discrepancy we have tractability already for the unweighted
case (with s-exponent of at most one and e-exponent of at most two).
From this it follows immediately that the weighted star discrepancy is also
tractable with s-exponent of at most one and e-exponent of at most two as
long as the weights are bounded. However, under a very mild condition on
the weights one can even obtain tractability with s-exponent equal to zero.
The following result was first proved in [108].

Theorem 3.65 If

Cy = sup max fyusx/\u\ < 00, (3.23)
s=1,2,... 0#uC

then for all N,s € N we have

discZ (N, s) < 2\/\/5]_?7 (log ({ps\/ﬁ-| + 1) + log (2(e — 1)5))1/2, (3.24)

2(log 2)1/ 2

where ps = Hence for any 0 < § < 1 there exists a cs > 0 such

that
Ni(s,e) < ’7058_2/(1_5) (log s + 1)1/<1—5>] , (3.25)
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e., the weighted star discrepancy is tractable with s-exponent equal to zero
and with e-exponent at most two.

We stress that we do not have strong tractability in this case as we still
have the logarithmic dependence on the dimension s.

Note that condition (3.23) is a very mild condition on the weights. For
example for bounded finite order weights it is always fulfilled. In the case
of product weights (independent of s) it is enough that the weights ~; are
decreasing and that v; < 1 for an index j € N. In fact, we have

max 7us\/m max \/71—[%

OFuCT i=1
and hence Cy = sups_y 5 /s [[;_; vi. We have

\/_Hf 1% S 1
VS+1HS+11% s+ 17541

for s large enough and therefore it follows that Cy < oo. For example, if
v = 1/log(i + 1), then Cy

> 1

V2
~ log2log3-

Proof of Theorem 3.65 For given number of points N and dimension s and
0 < cy <1 forall ) #uC Z, we consider the set

A= {PMS C[0,1)° : |Pn,s| =N and for all § # u C Z

D (Pn) < 222 (1f1og ([puV] +1) + log (3))/ }

where Py sy = {Zow, ..., ZNn-1u} if Pnvs = {®o,...,xny-1} and where

Pl = % Furthermore, for () # u C Z,, we define

Ay = Ay(ey)

= {PN,S C[0,1)° : |Pys| =N and

Dy (PN,su) < % (Iullog (Mq\/m + 1) + log (f—))m }

From Remark 3.55 we know that Prob[A,(cy)] > 1 — ¢,. Then we have
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A = (Vyrucz, Au and hence

Prob[A] = Prob ﬂ Ay| =1—Prob U AL

@#ugzs @#UQIG
>1- Z Prob[Af] > 1 — Z Cu-
0#uCTs PAuCTs

If we choose ¢, := cs~ " with a constant 0 < ¢ < (e — 1)~!, then we obtain

S 1 S
Prob[A]21—Z<Z)S%:l+c—c(1+g> >1+c—c-e>0.
u=1

Thus we have shown that there exists a point set Py s C [0,1)° such that
for each 0 # u C Z, we have

A

DN(Pnsu) < 2—\/\/; (|u| log ([p‘u‘\/ﬁw + 1) + log <2(e _ 1)3‘“‘))1/2

2\/%\\/[@ <log ([p‘u‘ \/N1 + 1) + log (2(e — 1)5))

1/2

For the weighted star discrepancy of this point set we obtain
Dy ~(Pn.s)

< % (log ({Pm\/ﬂ + 1) + log (2(e — 1)3))1/2 o Yus v/ ul-

Assume now that Cy 1= sup,_; o maxgycr, Yusy/[4] < oo. Then we ob-
tain

1/2

D3y (Pw.s) < W\ENC” (10g ([ VN | +1) +log (2(e - 1)s))

and (3.24) follows.
For any § > 0 there exists a ¢s > 0 such that

1/2

C,2V2 (log ({ps\/ﬁ—‘ + 1) + log (2(e — 1)8))1/2 < (caN‘S(logs + 1))

Hence it follows from (3.24) that N > cse=2/(1=9) (log s + 1)/(1=9) implies
disci (N, s) < ¢ and therefore

NZ(s,e) < {065—2/(1_5) (log s + 1)1/(1_5% ' -
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We close this section by showing that the logarithmic factor in the dimen-
sion in the tractability result from Theorem 3.65 is indeed necessary for a
large class of weights. This implies that the star discrepancy is not strongly
tractable for such weights. In particular, this includes finite order weights
of order k£ > 2 if all the weights of order 2 are bounded below by a constant
c>0.

To prove this lower bound we need an elementary lemma. For u C 7, and
ke {0,1} let

27 2
Lemma 3.66 Let Py s C [0,1)® with |Pn s| = N. Then there exists u C I

with cardinality at least s/2 such that one of the sets Bo(u) and Bi(u)
contains at least half of the points of Py s.

Bk(u):{az:(:cl,...,azs)E[O,l)s D x € [E E) forieu}.

Proof There exists ug C Zg with cardinality at least s/2 and ko € {0,1}
such that &y € By, (up). Inductively, for 1 < h < N, we can choose up, C uj,_3
with cardinality at least s/2"*1 and kj, € {0,1} such that x), € By, (1). Set
u=1uy_; and let £ € {0,1} be such that at least half of the k, 0 <h < N
are equal to k. Then the cardinality of u is at least s/2" and at least half
of the points xg,...,zxn_1 are in Bi(u). O

Now we give the announced lower bound for the weighted star discrepancy
which was first proved in [108].

Theorem 3.67 If the weights v = {v,s : u C Z,} are such that there
exists a constant ¢ > 0 with v, s > ¢ for allu C I with cardinality two, then

for all N,s € N with s > 2Nt we have
c
discL (N, s) > —.
isc3 (N, s) > 3
In particular, the weighted star discrepancy is not strongly tractable for such
weights.

Proof Let P be a point set consisting of N points in the s-dimensional
unit cube where s > 2Vt With Lemma 3.66 we find uy C Z, with car-
dinality 2 such that one of the sets By(ug) or Bj(up) contains at least
N/2 points of P. Without loss of generality we assume that ug = {1,2}.
Let 200 = (1/2,1/2,1/2,...,1/2), 20 = (1,1/2,1/2,...,1/2) and 2 =
(1/2,1,1/2,...,1/2). Furthermore, let ng,n1,ne be the number of points
in the point set P which are contained in the boxes I; x Iy x [0,1)°72 for
Ii=1=1[0,1/2), [, = [1/2,1), ], = [0,1/2) and I, = [0,1/2),T5 = [1/2,1),
respectively.
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Let us first assume that the set By(ug) contains at least N/2 points. Then

© 1y _ ABo(w), N,P) 11
Ap(zuo ,1) = N 121
which implies
* c
DN,'V(P) 2 4

We now treat the case that the set Bj(ug) contains at least N/2 points so
that its complement contains at most N/2 points, i.e.

no +ny + ne < N/2.

Then at least one of the following three inequalities holds

b < 5N 4 < 5N < N
1o n1_12, 1o n2_12, no_3-
If the first inequality holds then it follows that
1 1
Ap(aly) 1) = T - S < -

N 27 12
If the second inequality holds, we have
no + N9

1

If the third inequality is true then

1 1
Ape® y=m 1,1
PlEw =32
In any case D} (P) > {5 and the result follows. O

Again we refer to the work of Novak & Wozniakowski [197, 198, 199, 200]
for a more detailed discussion of tractability of various notions of discrep-
ancy.

Exercises

3.1 Show that a uniformly distributed sequence is dense in the unit cube
and explain why the converse is not true.

3.2 Which one-dimensional point set P consisting of N points in [0, 1) min-
imises D} (P), i.e., for which P do we have D3, (P) = minp: D} (P'),
where the minimum is taken over all point sets P’ consisting of N
points? Which point set P consisting of N points minimises Lo v (P)?
What is the value of D3, (P) and Lo y(P) for this point set? Hint: Draw
the graph of the discrepancy function Ap.
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3.3

3.4
3.5

3.6

3.7

3.8

3.9

Geometric discrepancy

Give a rigorous proof of Theorem 3.3. Hint: See [128, Chapter 1, Corol-
lary 1.1].

Give a proof of Theorem 3.4. Hint: See [128, Chapter 1, Corollary 1.2].
Show that for uniform distribution of the sequence ({na}),>¢ we nec-
essarily need that 1, aq, ..., as are linearly independent over Q.

Show that the b-adic van der Corput sequence is uniformly distributed
modulo one just by counting elements of the sequence in intervals,
i.e., without the use of Theorem 3.7. Hint: Consider elementary b-adic
intervals first.

For b > 2 the b-adic diaphony F, n (see [86] or [97]) of the first N
elements of a sequence S = (x,,),>0 is defined by

1/2
2

Fyn(S) =

Ly LY e
(b+1)5 — 1 2 gy(k)? | N & PVHRER
kENG n=0

k#0

where for k = (ki,...,ks) € N§ it is ¢p(k) = [[7_; ¢u(ki) and for
k € Ny,

1 ifk=0,
Uy(k) = { b*if b" < k < "' where r € Ny.

Show that a sequence S is uniformly distributed modulo one if and
only if imy_oc Fp n(S) = 0 for b > 2. Remark: Compare the b-adic
diaphony with the worst-case error for a QMC rule in the Walsh space
Hyal s b,0,~ S given in Exercise 2.15 (especially in the unweighted case
and with a = 2). Hint: See [97, Theorem 3.1].

For b > 2 the b-adic spectral test oy n(S) (see [95]) of the first N
elements of a sequence S = (x,,),>0 is defined by

1 1 V-1
opN(S) = su — walg(x,)],
)= b 5y [ 2 k(e
k#0

where 1 is defined as in Exercise 3.7. Show that a sequence S is uni-
formly distributed modulo one if and only if limy_,o 0y 5 (S) = 0 for
b>2.

Show that a sequence S is uniformly distributed modulo one if and
only if limy_,oo Dn(S) = 0. Hint: See [128, Chapter 2, Theorem 1.1].

3.10 Give a rigorous proof of the right hand inequality in Proposition 3.14

(draw a picture).

3.11 Prove Proposition 3.16. Hint: See [128, Chapter 2, Theorem 2.6].
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3.12 Let u;,v;,0; € [0, 1] be such that |u; —v;| < 6; for 1 < i < s. Show that

s s
[ L= ]]w
i=1 =1

3.13 Afiniteset I' C [0, 1]* is a 6-cover of [0, 1)® if for every & = (z1,...,x5) €
[0,1]° there exist ¥ = (y1,1,---,¥1,5), Y2 = (Y21,---,Y25) € ['U{0}
with As([0,y5)) — As([0,y1)) < dand y1,; < x; <yg,foralll <i<s.

Let T be a d-cover of [0,1]°. Show that then for any N-point set
P C[0,1)° we have

S

§1—H(1—5i)§3max5i.

- 1<i<s
=1

Dy(P) < max|Ap(y)| + 0.
yel

3.14 Prove a similar formula to that in Proposition 2.15 for the L,-discrepancy
with an even integer gq.

3.15 Show that

1 1 1
2 e _ - -
/[071]SN(L2’N({TI""’TN})) dry---dry N (25 3S> .

Thus, there exists a point set P consisting of N points in the s-
dimensional unit cube such that

1 /1 1\
L <—|=—-= .
2v(P) < % <zs 3s>
Hint: Use Proposition 2.15.

3.16 Let 7, n(«) be the set of all tuples (71,...,7n) with 7; € [0,1]® for
1 < j < N such that

a

LQaN({T17"'7TN})S\/—N<§—§) .

Use Exercise 3.15 to show that for all o« > 1 we have
AsN (Z,N(Oz)) >1—a 2

3.17 Use Theorem 3.26 to show that the point set {0,1/N,..., (N —1)/N}
in the unit interval has extreme discrepancy of order 1/N.

3.18 Prove a similar result to that of Theorem 3.28 also for the extreme
discrepancy. Hint: See [94, Theorem 1].

3.19 For integers myq,...,ms > 2 let

le,...,ms:{<ﬂ &> 0<n; <my forlgigs}

mi mg
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3.20

3.21

3.22

3.23

3.24

3.25

Geometric discrepancy

be the regular lattice consisting of N = mj ---mg points. Show that
then

* > 1
Dy (Conyoms) =1 1;[1 (1 m) :
Let Py = {(‘1—1,...,‘2—5) ca; €{1,3} forall 1 <i< s} be the regular
lattice consisting of 2° points in [0, 1)°. Show that lims_,~, D3.(Ps) = 1.
Let T, be the regular lattice defined by (3.14). Use Theorem 3.27
to show that the extreme discrepancy of I',, is given by Dy(T,,) =
1—(1-1/m)*.
Show that the star discrepancy of the centred regular lattice I', con-
sisting of N = m?® points defined by (1.1) is
1 S
Dy(Ty,)=1- <1 — %> .

In dimensions s = 1 and s = 2, draw a picture to make the result from
Lemma 3.40 more plausible.
Let b1,...,bs > 2 be pairwise relatively prime integers and let S be
the van der Corput-Halton sequence with bases by,...,bs. Show that
for any N > 2 we have

Da(S) < &by, ... b 1B L 6 (M)

N N
with
N 2% 1 [bi/2]
bi,...,bs) = — .
eAbr - bs) s! H log b;
=1
Show further that if by,...,bs are the first s prime numbers, then

c(by,...,bs) =O(s71).
For integers s > 2 and N > 2 consider a generating vector of the
form g = (1,g,4%,...,9°" ') € Z*. Such a choice was first proposed by
Korobov [122] and therefore such lattice points are often called Korobov
vectors or Korobov lattice points. A lattice point set which is generated
by a Korobov vector is often called Korobov lattice point set.

Show, by averaging over all ¢ € Gy that there exists a Korobov

vector for which we have

—1
1,9,6% ..., ) < ~——(1 g

Hint: Recall that any nonzero polynomial of degree k over an integral
domain has at most k zeros.
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3.27

3.28

3.29
3.30

3.31
3.32
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Let P be a lattice point set consisting of N points in [0,1)® with gen-
erating vector g € Z°. Show that the worst-case error for the lattice
rule based on P in the s-dimensional Korobov space iy s o from Ex-
ercise 2.13 is given by

1
2
€ (%(or,s,omlp) = Z ;
hezs\{0} Ta(h)
g-h=0 (mod N)

where r,(h) is as in Exercise 2.13.

Let €2 (g, N) be the worst-case integration error for a lattice rule in the
s-dimensional Korobov space s o for a lattice point set consisting
of N points in [0,1)® with generating vector g € Z°. Let N be a prime.
Show that

= Y AN = 1+ A@)).
ge{0,....N—1}s

Deduce from this result that for any 1/a < A < 1 there exists a gener-
ating vector g € {0,..., N — 1}® such that

e2(g.N) (=14 (1+2¢(aN))

- 1
- N1/
Hint: Use Jensen’s inequality which states that for a sequence (ay) of

nonnegative reals and for any 0 < A < 1 we have (3 a;)* <32 ay.
It has been shown in [57, Theorem 2.3] that there exists a J-cover I' of

d
[0,1]% such that |T'| < Gs—% k’%—‘ + 1) . Use this result together with
Exercise 3.13 to show that

disc* (N, s) < vV2n~2(slog([pn'/?] + 1) + log 2),
3log3

2(31og 3+log 2)

Remark: This is [57, Theorem 3.2]. Smaller d-covers as the one from

[57, Theorem 2.3] have been constructed in [84].

Prove Proposition 3.60.

Prove a similar formula to that of Proposition 3.60 for the weighted

Lg-discrepancy with an even integer ¢. Hint: See [154, Theorem 2.1].

Generalise Proposition 3.16 to the case of weighted star discrepancy.

For product weights, show that the weighted Lo-discrepancy is tractable,

if and only if

where p = . Hint: Follow the proof of Theorem 3.54.

. Z§:1 i
lim sup ———

< 0
S—00 log s
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Nets and sequences

In this chapter we give an introduction to the concept of (¢,m, s)-nets and
(T, s)-sequences. Compared to classical types of point sets and sequences,
like Hammersley point sets or van der Corput-Halton sequences, the general
concept of (t,m, s)-nets and (T, s)-sequences is a more natural one. Whereas
in former examples a certain generation algorithm was the centre and origin
of the investigation, here the starting point is the central property of uni-
form distribution modulo one that all intervals have to contain the correct
portion of points of a sequence. With this definition in mind we search for a
reasonably large class of intervals which are “fair” in this sense with respect
to a finite point set. This leads to the definition of (¢,m, s)-nets and their
infinite analogues, to (T, s)-sequences.

The generation of such point sets and sequences is mainly based on the
digital construction scheme which leads to the notion of digital nets and se-
quences. Although such constructions go back to Sobol’ [251] and Faure [66]
the detailed introduction and investigation of the general concept was given
by Niederreiter [170]. This paper can be seen nowadays as the initiation of
the whole theory of (t,m, s)-nets and (T, s)-sequences. An introduction can
also be found in [175, Chapter 4].

4.1 Motivation, fair intervals

The origin of studying (¢,m, s)-nets, and, more generally, “fair intervals”,
is the property of uniform distribution modulo one (see Definition 3.1). For
a finite point set P = {xo,...,zx_1} in [0,1)° it is never possible that
it is absolutely uniformly distributed. That is, there are always subsets J,
moreover there are always even intervals J in [0, 1)*, for which

A(J,N,P)

N :)‘S(J)
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does not hold. For instance, take an interval J of positive volume containing
none of the points @y, ...,zy_1 (see Figure 4.1). Then A(J,N,P)/N =0 <
As(J). If P is finite such intervals J can always be found.

Figure 4.1 An interval J containing no point of P.

Let us use the following notation.

Definition 4.1 For a given set P consisting of N points in [0,1)°, we say
for a subset J of [0,1)% that it is fair (with respect to P), if

A(J,N,P)

= M)

This notation is also used the other way round.

Definition 4.2 For a given subset J of [0,1)°, we say that a set P con-
sisting of N points in [0,1)® is fair (with respect to J), if

A(J,N,P)

= M)

As we have seen, it is never possible that all intervals J are fair with
respect to a given finite point set P. Indeed from the result of Roth, see
Theorem 3.20, it follows that there even always exists an interval J with

A(J,N,P) (log N)(s—1)/2

. >
~ As(J)| > e N

with a constant ¢; > 0, depending only on the dimension s. However, for
given s and N we could try to consider a certain class C of intervals J in
[0,1)* and to find point sets P in [0,1)® such that any J € C is fair with
respect to P.
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Definition 4.3 For a given set C of subsets J of [0,1)*, C C {J : J C
[0,1)°}, we say that a set P consisting of N points in [0,1)® is fair (with
respect to C), if

A(J,N,P)

~ = Xs(J) forall JeC.

Of course we would like to consider classes C of intervals as large as
possible, with the hope that then for all intervals J in [0,1)® the fraction
A(J,N,P)/N is at least approximately equal to \s(.J).

Let us consider one concrete example. Choose s = 2, N = 16 and

C={Jap=[A/4, (A+1)/4) x [B/4,(B+1)/4) : A, Be{0,1,2,3}},

see Figure 4.2. We remark that the choice of half-open intervals here and in
the following is of minor importance.

Figure 4.2 Intervals Jo 1,J1,1,J2,3,J32 from the class C for s = 2 and
N = 16.

If we choose for P = {x,...,x15} the regular lattice (for convenience
with the points centred in the intervals, see Figure 4.3), then clearly every
Ja,p € C is fair with respect to P, i.e.,

A(Ja,B,16,P) 1

T T

Trivially, any interval J, which is a union of some of the disjoint intervals
Ja,p is fair as well. Consider, for example, J := Jy1 U Ji 1 U Ja 1, for which
we have A(J,16,P)/16 = 3/16 = Xa(J).

Instead of C we could even choose the larger class

Ci = {[A/4,C/4) x [B/4,D/4) : 0< A< C <4,0< B <D <4}

containing all intervals, which are unions of intervals of C. Every interval
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Figure 4.3 The class C for s = 2 and N = 16 and the regular lattice with
16 points.

in C; is fair with respect to the regular lattice P = {xy,...,x15}. But this
fact does not give more information than the fact that the set C of “more
elementary” intervals is fair. This consideration can be extended to arbitrary
dimension s and to arbitrary N of the form N = b* with an integer b > 2.
The regular lattice P = {xo, ..., xps_1} then has the property that

C;_{H[%,$> : 0<Ai<bfor1<z’<s}
i=1

and therefore

(4 B ,
=1

is fair with respect to P. Thus we have a reasonably large class of fair
intervals for the regular lattice.

However, we have already seen that the (star) discrepancy of the regu-
lar lattice (centred or not) is rather large (see Proposition 3.32 and Re-
mark 3.33). Consider, for example, the rather large intervals J; = [0, %) X
[0,1) or Jo = [0,1) x (2, 2), which do not contain any point and so they are,
by far, not fair (we should have A(Jy,16,P) = 2 and A(J3,16,P) = 4). In
general, the interval

s—1
11 31
- 1 -2z
7=110.1) > (26’26)
=1
is empty, whereas we should have A(.J,b°,P) = b*~!, and hence we have

A(J,N,P)
N

1 1 1
DN(P)Z‘ ‘:bzm'

A= o3
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This means that to obtain point sets with a small (star) discrepancy we
certainly have to demand fairness for larger, and in some sense, finer classes
C of intervals.

Now let us try to extend C to a class C such that fairness still can be
attained with respect to certain point sets.

For simplicity let us again restrict ourselves to half-open intervals. Since
for J € C we demand A(J,16,P)/16 = As(.J), we must have A\,(.J) = k/16
for an integer k > 1. Since any interval J of volume k/16 can be represented
by the union of disjoint intervals of volume 1/16, let us restrict ourselves to
intervals of volume 1/16.

Examples of such intervals are intervals of the “elementary” form [0, 1) x
[B B+1) or [A A—H) [B B+1 A A+1 B B+1

£ 854 g, 48 2, T) or [Z’T) X [Z7 T) and similar ones

(see Figure 4.4).

Figure 4.4 “Elementary” intervals of area 1/16.

Considering these intervals means a considerable extension of the class
C. Obviously there are many other intervals of volume 1/16, for example
= [0,2) < [0, f5) or Ja := [55, 1 + 1) X [55, 15 + 1), see Figure 4.5.

Figure 4.5 The intervals J; and .Js.
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It is quite obvious that including intervals of the “Ji-type” (any interval
of prescribed volume) together with the “elementary” intervals in C would
cause problems with finding a point set P in [0, 1)®, which is fair for all these
Jec. Although it is not so obvious, also including intervals of the form

Ja (all translates of intervals from C) together with the elementary intervals
in C, at least in most cases, is a too restrictive demand (see the example
below).

Let us consider

S (A A+l B B+1\
C=9l|2a 2 ) *|3ia 5ia ) °

de{0,1,2,3,4}, 0 < A < 2%, 0§B<24_d}.

Obviously C C C. The question is the following. Is there a point set P =
{zg,..., 215} in [0,1)? which is fair with respect to C? That is, such that
any J € C contains exactly one point of P? The answer is yes! Take, for
example, the 2-dimensional 16-point Hammersley point set in base 2 from
Definition 3.44, see Figure 4.6.

Figure 4.6 The 16 point Hammersley point set in base 2.

We shall show now that it is not possible to satisfy the fairness condition
if we include also intervals of the type Js in C.

Consider the left lower quarter [0,1/2)? of the unit square. It must contain
exactly four points. Any of the four (right half-open) rows Rj, Ro, R3, R4
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and any of the four (right half-open) columns Ci,Cy, Cs, Cy, indicated in
Figure 4.7, must contain exactly one point.

=

1
2

[N

0 0 0
00, C» C3 Cid 0 1o

N[~

Figure 4.7 Placing four points in [0,1/2)? which are fair with respect to
Rl, RQ, Rg, Ry and to Cl, Cg, 03, 04.

In what way ever one tries to place four points in the above square (see
again Figure 4.7), there are either two small sub-squares of type @, contain-
ing one point each, which are joined at one vertex, or the square P remains
empty. The intervals S and P are of type Ja, are of volume 1/16, and there-
fore should contain exactly one point. Hence it is useless to demand the
fairness condition for a class of intervals containing the elementary as well
as also the Jo-type intervals.

In general it is reasonable to ask the following. Given a dimension s and
a number N, which is a power of any integer base b > 2, say N = b™
(in the above example we restricted N = b°), is there always a point set
P = {xo,...,xn_1} in [0,1)® which is fair with respect to the class C of
elementary intervals of order m (see Definition 3.8)7 That is, is there a

point set P = {xq,...,xn_1} which is fair with respect to
S
~ A Ai+1
C:{H[b_dj7sz> vdy, ... ds € No, dy + -+ +ds =m,
i=1

O§Ai<bd"for1§i§s}?

The answer is, in general, no. A proof of this fact was given by Sobol’ [251].

Example 4.4 We show that even for s = 4 and N = 22 (b =2 and m = 2)
such a point set does not exist. In our argument we follow the proof of this
result in [251, Section 5.5].

Assume to the contrary that there are four points xg,x1, T2, x3 which
are fair with respect to the corresponding C. For abbreviation let us write
(k1ly, kala, ksls, k4ly) to denote the interval H?Zl[ki, l;). The four-dimensional
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unit cube [0, 1)* is the union of the sixteen disjoint intervals

(05,03,03,0%) type 0
1 1 01 nl 1 0l 1l 1
<§17O§70§70§>7- -7(05705705751) typel
11 1 1 0l 1 1 19 1
(51,51,05,05)7,(05,05,51,51) type2
11 11 1 1 1 19 19 1
(51751751705)7' '7(0§7§L§L§1) type3
(31,141,131, 11) type 4

Because of symmetry we can assume without loss of generality that xy €
(03,03,03,03).

1. Assume that x; is also an element of the type O interval or @i is an
element of a type 1 interval, without restriction of generality say x; €
(% 1, 0%, O%, 0%) or of a type 2 interval, without restriction of generality say
T € (%1, %1, O%, ()%) Then there are at least two points in the elementary
interval (01,01, O% , O%) of volume % which must contain exactly one point.

2. Assume that @1 is an element of the type 4 interval (%17 %1, %1, %1) Then
with the same argument as above none of the points @5 and a3 can be
contained in a type 4 interval or a type 3 interval, and so there is no

space at all for x5 and x3.

3. Therefore ; and x5 (and also x3) must be contained in type 3 intervals,
without loss of generality assume they are contained in (0%, %1, %1, %1) U

(%1,0%, %1, %1) Then there are at least two points in the elementary

interval (01,01, %1, %1) of volume i which must contain exactly one point.

Hence a fair distribution of four points in [0,1)%, in the above sense, is not
possible.

The answer to the question, when a fair distribution can be attained
depends on the parameters b and s (and not on m) as is shown in the
next section. Alas, in general, the demand for fairness for all intervals in
C must be weakened. A quite reasonable way to do this is the following. If
P ={xo,...,xn_1} is fair with respect to all elementary intervals

u A, A +1
eSS

i=1

of volume b~ in 5, ie., di + -+ ds = m, then of course it is also fair

with respect to all intervals Hle[bATj_, Agjgl) with dy +--- + ds < m, since

any such interval is disjoint union of elementary intervals of volume b~™.
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For example,
1 1 1 3+k 44k
) [)-UlE)[550)

see Figure 4.8.

...............................

Figure 4.8 A disjoint union of elementary intervals.

To weaken the original condition

“fairness with respect to all J = [[;_, [;}ij , Ab"(;:l) with dy + -+ +ds =m”,

i.e., to all b-adic elementary intervals of order m (see Definition 3.8), we
could instead demand

“fairness with respect to all J = Hj:l[lfii , Aljji'l) withdy +---+ds =m —1",

i.e., to all b-adic elementary intervals of order m — 1. Obviously the first
condition does contain the second condition, whereas the second condition
does not contain the first one. To illustrate this, consider the example in
Figure 4.9 for s = 2,b = 2 and N = 22. The four points are fair to all 2-

Figure 4.9 An example for s = 2,b =2 and N = 22.
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adic elementary intervals of order 1 (area 1/2), but there is no point in the
elementary interval [0, %) x [0, 1) of order 2 (area 1/22). If this condition still
cannot be satisfied, then we can again replace the order m — 1 by m — ¢ for
some 2 < ¢t < m. Finally, by choosing ¢t = m, we obtain the condition that
xo,...,eN—1, with N = 0™ is fair with respect to [0,1)*, which is trivially
satisfied.

We motivated these considerations by starting with the (centred) regular
lattice. Let us finish this section with an example by considering the regular
lattice (centred or not) once more with respect to the above condition on
elementary intervals.

Let a dimension s and a base b be given and let N = b" be such
that we can generate a (centred) regular lattice with N points. This is
certainly possible if m = Ls for a positive integer L. Then for points
of the centred regular lattice we can choose the centres of the sub-cubes

[T (4, 4,0 < Ay < bE for 1 < <.

Example 4.5 For s = b= L = 2 we get the point set from Figure 4.10.
This point set is not fair with respect to all 2-adic intervals of order 4 or

Figure 4.10 Centred regular lattice I'{ with 16 points and an elementary
interval of order 2.

of order 3. For example, the elementary interval [0,%) x [0,1) of order 3
(area 1/2%) contains no point of the (centred) regular lattice. However, it
is fair with respect to all elementary intervals of order 2 (area 1/22) and of
lower order, since any elementary interval of order 2 is a (disjoint) union of
sub-cubes [4, %) X [%, %) with 0 < A;, Ay < 4, all of which contain
one point, have area 1/2% and are therefore fair (see Figure 4.10).

In general we have the following result.

Lemma 4.6 The (centred) reqular lattice of b** points in [0,1)* is fair for
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the class of all b-adic elementary intervals of order L. It is not fair for the
class of all b-adic elementary intervals of order L + 1.

Proof The b-adic elementary interval [0, bL%) x [175[0,1) of order L+1is
not fair with respect to the regular lattice. Any b-adic elementary interval J

of order L, say J = [[;_ £, 25tL) with dy + -+ +ds = L and 0 < A; < b

for 1 <i <'s, can be represented as the disjoint union of fair sub-cubes by

bl=d1(A1+1)—1  bEds(Ag+1)—1 s

= U . U H[;—%%)

By=bL—d1 A, Bo=bL—ds A, i=1
Therefore J is fair and the result follows. O

In this section we have provided the motivation for the definition of a
(t,m, s)-net in base b, which is given in the next section.

4.2 (t,m,s)-nets and their basic properties

Motivated by the discussion in the previous section we give the following
definitions (thereby we essentially follow the general definitions given for
the first time by Niederreiter in [170]).

Recall that, according to Definition 3.8, for a given dimension s > 1,
an integer base b > 2, and a nonnegative integer k, a b-adic s-dimensional
elementary interval of order k is an interval of the form

A A+ 1
- 1[5 5).

where di,...,ds € Ngwith d; +---+ds =kand 0 < 4; < b% for 1 <i < s.

Definition 4.7 For a given dimension s > 1, an integer base b > 2, a
positive integer m, and an integer ¢t with 0 < ¢ < m, a point set P of b™
points in [0,1)® is called a (t,m,s)-net in base b if the point set P is fair
with respect to all b-adic s-dimensional elementary intervals of order m — t.

Definition 4.8 A (t,m,s)-net in base b with ¢ > 1 is called a strict
(t,m, s)-net in base b if it is not a (¢t — 1, m, s)-net in base b. Furthermore a
(0,m, s)-net in base b is called strict by definition.

Remark 4.9 1. The property for P to be a (¢, m, s)-net in base b means

that every interval J = Hle[l%ﬁ, Agdf_l) with dy +--- +ds = m —t, that

is, of volume b~"*  contains exactly b points of P.




4.2 (t,m,s)-nets and their basic properties 133

2. Since for every k > 1 every b-adic s-dimensional elementary interval of
order k — 1 (volume b—**1) is the union of b disjoint b-adic s-dimensional
elementary intervals of order k, every (¢,m, s)-net in base b with t < m—1
is also a (t + 1,m, s)-net in base b.

3. Every point set of b points in [0,1)® is an (m,m, s)-net in base b. The
condition then is that the interval J = [0,1)® contains b™ points of the
set, which is trivially satisfied.

4. Tt does not make sense to define the notion of (¢, m, s)-nets in base b for
negative t, since a point set of 0" points can never be fair with respect
to an interval of volume less than 6=,

5. We call t the quality parameter of the (t,m, s)-net.

First examples
We provide two examples for (t,m, s)-nets.

Example 4.10 As a first nontrivial example let us consider a (centred)
regular lattice P = {xq,...,xy_1} of N = b points in [0,1)*. Letting
m = sL, the point set is in any case an (m,m,s)-net in base b. But, by
Lemma 4.6, we have that P is fair with respect to every b-adic s-dimensional
elementary interval of order L, and this order L is optimal. Consequently
we get the following corollary from Lemma 4.6.

Corollary 4.11 The (centred) reqular lattice of b™ points, with m = sL,
in [0,1)* is a strict (m(1 — 1), m, s)-net in base b.

Remark 4.12 Intuitively, the strict quality parameter t = m(1 — 1/s) in
the scale between 0 and m is rather large for dimension s > 3. This fits
with the bad order of magnitude of the (star) discrepancy of the regular
lattice in dimensions larger than or equal to three. For s = 1 we obtain an
equidistant point set in [0, 1) of optimal star discrepancy 1/(2N), which fits
with the optimal quality parameter t = 0. For s = 2, the regular lattice has
a discrepancy of order 1/ V/N, an order which essentially coincides with the
average order of the discrepancy of N-element point sets in [0, 1)2. This again
fits with the median value m/2 for the quality parameter ¢. (We remark that
these results also hold for the ‘noncentred’ regular lattice.)

As a second example let us consider a two-dimensional Hammersley point
set in base b, see Definition 3.44.

Lemma 4.13 For a given base b and a given positive integer m, the two-
dimensional Hammersley point set P = {xo,...,xn_1} with N = " and
xr = (k/N,¢p(k)) for0 <k <N —1isa (0,m,2)-net in base b.
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Proof First recall the definition of the b-adic radical inverse function .
For a nonnegative integer k with b-adic expansion k = k,_ 10" '+ kp_ob" "2+
-+« 4+ Kk1b + Ko we define
Ko R1 Rpr—1
E) = 2 4 M
eulk) = 5 gt
For a b-adic elementary two dimensional interval J of order m, i.e.,

A A +1 Ay Az +1
J = Bl X pm—d’ pm—d

€ [0,1).

with 0 < A; < b® and 0 < Ay < b™ %, we have to determine the number of
x;, contained in J. Recall that this number should be one.

Note that for k£ with 0 < k < b™ and b-adic representation k = k,_1b™ 1+
-+ + Ko the point x; belongs to J if and only if

k Ay AL +1 Ay Ax+1
b_m |:b—d, T) and QOb(k) S |:brn—d’ W) .

This is the case if and only if
Albmid < Kmflbmil + -+ Kko < Albmid + pm—d

and

Agbd < Robm_l + ot R < Agbd + b,

By the first condition the digits K,,_4, - .., Km—1 are uniquely determined
(whereas the digits K,—q—1,- .., ko can be chosen arbitrarily). By the second
condition the digits ko,...,Km—qg—1 are uniquely determined (whereas the
digits Km—d,- .., Km—1 can be chosen arbitrarily). Hence there is a uniquely
determined k such that x; € J. O

A (0,m, s)-net in base b does not exist for all parameters m,s, and b. For
instance, in Example 4.4 it was shown that there does not exist a (0, 2,4)-net
in base 2. Consequently we show below that there does not exist a (0, m, s)-
net in base 2 for any m > 2 and s > 4. Before we do so, we convince
ourselves of several, so-called, propagation rules for (t,m,s)-nets. Here, a
propagation rule is a method of constructing new (¢, m, s)-nets from other,
given, (t,m,s)-nets.

Propagation rules for nets

Note that a (t,m,s)-net in base b easily looses its quality by elementary
movements. It does not loose its net property entirely since any point set of
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b™ points in [0,1)® is a (m, m, s)-net in base b. However, its quality param-
eter t has no stability with respect to even simple movements. For instance,
consider the (0,2,2)-net in base 2 from Figure 4.11 (left picture) and ap-
ply a translation along b or a reflection on a, considered modulo one in
each coordinate (see Figure 4.11). Then both new point sets are now strict
(2,2,2)-nets in base 2. As we see below, more stability can be found for
so-called digital nets (see Lemma 4.63 in Section 4.4).

\a
N

Figure 4.11 (0,2,2)-net in base 2 with elementary movements.

We may ask what happens with the net-structure if we merge (¢, m, s)-nets
in base b to one point set. Assume we have r point sets Py,...,P,, where
P; is a (t;, m;, s)-net in base b. Assume further that b + ... + " = p"™
for some integer m. Then the multiset union P := P; U...UP, is of course
a (t,m, s)-net in base b, at least for ¢ = m. But we can say even more.

Lemma 4.14 For 1 < j < r let Pj be (tj,mj,s)-nets in base b, with
mi,...,my such that b™ + - + 6™ = b for some integer m. Then the
multiset union P =Py U...UP, is a (t,m,s)-net in base b with
t=m— lrgrl];gT(mj — ;).

Proof Let J be an elementary interval in base b of order w := minj<;<,(m;—
tj). For every 1 < j <, J contains exactly 0™ ~" of the elements of P;. Note
that any interval of order less than or equal to m; —t; is fair with respect
to Pj and that w < m; —t;. Hence J contains exactly Z;Zl piTw = pm-w
elements of P and is therefore fair with respect to P. Consequently, the
strict quality parameter ¢ of P is at most m — w and the result follows. [

Remark 4.15 For example, the superposition of " copies of a (¢, m, s)-net
in base b yields a (t + r,m + r, s)-net in base b. This is [190, Lemma 10].

Let P = {xg,...,xpm_1} be a (t,m,s)-net in base b and let 1 < n < s.
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Fix now any n of the s dimensions, without restriction of generality, say, the
first n dimensions. For every x; we now consider only the first n coordinates.
We obtain an n-dimensional point set, say, P = {yg, -+, Ypm_1}. We then
have the following lemma.

Lemma 4.16 Let P be a (t,m,s)-net in base b and let P be defined as
above. Then the point set P is a (t,m,n)-net in base b.

Proof Let J be a b-adic n-dimensional elementary interval of order m — ¢,
then J := J x [0,1)°~™ is a b-adic s-dimensional elementary interval of order
m —t and hence .J contains exactly b’ of the xj, 0 < h < b™. Since J puts no
conditions on the last s — n coordinates this means that J contains exactly
b' points of the point set P (see Figure 4.12 for an example). O

Figure 4.12 Projection of a (0, 3,2)-net in base 2 to the first components.

The above result cannot be improved in the following sense. If P is a
strict (t,m, s)-net in base b, then we cannot conclude that P is also a strict
(t,m,n)-net in base b. An extreme example is the following.

Let P = {xg,...,xym_1} be defined by x) = (O,bim) for 0 < k < b™.
Then P is a strict (m,m,2)-net in base b. Its first projection is a strict
(m,m,1)-net in base b and its second projection is a (0, m, 1)-net in base b
(see Figure 4.13).

We have now propagation rules concerning ¢ and s (see also the collec-
tion of the propagation rules in Chapter 9). In the following we provide a
propagation rule concerning m.

It is not true in general that for a (¢, m, s)-net P = {xg,...,xym_1} in base
b the truncated point set P = {xo,...,xpr_1}, for some r with t < r < m, is
a (t,r,s)-net in base b. (Note that the case r <t is trivial since every point
set of b" points is a (r,r, s)-net in base b.)
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Lo

$

Figure 4.13 Projection of a (m, m, 2)-net to the first and second component.

The question arises now how to propagate in this case. We use the follow-
ing approach (for an illustration see Figure 4.14):

Figure 4.14 A (0,4, 2)-net in base 2. The points in the elementary interval
from the left picture yield a (0,2,2)-net in base 2 after doubling both
coordinates. The points in the elementary interval from the right picture
yield a (0,3, 2)-net in base 2 after doubling the second coordinate.

1. Let P ={xo,...,xpm_1} be a (t,m, s)-net in base b, and let t < r < m.
2. Take any elementary interval J = le[%_, Abgt !
with dy + -+ +ds = m — r. Since m —r < m — t this interval contains
exactly b elements of the net P.

3. We now translate the point (1%’ ce I;‘}Tz) of J to the origin and blow up

the translated J and the translated net-points in J to the unit cube. That

) of order m — r, i.e.,
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is, we apply the affine transformation 7" : R® — R?,

A A
. d 1 ds s
a:.(atl,...,xs)'—><b1<x1—b71>,...,b (xs—st>>

to J and to the net points in J.
4. The point set obtained in this way, consisting of b" points, is denoted by

P={y0:--- Ypr_1}-
We claim that P forms a (¢,7, s)-net in base b (see also [175, Lemma 4.4]).

Lemma 4.17 Let P be a (t,m,s)-net in base b, let t < r < m and let J
be an elementary interval of order m —r. Let T be an affine transformation
of J onto [0,1)%. Then the points of P that belong to J are transformed by
T into a (t,r,s)-net P in base b.

Proof Let J' be a b-adic s-dimensional elementary interval of order r — t.
The number of points y, from P contained in J’ equals the number of
points @ from P contained in the b-adic s-dimensional elementary interval
T~Y(M'") of order (r —t) + (m —r) = m — t. This number is exactly b’ since
P is a (t,m, s)-net in base b. O

Ezistence of (0,m,s)-nets in base b

As a corollary from Lemma 4.16 and Lemma 4.17 we obtain the following
corollary.

Corollary 4.18 A (0,m, s)-net in base 2 cannot exist if m > 2 and s > 4.

Proof 1If a (0,m, s)-net in base 2 with m > 2 and s > 4 exists, then, by the
above propagation rules (Lemmas 4.16 and 4.17) on m and s, a (0,2, 4)-net
in base 2 would exist, which is a contradiction in view of Example 4.4. [

Obviously, the point set {:no =(0,...,0),x = (%, cl %)} forms a (0,1, s)-
net in base 2 for all s. For s = 2, the two-dimensional Hammersley point
set with 2™ points gives, for any integer m > 1, a (0,m, 2)-net in base 2 by
Lemma 4.13. Hence, concerning the existence of (0, m, s)-nets in base 2, the
only question remaining is whether there exist (0,m,3)-nets in base 2 for
all m > 2. This question was answered in the affirmative by Sobol [251].
Concrete examples of (0, m, 3)-nets in base 2 for any m > 2 are given in Sec-
tion 4.4. (The examples given there are also special cases of nets obtained
from Sobol’-, Faure- and Niederreiter sequences, see Chapter 8).

In arbitrary base b > 2 we have the following result, which for the first
time in this form was shown by Niederreiter (see [175, Corollary 4.21]).
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Corollary 4.19 A (0,m, s)-net in base b cannot exist if m > 2 and s >
b+ 2.

This corollary is a consequence of the following lemma:
Lemma 4.20 A (0,2,b+ 2)-net in base b > 2 cannot exist.

Proof Assume to the contrary that a (0,2,b + 2)-net P = {xo,...,xp2_1}
in base b exists. Then any elementary interval of the form

0.1) x |55 ) 0.1 x |7 5 ) <ot

of volume b2 contains, by the net property, exactly one point of P. We call
this the “orthogonality property” of this net.

Let us check in which interval of the form [A/b, (A + 1)/b) of length b~!,
where A € {0,...,b — 1}, each coordinate of each net point x,, contained.
That is, we describe any x,, by a vector

)

Ly — )
agH_Q)
where ag) € {0,1,...,b— 1} is chosen such that the ith coordinate x,; of
&, is contained in the interval [agf)/b, (aff) +1)/b).
Let us set these b? column vectors side by side, so we get an array of
numbers of the form

I I e Lp2_q
I(1) I(1) (1)
Qg ay R CH (4.1)
A ) e

Let us now take any two of the rows of the above array, say

R

a?‘) () Gt
J J J
ag ay cee Gy g,

then the “orthogonality property” of the net is equivalent to the fact that
the above b? two-dimensional columns

(4)
% ) k=0,.. 21

)
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attain any possible value ( :L >, with n,r € {0,...,b — 1}, exactly once.

Therefore, in particular, any possible value n € {0,...,b— 1} must occur in
any row exactly b-times.

However, we show that this property cannot be satisfied for all possible
pairs of rows.

Assume to the contrary that any two of the b+ 2-rows satisfy the orthog-
onality property. Without restriction of generality we can assume that in
array (4.1) the values of the first column all equal 1 (a permutation of the
values 7 € {0,...,b — 1} in a single row of the array does not affect the
“orthogonal property”).

Then in any of the remaining > — 1 columns 1 can occur at most once.
However, since in each row 1 must occur b-times, we would need place for
(b—1)(b + 2) remaining 1’s in these b? — 1 columns. Since (b — 1)(b +2) =
b2 +b—2 > b> — 1, we obtain a contradiction. ]

Again, it is easy to provide a (0, 1, s)-net in base b for any dimension s.
Faure- and Niederreiter sequences (see Chapter 8) provide, for any prime-
power base b, any m > 2, and any s < b+1, examples of (0, m, s)-nets in base
b. Hence the question concerning the existence of (0,m, s)-nets in base b is
solved for all prime-power bases b. In general, it is not solved for composite
bases b. It is known that the maximal dimension s for which there exists a
(0,m, s)-net in base b with m > 2, for composite b, is much smaller than
b+ 1. For more information see [139, Section 3] and the MINT database to
be found at

http://mint.sbg.ac.at/
We just point out the following singular result.
Lemma 4.21 There does not ezist a (0,2,4)-net in base 6.

The above considerations can be formulated and proved more elegantly
in terms of combinatorial objects like orthogonal Latin squares or ordered
orthogonal arrays. This is done in Chapter 6.

Further propagation rules for nets

We have already shown propagation rules for the parameters t,m, and s of
a (t,m, s)-net in base b. In the following we consider possible propagation
rules for the parameter b, the base of the net.

Such propagation rules principally should be of the following form.
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1. Any (t,m,s)-net in base b is a (t',m’, s')-net in base ¥', or
2. if there exist (t;,m;, sj)-nets in bases b; for 1 < j <[, then there exists
a (t',m’,s")-net in base b'.

Note that for results of the first form, there must be a principal connec-
tion between the compared bases b and ¥, since the number of points b™,
respectively ¥ remains unchanged. That is b™ = ¥™ . Therefore b and b’
must have the same prime divisors, say b = p{*---p2 and b = p’fl e pffr
with a;,8; > 1 for 1 < i < r. Since b = b we get ma; = m/f; for
1 < ¢ < r. Let d denote the greatest common divisor of m and m’. Then
the integer m := m/d divides f3; and the integer m’' := m’/d divides «;, and
i i= oy /M’ = B;/m is a positive integer. Let ¢ = p]* ---p), then b = ¢™
and b’ = ¢™. Therefore a simple propagation rule of the first kind can only
exist if b and b are powers of a common “base” ¢, say b = ¢ and ¥ = ¢
with L and L' relative prime. Further, since then ¢k = pym = p'm' = L'
that is Lm = L'm/, with ged(L, L) = 1 we must have m = pL and m’ = pL
for some positive integer pu.

Consequently, propagation rules of the first kind have to be of the following
principal form. Any (¢, uL’, s)-net in base ¢” is a (¢, uL, s)-net in base ¢

We do not give base-propagation rules of the second type here. But also
the base-propagation rules of the first kind are of a more complex nature
than the propagation rules on m,s, and t.

The simplest base propagation rule is based on the following fact concern-

ing elementary intervals.

Lemma 4.22 Let the integers b, k > 2 be given. Any b*-adic s-dimensional
elementary interval of order n is a b-adic s-dimensional elementary interval
of order nk.

Proof Let J = TTi_[giia (yoa) with di > 0 and 0 < A; < (0F)* for
1 <i < sanddy +--+ds = n be an arbitrary bF-adic s-dimensional

elementary interval of order n. Define d} := kd;, then J = Hle[%, %)
with d; > 0,0 < A; < b% for 1 <i < sand d| +--- +d, = nk is an b-adic
s-dimensional elementary interval of order nk. U

The converse, in general, does not hold. For instance the 2-adic 2-dimensional
elementary intervals of order 2 are the intervals

0,1) % [0,), [0.1) x [F,5), [0.1)x[5,3), [0,1)x[§.1),
[0,5) < [0,3), 10,3)x[3,1), [5,1)x[0,5), [5,1)x[5,1),
[0.3) > [0,1), [1.5)x[0,1), [5,%) x[0,1), [§.1)x[0,1),
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whereas the 4-adic 2-dimensional elementary intervals of order 1 are just the
intervals in the first and in the third of the above lines.
Consequently we immediately obtain the following result.

Corollary 4.23 Any (t, puk,s)-net in base b is a ([t/k], u, s)-net in base
b*. The converse, in general, is not true.

Proof Any bF-adic s-dimensional elementary interval of order u — [t/k] is
a b-adic s-dimensional elementary interval of order k(u — [t/k]) < ku —t.
Hence it is fair with respect to the (¢, uk, s)-net in base b.

To provide a counterexample for the converse assertion, consider the
(0,1,2)-net in base 4 given in Figure 4.15, which is not a (0,2,2)-net in
base 2 (consider the corresponding elementary 2-adic and 4-adic intervals
listed above) and the result follows. O

Figure 4.15 A (0,1, 2)-net in base 4 which is not a (0,2, 2)-net in base 2.

However, it is obvious that some relation must also hold in the converse
direction and therefore, in general, between the quality parameters of a
(t, L', s)-net in base ¢ and a (¢, uL, s)-net in base ¢~

The following base propagation rule was first given in [215], see also [216].

Theorem 4.24 For given integers ¢ > 2, L and L' > 1 with ged(L, L") =
1, for every dimension s, and all positive integers p we have that every
(t,uL', s)-net in base ¢* is a (', uL, s)-net in base ¢, where

e

Remark 4.25 Before we prove the theorem let us consider some special
cases. For the trivial case of equal bases, i.e., for L = L' = 1, by the above
estimate for ¢/, we get the best possible result ¢ = t'. For the case considered
in Corollary 4.23, i.e., L = 1 by the above estimate for ¢ we get the best
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possible result ¢ = [t/L"]. For L' = 1 we rewrite the above result and state
it as a corollary on its own.

Corollary 4.26 For a given base b > 2 and any integer k > 1, every
(t,m, s)-net in base b* is a (t',mk, s)-net in base b with

t' =min(t + m(k — 1), kt + (s — 1)(k — 1)).

This result, for some cases, improves the corresponding result given by
Niederreiter & Xing [190, Lemma 9], verifying a quality parameter t' =
min(km, kt + (s — 1)(k — 1)). Of course, t + m(k — 1) < km always. The
result of the corollary is better than the result of Niederreiter & Xing if and
only ift+m(k—1) <kt+ (s—1)(k—1)and if t + m(k — 1) < km, i.e., if
m<s—1+tandift <m.

Proof of Theorem 4.2/ We write m = pL’ and m’ = pL. Take an elemen-
tary interval J in base ¢ of order, say m’ — t” (with some nonnegative

integer ), i.e., of volume ¢~ (™ _t"), say

S
J 1117 Z// >
E[CLdi L

with d} +---+d, =m' —t". For every 1 <1i < s we set L'd, = Ld; — r; with
0<r; <L, then

7 f[ A;d o Aici
= oLd; 0T oLd;

=1

T A + ki A 4+ 1
:HU[ CCLdi ’ Cchi >

i=1 k=0

T T S TA +kA k41
= U U )

ks=0 1=1

Therefore J is the union of elementary intervals in base ¢’ of order d; +
.-+ dg each. Therefore, .J is fair with respect to a (¢,m, s)-net P in base c”
if
di+---+ds <m—t.

Substituting L~1(L'd, — r;) for d;, this is equivalent to

S S
L’ng —I—Zri < L(m —t)
i=1 i=1
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and therefore to

S
L'm' — L't" + Z r; < Lm — Lt.
=1

But, since L'm’ = L' Ly = Lm, the last inequality is equivalent to
S
't — Z r; > Lt.
i=1

Hence, if t” is such that for all d,...,d, € Ng with d} +---+d, =m/ —t"
we have

S
ot = r > Lt,
=1

then P is a (£, m’, s)-net in base ¢’. That is, we can set

t'=min{t" : L't — M(¢") > Lt}, (4.2)
where
M(t”)
= max {Z(—L'dg (mod L)) : dj,...,d, € Ngand > dj =m'— t”} :
i=1 i=1

In the following, in order to obtain the desired estimate for ¢/, we estimate
M (") in two different ways.

1. First we have

M(t") = max {Z(—L/d; (mod L)) : dy,...,ds € Ny

and Zdé =m' — t”}
1=1
< max {Z(L’ (mod L))d; : d},...,d, € Np
and ng =m' — t”}
i=1
= (=L (mod L))(m' —t"). (4.3)

Now from (4.2) it follows that
t' <min{t" : L't" — (=L" (mod L))(m' —t") > Lt},



4.2 (t,m,s)-nets and their basic properties 145

which is satisfied for all ¢’ with

p Lt+ pL(—L"  (mod L))
t 2[ '+ (L' (mod L)) w

. Further, if we define

s

N(t") := max { > (L'k;i (mod L)) :
i=1

ki €{0,...,L —1} and Zkizt" (mod L)},
i=1

then M (t") < N(t") always.
For N(t"), by its definition, we conclude the properties

N({") < i(L —1)=s(L-1) (4.4)
=1
and
N(t")y=L't" + kL (4.5)

for some integer k.

Take now ki,...,ks—1 such that L'k; = L — 1 (mod L) for 1 <i < s
and ks such that > 7 | k; = t” (mod L), that is, L'ks = L't" + s — 1
(mod L). Then

> (L'k; (mod L)) = (s —1)(L—1)+ (L't" +s—1 (mod L)).
i=1

If N(t") were larger than the right hand side of the above equation, then,
by (4.5), we had

Nty > (s—1)(L—1)+L>s(L—1),

which contradicts (4.4). Therefore we get as second estimate for M (")
that

M{")<(s—=1)(L-1)+Lt"+s-1 (mod L)).
Again from (4.2) it follows that
t' <min{t" : L't" — (s —1)(L—-1)— (L't" +s—1 (mod L)) > Lt}.
We show now that the smallest t” satisfying the second condition is

o {LH— (s —L})(L - 1)} |
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which implies the statement of the theorem.
Let L't" = Lt 4+ (s — 1)(L — 1) + F for some integer F'. Then

Lt —(s—1)(L—1)— (L't"+s—1 (mod L)) = Lt+ F—(F (mod L))

and this is > Lt if and only if F' > 0. Hence the minimal ¢’ is given by

[LH— (s —L/1)(L— 1)} |

and the result follows. O

4.3 (T,s)- and (¢, s)-sequences and their basic properties

A disadvantage of nets in base b is that the number of points is restricted
to a power of b. At first glance one could argue that we can always choose b
arbitrarily large and m = 1, which would mean that there is no restriction at
all. However, it is intuitively obvious (and is supported by the discrepancy
estimates in Chapter 5) that the structure of a (¢, m, s)-net in base b becomes
strong only if m is large compared with b. Hence, for a given number N of
points, it is sometimes better to realize the point set with a small base b,
i.e., a larger value for m, and with a suboptimal quality parameter ¢, than
to choose a large base b (e.g. b = N) (and therefore a small m, for instance
m = 1), in order to obtain an optimal quality parameter ¢ (e.g. t = 0).
(As we have already seen in Section 4.2 the (0,1, s)-net in base b given by
the points x, = (n/b,...,n/b) with n = 0,...,b — 1 has no favourable
distribution property at all.)

To overcome this problem, i.e., in order to obtain net-like point sets of
high distribution quality for any given number N of points, the following
principal idea was born.

Try to patch up a whole infinite sequence (x,,),>0 in [0, 1)* from (0,m, s)-
nets in a given base b, in the sense that for any m > 1, any subsequence of
the form @, ..., @, pm_1 of length 6™ is a (0,m, s)-net in base b.

Such a sequence intuitively would show outstanding distribution proper-
ties. However, this demand certainly cannot be satisfied in general because
of two reasons. The first reason is obvious, (0,m,s)-nets in a base b do
not exist for all s and m. We may however replace in the property above
“(0,m, s)-net” by “(t,m, s)-net with ¢ as small as possible”. The second rea-
son is, in general, it is not possible to obtain the (nontrivial) net-property
for all blocks of length b™, because there is too much interference between
overlapping blocks. This can be illustrated by the following example.
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Example 4.27 Try to construct four points g, x1, Z2, 3 in [0,1)? such
that they form a (0, 2, 2)-net in base 2 and such that every subset of the form
{zi,xit1}; 7 € {0,1,2} is a (0,1, 2)-net in base 2. For our purpose it suffices
to place the x; anywhere in the sub-cubes of the form [A/4, (A 4+ 1)/4) x
[B/4,(B+1)/4), the exact place in the sub-cube is irrelevant. Without loss of
generality let us start with @ in the left lower sub-square [0,1/4) x [0,1/4),
and note that the four points xq, 1,2, x3 then finally must show one of
the patterns shown in Figure 4.16.

Figure 4.16 Four possible configurations for xg, x1, 2, 3.

Two successive points must always show one of the patterns shown in
Figure 4.17. Hence in the patterns of Figure 4.16 the point «; is also pre-

Figure 4.17 Configurations of two successive points.

scribed. However, then there is no possible choice for xs to satisfy one of
the patterns in Figure 4.17 with a1, x-.

Therefore we have to weaken the condition also in this aspect. We could
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try this by replacing “...any sub-block of length "...” by “...all successive

nonoverlapping sub-blocks of length 6™...”.
This now leads to the definition of a (¢, s)-sequence in base b.

Definition 4.28 For a given dimension s > 1, an integer base b > 2 and
a nonnegative integer ¢, a sequence (xg, 1, ...) of points in [0,1)® is called
a (t,s)-sequence in base b if for all integers m > ¢ and k > 0 the point set
consisting of the points ypm, ..., Tppmipm_1 forms a (¢, m, s)-net in base b.

Definition 4.29 A (¢, s)-sequence in base b with t > 1 is called a strict
(t, s)-sequence in base b if it is not a (t — 1, s)-sequence in base b. Again we
call a (0, s)-sequence strict by definition.

Again, we call ¢t the quality parameter of the (¢, s)-sequence. The notion of
a (t, s)-sequence in the above form was introduced by Niederreiter in [170] for
the first time. Special cases, so-called binary L Pr-sequences, however were
already investigated by Sobol’ in [251]. Another special case was introduced
by Faure [66].

In [138] a generalised concept was introduced by Larcher & Niederreiter,
the concept of (T, s)-sequences in a base b.

Definition 4.30 For a given dimension s > 1, an integer base b > 2, and a
function T : Ny — No with T'(m) < m for all m € Ny, a sequence (xg, 1, ...)
of points in [0, 1) is called a (T, s)-sequence in base b if for all integers m > 0
and k > 0 the point set consisting of the points xyym, ..., Trpm ypm_1 forms
a (T(m), m, s)-net in base b.

Definition 4.31 A (T,s)-sequence in base b is called a strict (T,s)-
sequence in base b if for all functions U : Ny — Ny with U(m) < m for
all m € Ny and with U(m) < T(m) for at least one m € Ny it is not a
(U, s)-sequence in base b.

The concept of (t,s)-sequences in base b is contained in the concept of
(T, s)-sequences in a base b. We just have to take for T the constant function
T(m) =t for all m (resp. T(m) =m for m <t).

By the condition T(m) < m for all m, we necessarily have T'(0) = 0, and
therefore T is sometimes only defined for m > 1. A suitable function T is
called a quality function.

If T is the quality function of a strict (T, s)-sequence (xg, 1, ...) in base
b, then for all m we have

T(m+1) <T(m) + 1,

hence the function S(m) := m — T(m) is monotonically increasing. This
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property follows by considering a sub-block of b *! successive points of
the form xpym+1,...,Tppm+1pm+1_1, and an elementary interval of order
m—T(m) = (m+1) — (T(m) + 1). Since (xg, x1,...) is a (T, s)-sequence,
the interval contains exactly bT(™) points of

Lppmt1pipms - - -5 Lppm+1ppmpm—1

for all 0 <[ <b—1, and so it contains exactly pT(m)+1 of the elements of
Lppm+ly ..., Lppm+1lypm+l_1.

Therefore any sub-block of length b1 is fair with respect to intervals of
order (m+1) — (T(m) + 1) and consequently T(m + 1) < T(m) + 1.

What does the (¢, s)-sequence property in base b mean for the first N
elements of a (¢, s)-sequence (xg,x1,...)?

1. Trivially, by definition, if N is a power of b, say N = b™ for some positive
integer m, then {xo,...,xx_1} is a (¢, m, s)-net in base b. That means,
in any elementary b-adic interval of volume % there are exactly b’ points
of the point set.

2. If N is a multiple of a power of b, say N = kb for some positive integers
m >t and k, then {xg,...,zNy_1} is a combination of k (¢, m, s)-nets in
base b. That means, in any elementary b-adic interval of volume %, there
are exactly kb’ points of the point set.

3. In general, represent N in base b, say

N =anb™ + am 1™+ +a1b+agp

with a; € {0,1,...,b— 1} for 0 < i < m. Then {xo,...,zNn_1} is a
combination of

am, (t,m, s)-nets in base b and
am—1 (t,m —1,s)-nets in base b and

ar1 (t,t+1,s)-nets in base b

and further ag+a1b+- - - +a;b' points without a special prescribed struc-
ture. That is, if the quality parameter ¢ is small, then {xg,...,xny_1}
is a superposition of large point sets with strong distribution properties,
smaller point sets with less restrictive distribution properties and small
point sets without any prescribed distribution properties. This frame-
work of (¢, s)-sequences is the basis for the derivation of the discrepancy
estimates for (¢, s)-sequences, which are presented in Chapter 5.
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The more general concept of (T, s)-sequences in base b was introduced for
two reasons.

1. Firstly, a quality function T is a more sensitive measure then a quality
parameter t. For instance, a (t,s)-sequence in base b may be a strict
(t, s)-sequence, (i.e., t cannot be replaced by ¢ — 1), but if we consider
it as a (T, s)-sequence in base b, with T(m) = ¢ for all m > ¢, it does
not have to be strict (i.e. T(m) = t for some m > ¢ can be replaced
by T(m) =t — 1 and by even smaller values). Indeed, in many concrete
examples of (¢, s)-sequences in base b we have a quality parameter ¢ which
is obtained by theoretical considerations. If we consider these sequences as
(T, s)-sequences, then it turns out that the real (strict) quality function
T (m) for smaller values of m is often essentially smaller than ¢, and only
for large m, T(m) is approaching ¢.

However, in most cases it is very difficult to obtain good estimates for
the strict quality function T by theoretical means. Therefore the deter-
mination of the strict quality function T of a (T, s)-sequence relies in
most cases on computational work.

2. The second reason for introducing quality functions is of a more theoret-
ical nature. For certain classes of sequences (especially digital sequences,
see Chapter 4.4, or Kronecker type sequences, see [133]) it turned out
that their average behaviour cannot be described with a constant and
therefore a bounded quality parameter ¢, but it can be described with a
quality function T, which may be unbounded. For corresponding results
see Section 4.4.

Since any (t,m,s)-net in base b with ¢ < m — 1 is also a (¢ + 1,m, s)-net
in base b, any (¢, s)-sequence in base b is also a (¢t + 1, s)-sequence in base b.

Generally, any (T, s)-sequence in base b is also a (U, s)-sequence in base
b for all quality functions U with U(m) > T(m) for all m.

Every point set of b points in [0,1)® is a (m, m, s)-net in base b. Hence,
with M(m) := m for all m, every sequence in [0,1)® is a (M, s)-sequence in

base b.

Distribution properties of (T, s)-sequences

Consider now (T, s)-sequences and (¢, s)-sequences. We may ask now under
which conditions are they uniformly distributed modulo one (see Defini-
tion 3.1). The answer to this question is given in the following theorem.
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Theorem 4.32 A strict (T, s)-sequence in any base b is uniformly dis-
tributed modulo one if

lim m — T(m) = oc.

In particular, every (t, s)-sequence is uniformly distributed modulo one.
Remark 4.33 Recall that m — T(m) is monotonically increasing.

Proof of Theorem 4.32 Let S be a strict (T, s)-sequence in base b such that
lim,;, 0o m — T(m) = co. Further let

S

J = H[Oéi, ﬁl)

i=1

with 0 < o < 3; < 1, be an arbitrary subinterval of [0,1)%, and let ¢ > 0 be
given. We show that

A(J,N,S)

N - Xs(J)| <e

for all N large enough. Then the result follows (see Definition 3.1). Let
[ :== rs with r,s € N be fixed such that % < ¢/2 and let m be fixed such
that m — T(m) > [. Let

F <o <A and << BH
for 1 <7 < s. Then for
S S
Ji = H [ o ’b_”> and Jp:= H [ﬁ’ b

=1 i=1

we have

J1CJCJyC0,1)%,

both are unions of at most b’ elementary intervals of order [, and by Lemma 3.18,
As(J2 \ J1) < 2s/b". Hence the intervals Jy, Jy are fair with respect to sub-
sequences of length 0. Therefore, for all positive integers N, we have

2
A(J,N,8) = NA(J) < A(Ja, N, S) = NA(Jo) + N=

br
< A(Jy, [N/O™ 0™, S) — {%J b\ (Jo) + 0™ + N%

2s
="+ N—
+ b
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and
2
A(JN,8) = NA(J) 2 A1, N.8) = NA(J1) = N3
N 2
> A(Jy, [N/b™]6™,S) — [b—mw BN (J1) — b — Nb—f
2s
=" —-N—
b’
such that
A(J,N,S) b 2s
it St e A <2 2
N /\S(J)‘N+bT<€
for N large enough. Hence the result follows. U

Note that the condition is not an “if and only if”-condition, since there
are uniformly distributed sequences, having no nontrivial net-property at
all. For so-called digital sequences (see Section 4.4), the above sufficient
condition is also necessary and hence the above result cannot be improved.

We even have well-distribution for all (T, s)-sequences considered in The-
orem 4.32. This is an important fact for many forms of applications where
the sequence in use is not used from the first point on. Sometimes, for a
variety of reasons, a first sub-block of the sequence is deleted (see [223]).
We prove the following result, which is, for the special case T(m) = ¢ for all
m > t, also proved in [98, Theorem 1], but in a less elementary way.

Theorem 4.34 A strict (T, s)-sequence in any base b is well-distributed
modulo one if

lim m — T(m) = +o0.
m—oo

In particular, every (t,s)-sequence is well-distributed modulo one.
Proof For an interval B C [0, 1]° let now
A(B,k,N,S) :=#{neNy : k<n<k+ N and x, € B}.

We use the notation of the proof of Theorem 4.32. We have to show that for
all € > 0 there is an N(¢), such that ‘%NS) - )\S(J)’ < ¢ for all k£ and

all N > N(e). Choose again [ := rs with r, s € N such that 2s/b" < £/2 and
m fixed such that m — T(m) > [. Consider again J; and J. Note that

A(J,k,N,S) — NA(J)

2
< A(Jo, kN, S) — Ny (Jo) + Nb—f
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< A(Jo, [(N + k) /6™ [0, S) — {Nb—:;kJ b As(J2)
(A, (/6™ ]+ D™, S) — ([k /6™ | + 1B\, (o)) + 25™ + Ni—f
— o 4 N%

and

A(J,k,N,S) — NA(J)

2
> A(J1, kN, 8) = NA(J1) = N2
N+ k
> A(Jy, [(N + k)/b™]™, S) — [b—mw b No(J1)
2s
— (G ([R/B™] = 8™, 8) = ([/H™] = DB\ (1)) = 267 = N7
2s
= -2 — N—.
br
Hence we obtain that
A(J,k,N,S) 20 2s
S A S eV < ZZ 22
‘ N )\S(J)’_ N +b”<5
for all k and all N > 4b™e~1. Therefore the result follows. O

A first example

As a first nontrivial example let us try to artificially generate a (T, s)-
sequence in base b from regular lattices. We restrict ourselves to base b = 2.

The points xg, €1, ... have the following form:
xo = (0,...,0), x1 = (1/2,...,1/2),
xo = (1/2,0,...,0), x3 = (0,1/2,...,1/2),

Tos_9 = (1/2, ,1/2,0), Ios_1 = (0, .,07 1/2)
The points are ordered such that xa; + @241 = (1/2,...,1/2) for all 0 <

j <2571 — 1. Let now ygk) =x; /2" forall 0 < j <25 —1, e,

yg? — (0,...,0), yﬁ’: = (1/2%,...,1/29),
y) = (1/2¢,0,...,0), Y = (0,1/2%,... 1/2),

g = (1728, 1/280), ) =(0,...,0,1/2").
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If we have already constructed the points xg, . .

2s5(k+1) _ 95k points by:

., Togsk _1, we get the following

k1 k+1
Tosk 1= T + yg )a <oy Losk_ = Losk 1 + yg )’
B (k+1) o (k+1)
To.gsk = To + Yy ey ®ygsko1 BT Lok Yy,
- (k+1) L (k+1)
ZI)(2S_1)~2sk =X + Yos_15 -5 Los(kt1)_1 1= Lgsk_q + Yos—1

for all £ € N.
We illustrate the generation procedure in dimension 2. We start with the
four points xg, €1, x2, x3 as indicated in Figure 4.18.

Figure 4.18 The four start points xg, x1, T2, 3.

This four-scheme always occurs in the subsequent procedure. Then we
repeat this four-scheme consecutively in the four sub-squares according to
their numbering by xqg, 1, 2, 3, see Figure 4.19.

------
N N s i rd N . I5 15 T .13 s
.............
T3 1 L1 T3 11 %1 ) T3 i1 1 T9
------ R I IR O ------c-------------;------ S I IR R SN
T4 Te T4 1 L6 T12 T4 T14 Te
o T2 o T T2 T10 o Ts T2 T10
Figure 4.19 Construction of xg, ..., x15.

Then we repeat this four-scheme consecutively in the 42 sub-squares ac-
cording to their numbering by x, ..., x5, and we get Figure 4.20.
For s = 1 we obtain the van der Corput sequence in base 2 (see Defini-

tion 3.10) in this way. We have the following result.
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------- @ g
15 7 .13 Ts

. . .
2 ;..Jf'l?.; .......
T3 T11 @1 Ty
------- el
Ti2 Tra L X14 T

. e

Ti6 ;. T18

To g 2 10

Figure 4.20 Construction of g, ..., x19.

Proposition 4.35 The above generated sequence (g, x1,...) in [0,1)% is
a strict (T, s)-sequence in base 2 with T(m) = m — [%1 In particular, the
van der Corput sequence in base 2 is a (0,1)-sequence in base 2.

Proof For k € N let S;, denote the first 2°* points of the sequence, hence

al Qa
Sk:{(2—k2—,j) :ogai<2k}.

The first 2°% points of the sequence are fair with respect to any elementary
interval of order k, because of the net property of the regular lattice shown
in Corollary 4.11. Now we show the fairness of a point set P of the form

P = {mp23k+j, B ,:Bp23k+j+23k+j,1}, (4.6)

for arbitrarily chosen p € N and j € Ny, with respect to all 2-adic elementary
intervals of order k£ + 1.

The case j = 0 follows from the above considerations concerning Sy. Now
let 7 € N. By the construction method for the sequence (xg, 21, .. .) it follows
that there are zq, ..., 29i_1, such that

P={x+z,: 2€Sand 0<q< 2}

and for z, = (z41,...,24s) We can assume without loss of generality that

1
ngq7i<2_k

for 1<i<s,0<q<2 and

1
9k+1

|Z2r+1,i — 22ri
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for 1 <i<s,0<r<2-1 -1 Let
A Ai+1
S-TI[& ),

where di,...,ds € No, Y7 d; =k +1, and 0 < A; < 2% for all 1 <i < s.

Firstly we consider the case where dy,...,ds < k. For @ = (a:l/2k, e 7acs/2k) €
J, where x1,...,x, are integers, we have that also © + z, € J. This holds
since

A2 A < gy < (A 4 1)2k 4
and 0 < zq7i2k < 1 imply that
Ai2kidi <ux;+ Zqﬂ'Qk < (Az + 1)2kidi.

Hence there are exactly 25#~%=1%J points of P in .J. (Recall that any interval
of the form [[5_,[B/2*, (B +1)/2*) contains exactly one point of Sy.)

For the second case we can assume without loss of generality that d; =
k+1landdy =---=ds=0. For & = (m1/2k,...,$s/2k), where x1,..., 2
are integers, with z; = [A;/2] and 0 < z; < 2F for 2 <4 < s, we have that
x + z4 € J if and only if 2z, is of the following form

Zg1 < ok+1

if A; is even, or
1
Zg1 = FFT
if Ay is odd.

In either case there are 2771 elements zq with  + z, € J, so altogether
we have 25=k+i=1 points of P in J.

These two cases show that the point set P from (4.6) is a (sk +j — k —
1, sk + 7, s)-net in base 2 for all p and j. If we write m as m = sk + j, then
we find that a point set of the form {@pom, ..., xpom9m_1} is, for all p and
m, a (m— [2Z],m,s)-net in base 2.

To prove strictness, it suffices to show that the point set {xg,...,Tom_1}
is a strict (m — [%1 ,m, s)-net in base 2 for all m. Choose any m = sk + j
and consider the elementary interval J of order k + 2,

1 S
J= [o, W) < [ Tio. ).
=1

If {xg,...,xam_1} would be a (m — [%] —1,m, s)-net in base 2, then there
should be 2%¥~%+7=2 points of the point set in J. But for the first components
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1 of &y, € J,0 < n < 2% _ 1, we have 0 < xp1 < 1/4. Hence there
are 265=DF points from {x,..., 29 1} in J and from the construction
method for the x, it follows that there are even 2%¥~*+i=1 points from
{:130, - 7w25k+j_1} in J. As 28k —k+i—1 5 gsk—k+j—2
and hence the result follows. U

we obtain a contradiction

Further examples of (T, s)-sequences and (¢, s)-sequences are given in the
subsequent section and in Chapter 8.

Ezxistence of (0,s)-sequences in base b

As for (0,m,s)-nets in base b it is clear that a (0, s)-sequence in base b
cannot exist for all dimensions s. We have the following result.

Corollary 4.36 A (0, s)-sequence in base b cannot exist if s > b+ 1.

This corollary is a consequence of Corollary 4.19 in Section 4.2 and of the
following corollary (see [175, Lemma 4.22]).

Corollary 4.37 If there exists a (t, s)-sequence in base b, then, for every
m > t, there exists a (t,m,s + 1)-net in base b.

And this again is a consequence of the following lemma.

Lemma 4.38 Let (xg,x1,...) be a (T,s)-sequence in base b. Then, for
every m, the point set {ygy,yq,...,Yym_1} with y, = (/0" xr), 0 < k <
b™, is an (r(m),m,s+1)-net in base b with r(m) := max{T(0),...,T(m)}.

Proof Let J = Hfill [ﬁ Ai“) be an elementary interval of order m —

bdi’ bdi
r(m). Then y;, € J if and only if
E [A A +1 SHrA A1
b [ﬁT) and e [ |7 ==
=2

The first condition leads to
AN < < b g pmdn

Since (o, ®1,...) is a (T, s)-sequence in base b, the points T 4 ym-d, 17, 0 <
1 < b4 1, form an (r(m), m—di, s)-net in base b, because r(m) > T (m—
dy). The interval Hfi; [A;/b%, (A; + 1)/b%) has volume b~ %= dsr1 =
b—mtdi+7(m) and therefore contains exactly b"(™) of the points x Ay bm—di D>
0<1<bm % —1. Consequently J contains exactly b (™) of the points Y
0 <Ek<b™ -1, and the result follows. O
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Example 4.39 Let (zg,21,...) be the van der Corput sequence in base
b, which is an example of a (0, 1)-sequence in base b. Then the point set
{yos-- -, Ypm_1}, where y;, := (k/b", x)) for 0 < k < ™ — 1, is the Ham-
mersley point set in base b with ™ points and hence a (0, m, 2)-net in base
b (see Figure 4.21).

15 .
x7 . Yis

X3 . Y11

13
s . Yis

o) Ys o

T14
T6

X9 . Y10

T12
T4 . Yi2

s Yu .

o
Yo

Figure 4.21 Hammersley point set in base 2 with 16 points. The projection
to the second coordinate gives the first 16 elements of the van der Corput
sequence in base 2.

The advantage of (¢, s)-sequences is that also subsequences show favourable
distribution properties (and even net properties).

Faure- and Niederreiter-sequences provide, for every prime power base b
and any s < b, a (0, s)-sequence in base b, see Chapter 8. Consequently we
obtain the following result.

Corollary 4.40 A (0,s)-sequence in a prime power base b exists if and
only if s <b.

Again it is more difficult to give sharp existence results for (0, s)-sequences
in composite bases b. As a singular result from Lemma 4.21 in Section 4.2
and Corollary 4.37 it follows that:

Corollary 4.41 There does not exist a (0,3)-sequence in base 6.
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Propagation rules for sequences

Base propagation rules for (t,s)- and (T, s)-sequences can be transferred
from the corresponding rules for (¢,m, s)-nets. Thus, as a consequence from
Corollary 4.23 in Section 4.2, we obtain the following result.

Corollary 4.42 Any (T,s)-sequence (xg,x1,...) in base b is a (U, s)-

sequence in base b, where
T
U(m) := [7(]];%)-‘ :

Proof Take any subsequence of the form

(wl(bk)mv wl(bk)m+17 e ,wl(bk)m+(bk)m_1),

where [ > 0, of the sequence (g, x1,...) which is a (T, s)-sequence in base
b. Then the elements of this subsequence form a (T(km), km, s)-net in base
b and therefore, by Corollary 4.23 in Section 4.2, a ([T (km)/k|,m, s)-net
in base b*. The result follows by the definition of a (U, s)-sequence in base
bk O

We also have the following result, see [190, Proposition 5.

Corollary 4.43 Any (t,s)-sequence in base b is a ([t/k],s)-sequence in
base bF.

Again a similar converse assertion does not hold in general. As a counter-
example serves, for instance, the van der Corput sequence in base 4. It is a
(0, 1)-sequence in base 4, but certainly not a (0, 1)-sequence in base 2. This
assertion can be shown by observing that for any integer k£ > 1 the two
points x . = 41@% and T4nq = 1 + 4@% are both contained in [0, ). Hence
they do not form a (0,1, 1)-net in base 2 and therefore (zg,z1,...) is not a
(0, 1)-sequence in base 2.

However, we can use Theorem 4.24 from Section 4.2 to obtain a base

change result for (T, s)- and (¢, s)-sequences.

Theorem 4.44  For given integers ¢ > 2, L and L' > 1 with ged(L, L") =
1 we have that every (T,s)-sequence (xg,x1,...) in base ¢ is a (U, s)-
sequence in base CLI, where

U(m)=m (mod L)+ min(V(m), W(m)),

with

V(m) == [LT(L'W/LJ) + [m/L|L((~L') (mod L))"

L'+ ((-L') (mod L))
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and

Wi = [LRAm/ED o - DL 1)),

Before we prove the theorem let us again consider the special cases L = 1,

L'’=1and T = t. For L = 1 we obtain U(m) = {%l,m)—‘ and therefore

again Corollary 4.42. For I’ = 1 we obtain the following corollary, which is
a generalisation of [190, Proposition 4].

Corollary 4.45 For a given base b > 2 and any integer L > 1, every
(T, s)-sequence in base b* is a (U, s)-sequence in base b with

U(m)=m (mod L)+ min(V(m), W(m))
with
V(m) :=T(lm/L]) + [m/L](L - 1)
and
W(m) := LT(|m/L])+ (s —1)(L —1).
For T =t we obtain the following result, see [190, Proposition 4].

Corollary 4.46 For given integers ¢ > 2, L and L' > 1 with ged(L, L") = 1
we have that every (L, s)-sequence in base ¢ is a (n, s)-sequence in base ¢,
where

Lt+(s—1)(L—-1
NP EICES IR
Proof of Theorem 4.44 Consider a subsequence of (cL/)m elements of the

sequence (xg,x1,...) of the form

(wk(cﬂ)m R xk(cy)m+(cy)mfl)'

Represent m in the form m = pL + r with 0 < r < L, then the above
subsequence is

(117kcrL'(cL)pL’7 cee wkcrL/(CL)pL’JrCTL’(CL)pL’,l)

and so a multiset-union of ()" subsequences of length (¢X)?Y". Any such
subsequence, by the (T,s)-sequence property in base ¢’ of (zg,x1,...),
forms a (T(pL'),pL’,s)-net in base c* and therefore by Theorem 4.24 in
Section 4.2 (note that p = |m/L|) is a (¢,pL,s)-net in base ¢/ with
¢ = min(v, w), where

. [L T(L'|m/L)) + |m/LJL((-L') (mod L”W
D'+ ((-I') (mod L))
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and

- {LT(L’Lm/LJ) +(s—1)(L — 1)—‘
L .

By Lemma 4.14, concerning the combination of (¢,m,s)-nets, now the
original sub-block as a combination of (¢X')" (¢, pL, s)-nets in base ¢*’ forms
a (q+r pL+r,s) = (qg+r,m,s)net in base /. Note that r = m (mod L).
Hence the result follows by the definition of a (U, s)-sequence in base .0

4.4 Digital (¢,m, s)-nets and digital (T,s)- and (¢, s)-sequences

The concept of digital (t,m, s)-nets, and digital (T, s)- and (¢, s)-sequences
is a general framework for the construction of (¢,m, s)-nets and (T, s)- and
(t, s)-sequences. In fact, until now, essentially all concrete (¢, m, s)-nets, and
(T, s)- and (t, s)-sequences which are of relevance for applications are dig-
ital (t,m, s)-nets, and digital (T, s)- and (¢, s)-sequences. For short, in the
following we speak of digital point sets. In particular, all relevant examples
provided so far can be introduced in terms of digital point sets.
Using the framework of digital point sets, allows us

1. to provide the (¢,m, s)-net, the (T,s)- or (t,s)-sequence in an easy way
(in the form of s matrices);

2. to determine the quality parameter ¢ or T in a rather fast way;

3. to describe the properties of point sets in question in terms of properties
of the matrices mentioned above, i.e., the search for point sets of high
quality can be restricted to the search for matrices with certain properties.

Although one can introduce digital nets in arbitrary integer bases b > 2,
we restrict ourselves to prime power bases b only in the following. The main
motivation for this restriction is that there exists a finite field of order b if
and only if b is a prime power. This leads a simpler and clearer construction
of digital point sets. Some points of the analysis of digital nets in arbitrarily
chosen bases are much more involved compared with the prime power base
case, where the construction principle is much simpler. Furthermore, the
prime power base case (and even the prime base case) is also for practical
applications the most important one.

Most of the results and ideas which we give below can be generalised to
digital nets in arbitrary integer bases b > 2. For a detailed treatment of the
general case we refer to [139, Section 1] and [175, Section 4].



162 Nets and sequences
Digital (t,m, s)-nets

To construct a digital (¢,m,s)-net in a prime power base b, we use the
finite field F, with b elements and a bijection ¢ : {0,...,b — 1} — F, with
©(0) = 0, the neutral element of addition in F,. We speak then of a “digital
(t,m, s)-net over the field F}” instead of “digital (¢, m, s)-net in base b”. (For
arbitrary b one has to choose a finite commutative Ring R with identity of
order b, see [135, 139, 175] for more information.)

The elements of F, are denoted by 0,1,...,b — 1 respectively and we use
the bijection o(j) := j for 5 € {0,...,b — 1}. If b is a prime, then we
identify Fp with Z;, the set of residue classes modulo b with addition and
multiplication modulo b, which in turn we identify with the elements of
{0,...,b— 1}. Therefore we omit the bijection ¢ and the bar in this case.

Let us explain the concept of digital (t,m,s)-nets over Fy. That is, we
want to construct a (¢, m, s)-net {xg,x1,...,xpm_1} in base b by the digital
method. To generate such a point set we first have to choose m x m matrices
C4,...,Cs (one for each component) over Fy, that is, with entries from Fy.
For example, to generate a (t,4,2)-net over Zy take the matrices

10 00 0 001
0100 0010
Cl = 0010 and Cz = 0100 (4.7)
0 0 0 1 1 0 0 0
To generate now one of the points @,, = (. 1,...,Zpns), with 0 <n < ™,

of the net, we first write n in its b-adic (i.e. base b) expansion n = Z;n:_ol a;b,

with digits a; € {0,...,0—1}. Note that 0 < n < b™ and therefore it suffices
to consider only j with 0 < j < m — 1. Then take the m-dimensional column
vector

(amo)

For example, to generate the point &1 = (x11,1,211,2) of the (¢,4,2)-net
over Zo from above, write

11=1-2"41-2"40-22+1-23,
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which corresponds to the vector
1
n— 1
N 0
1
or to generate the point &7 = (z7,1,27,2), write

7=1-241-2'4+1-2240-23,

which corresponds to the vector

O = =

To generate the point @, = (n1,...,%n,s) We explain how to generate
the ith coordinate:

The ith coordinate x, ; is obtained by multiplying the 7th matrix C; by
n over [Fy, which gives as result an m-dimensional vector of elements of [Fy,
say

Yn,in
Cn = : e (FmT.
yn,i,m

The elements ¢~ (7, ; ;) € {0,...,b— 1} are now the b-adic digits of x;,
i.e.,

o O Upin) € ' Unio) O Unim)

xnﬂ — b b2 . + 7bm .
Definition 4.47 We call the point set {xo,...,Zym_1} constructed as
introduced above a digital net over ¥y, with generating matrices C1,...,Cs

or short a digital net.

Since any point set consisting of o™ points in [0, 1)* is a (¢, m, s)-net in base
b with a certain quality parameter ¢ we also speak of a digital (t,m, s)-net
over Fy.

Therefore, to provide the b points in dimension s, it suffices to provide s
matrices of size m x m over Fy. This of course simplifies storage of the point
sets.

As already mentioned, in most cases the finite field Z; with b prime is
chosen for practical applications, and indeed Zs is the most frequent choice.
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We remark again that in this case we can omit the bijection ¢ as we identify

Zy, with the elements {0,...,b— 1}.

Example 4.48 Consider again the (¢,4,2)-net over Z, with generating
matrices (4.7). To construct for instance x1; we have n = 11 and therefore

100 0 1 1
0100 1 1
Cm=1191010 o]~ o
000 1 1 1
000 1 1 1
0010 1 0
Cn=1910 0 0| |1
100 0 1 1
Hencexn,l:%+i+1—16:%andx11’2:%+%+%:%,andthus
_ (13 11
mll_(ﬁ’ﬁ)‘
For n = 7 we have
100 0 1 1
0100 1 1
Cm=1191010 1|71
000 1 0 0
000 1 1 0
0010 1 1
Cn=1910 0 1|71
100 0 0 1

Hence x71 = %+i+% = % and x7 9 = i+%+% = %, and thus &7 = (%, 116)

Determining all 16 points shows that this example just gives the 16 point
Hammersley point set in base 2.

Example 4.49 To illustrate the generation procedure we provide one
example of a digital (t,3,2)-net over Fy, the finite field of order 4. Let
Fy = {0,1,2,3}. We identify the elements 0,1,2,3 of Fy with the 4-adic
digits 0,1,2,3 respectively, i.e., p(i) =i for i € {0,1,2,3}. Addition and
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multiplication in Fy are defined by the following tables:

+]0123 -|0o123
0[0 123 0][0000
11032 1/0123
202301 2[0231
313210 30312

Choose the 3 x 3 matrices C7 and Cy over F4 by

Cy = and Cp =

I Dl
NI~ Ol
(] el en]]
DN
e =Ilr]
Ol =1

To demonstrate how to generate the 43 = 64 points @, = (2,1, 752) € [0,1)?
let us generate x35. We have

35=3-494+0-4' +2.4?

which corresponds to the vector

3
n=|0 |e@E)’
2
Now
3 100 3 3
alo|l=lo1o||lo]=(0]emE
2 0 2 2 2 3
and hence m35,1:%+1%,+614:2—}1.Further
3 2 31 3 3
Co{ 0 |=(001 0 |=(2 )@’
2 010 2 0
and hence m3572:%+1—%+6%:%.Therefore we have w35:(%,%).

The quality parameter of digital nets

Trivially, since the number of points N is 0", the resulting point set is a
(t,m, s)-net in base b (every set of ™ points in [0,1)® is an (m,m, s)-net at
least). But what is the real, strict quality parameter ¢ of the point set, gen-
erated in the above way? The answer is given with the help of the following
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uantity p which, in some sense, “measures” the “linear independence of the
) )
s matrices C1,...,C,".

Definition 4.50 Let b be a prime power and let C,...,Cs be m x m
matrices with entries from the finite field Fy. Let p = p(C1,...,Cs) be the
largest integer such that for any choice of dy,...,ds € Ng, with d1+---+ds =
p, the following holds:

the first dy row vectors of C7 together with
the first do row vectors of Cs together with

the first ds; row vectors of Cj,

(these are together p vectors in F}") are linearly independent over the fi-
nite field Fp. We call p the linear independence parameter of the matrices
Ci,...,Cs.

Example 4.51 Consider Cy, Cy over Zs from the example above,

100 0 000 1
010 0 0010
G=logo10]| ™ =110
000 1 1000

Clearly p is at most 4, since there never exist more than 4 linearly indepen-
dent 4-dimensional vectors over Zs. However, p is indeed 4 in this example,
since for every choice of di,dy > 0 with dy + do = 4, the first d; rows of C}
together with the first ds rows of Cy provide the system of the 4 canonical
row-vectors (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), which are linearly
independent over Zo.

Now we can determine the strict quality parameter ¢ of a digital net
generated by matrices C1,...,Cs over Zy. This is a special case of [175,
Theorem 4.28].

Theorem 4.52 Let b be a prime power. The point set constructed by the
digital method with the m x m matrices C1,...,Cs over a finite field Fy is
a strict (m — p,m,s)-net in base b, where p = p(C1,...,Cs) is the linear
independence parameter defined in Definition 4.50.

Proof First we have to show that every elementary interval of order p, i.e.,
of volume b~" contains exactly b~ F of the generated points. Let

S TA; Aj+1
J:H[WTL- >
=1
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with dy,...,ds € Ngsuch that di+---+ds = pand 0 < A; < bli for1 <i<s
be such an interval. We ask for which n is @, = (zp1,...,2ns) contained in
J, i.e., for which n is x,,; € [Ai/bdi, (A; + 1)/bdi) for all 1 <14 < s satisfied.
We find that z,; € [Ai/bdi, (A; + 1)/bdi) means that the first d; digits in
the b-adic representation of x,, ; are determined. In detail, let

i (4)
A eg) Cd;
W e T
then
(i) (4) () ()
€ edi €1 edi 1
it ST < Ty < 4. —,
b-i— +bdi—xv b+ +bdi+bdi
that is
() (4)
€1 €4,
T = T+...+ o 4+ .-

Recall that by the definition of digital point sets, the jth digit of x, ; is

L applied to the product cy)n of the jth row cg.i) of C; with the n-
column vector n € (IE‘Z”)T, where ¢ is the bijection used in the construction.
Hence x,, € J if and only if the following system of equations over F is

satisfied:

given by ¢~

of’n = o)
cE;}n : o)
n = p(e))
cg?}n = 80(6:212)) (4.8)
Cg‘;)n = w(ezgs))
a——

We ask, how many m-variable vectors n satisfy this system of d1+- - -+ds =
p equations? '

Since the system of row vectors cg-l) by definition of p is linearly indepen-
dent, the linear system (4.8) has exactly b solutions and the result is
shown.
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Let us now prove the strictness of the quality parameter. If p = m then
there is nothing to prove, since any (0, m, s)-net is strict by definition. If
p < m — 1 then by the definition of p there are dy,...,ds € Ny with d; +
--+4+ds = p+ 1 and such that

1 1 2 2 s s
P C I )

are linearly dependent over Fy. But then the linear system (4.8) with egi) =0
forall 1 < j < d; and 1 < i < s, has also b * solutions n € (IE‘Z”)T
(although it consists of p+ 1 equations in m variables over Fy). This means
that the elementary interval [[;_, [0, leli> of volume b=7~! (i.e., of order

p + 1) contains b™” points of the net and is therefore not fair. Hence the
net has strict quality parameter m — p. U

Remark 4.53 According to Theorem 4.52 the strict quality parameter ¢
of a digital net is m — p. The quantity p = m — t is often referred to as the
strength of a digital net.

As a consequence of Theorem 4.52 we obtain the following result.

Corollary 4.54 Let b be a prime power. A digital net over a finite field
Fy generated by the m x m matrices C1,...,Cs is a (0,m, s)-net in base b if
and only if for all dy,...,ds € Ng with di + -+ -+ ds = m, the m X m matrix
formed by

the first di rows of C1 and
the first dy rows of Cy and

the first ds rows of Cl
has determinant different from zero.

Therefore, the task of determining the quality parameter ¢ is turned into
determining the independence parameter p of the s-tuple of matrices. The
advantage is now that various tools from linear algebra can be used for
carrying out this task.

Example 4.55 The (t,4,2)-net over Zy considered in Example 4.48 is a
(0,4, 2)-net over Zs by Theorem 4.52.

Example 4.56 For any prime b and any m € N the two m X m matrices
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over Zy given by

1 0 0 0 0 0 0 1

0 1 0 0 1
Cl— 9 02_

0 1 0 0 1 0

0 0 0 1 1 0 0 0

generate a digital (0, m,2)-net over Zy. For every choice of 0 < d < m the
system of vectors

NSRRI

where cg-z) denotes the jth row vector of the matrix C;, is linearly inde-
pendent over Z;. Hence the quality parameter ¢ = 0. Indeed, the resulting
digital (0,m,2)-net over Zj is just the two-dimensional Hammersley point
set in base b.

Example 4.57 We now show that the following three m x m matrices C',
Cy, and C5 over Zsy provide, for all m > 1, a digital (0,m,3)-net over Z,.
Let

1 0 0 O 0 0 0 1
0 1 0 0 1

Ci = e e e ], O = :
0 1 0 0 1 0
0 0 0 1 1 0 0 O

and

C’3_ 3
0 0 (3 (o))
0 0 (7))

where the binomial coefficients are taken modulo 2. This example was first
provided by Sobol’ in [251]. See also [170, Proof of Theorem 6.2]. We have
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to show that for any choice of di,ds € Ny with dy + do < m the vectors

(1, 0, ... ., 0)
(0, 1, o, . 0)
©, ..., 0, 1, 0, . 0)

T

dy
(0, .0, 1)
(0, 0, 1, 0)
(0, 0, 1, 0, , 0)

7
m—dy+1

O 0 @0y () s (G5)

are linearly independent over Zs (here ds := m — d; — dg). To do this, we
show that the m x m matrix

1 0 0
1 0 0
0 0O 1 o0
0 1
C = 0 0 1 7
0 ... ... 0 1 0 0
O () (e (e
(ds(ll) (dsal) (2;:21) (ggj)

where we define (’;) :=0if b > a, over Zs has determinant 1. Developing the

determinant of C along the first dy + dy rows yields that | det C| = | det C’|
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with

(6) - ("

/ . . ds xd
C - : . €Z23 3.

() e (Y

For any nonnegative integers a and k let us now consider the determinant
of the matrix

(c) (*s"

Dak: : €

@ . (1

ngﬂ)xkﬂ)_

For j = k,k—1,...,1 we successively subtract the jth column of D, j from
the j + 1st column and by using the fact that (a;.r] ) — (a+fl) = (“ﬁ Il) we

arrive at the matrix

@ (5 @ Y

so that, by developing the determinant of the above matrix along the first
row, we obtain det(Dgx) = det(Dy, ;) = det(Dy 1) and by proceeding in
this way we obtain det(D,, ;) = det(D,) = (j) = 1. The result then follows
from Corollary 4.54. [J

For later use we introduce a further quantity.

Definition 4.58 Let C4,...,Cs be m x m matrices over Fy. Define § =
d(Cq,...,Cs) to be the least integer ¢, with 0 < ¢ < m, such that for any

di,...,ds € No with dy + -+ +dy =m —t and any &, € Fy, for 1 < j < d;
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and 1 <1 < s, the system

Cl n — 61
Wn — )
ng)n _ Egz)
Pn = o) o
cgs)n : E(S)
i = o

where ng‘) denotes the jth row vector of C;, has exactly b' solutions n €

Ep)T.

Obviously in the above definition it suffices to consider the homogeneous
system only, i.e., E;l) = 0 for all 7 and j. This system has exactly b solutions,
if and only if each system in (4.9) has exactly b’ solutions. This follows from
elementary properties of systems of linear equations.

The proof of the following result is left as an exercise (see Exercise 4.6).

Lemma 4.59 Let b be a prime power. Any m X m matrices C1,...,Cy
over Fy generate a strict digital (6, m, s)-net over Fy.

Propagation rules for digital nets

We have seen several propagation rules for (¢, m, s)-nets in Section 4.2. We
show now that certain propagation rules also hold for digital nets. For in-
stance:

1. Any digital (¢, m,s)-net over Fy is a digital (¢, m, s)-net over F} for all
>t

2. If the matrices C1,...,Cs generate a digital (t,m,s)-net over F;, and if
we take any s’ < s of these matrices, then these matrices form a digital
(t,m, s')-net over F,.

Again it is more subtle to provide suitable propagation rules for digital
(t,m, s)-nets concerning the parameter m. The following propagation rule
was first given (for arbitrary bases b) in [234, Lemma 3].
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Theorem 4.60 Let b be a prime power. If there exists a digital (t, m, s)-net
over Fy, then for each n with t < n < m, there exists a digital (t,n,s)-net
over IFy,.

For the proof of this result we need the following lemmas.

Lemma 4.61 Let b be a prime power and let a (strict) digital (t, m,s)-net
over Fy, be generated by the m x m matrices Cy,...,Cs. Let Z be a nonsin-
gular m x m matriz over Fy. Then the matrices C1,...,CL with C} .= C;Z
also generate a (strict) digital (t,m, s)-net over Fy,. Indeed, they generate the
same digital net, only with order of points changed.

The proof of this result is left as an exercise (see Exercise 4.7).

Lemma 4.62 Let b be a prime power. If there exists a digital (t,m, s)-net
over Fy, then for any given nonsingular m x m matrix Yy over Fy, there are
nonsingular m x m matrices D1, ..., Dg over Fy with Dy = Yy, generating a
digital (t,m, s)-net over [Fy.

Proof Let C1,...,Cs be an s-tuple of m X m matrices generating a digital
(t,m, s)-net over Fy. Theorem 4.52 implies that the linear independence
parameter p of C'q, ..., Cs satisfies p = m —t, and hence for each C; the first
m—t rows are linearly independent. We now generate new m x m matrices C;
by removing the last ¢ rows of C; and by completing the remaining m—t rows
by t arbitrary rows, such that all m rows of the new matrix C; are linearly
independent. This is possible since [}, is a field. The matrices 6’1, . ,53
again generate a (t,m,s)-net over . Since 65 is invertible, there exists a
nonsingular m x m matrix Z over [y such that agZ =Y,. Let the m xm
matrices D1,..., Dy be defined by D; = éiZ, i.e., in particular Dy = Ys. By
Lemma 4.61 the matrices D1, ..., Ds again generate a digital (¢, m, s)-net
over Fy,. Ol

Proof of Theorem 4.60 By Lemma 4.62 we may assume that the given dig-
ital (¢, m,s)-net over [, is generated by the nonsingular m x m matrices
Cq,...,Cs over Fy, where

0 0 0 1

0 . 1 0
Cs=E,=|: .. . . | eFM™m

0 1 ’ 0

1 0 0 0

Define now n x n matrices Dq,..., Dy over Fy by setting D; := C’Z-(n) (i.e.,
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the left upper n x n sub-matrix of C;) for 1 <i < s—1and Ds := E],. We
show that Dq,..., Dg generate a digital (¢,n, s)-net over [Fy,.

Let dy,...,ds € Ng with dy + --- + ds = n — t be arbitrarily given. Take
the system of the first dy rows of D1, the first ds rows of Ds, ..., the first
ds rows of D,. For simplicity we set dy + --- + ds—1 =: d and denote the
first d vectors above by ag.n) € IF}y for 1 < j < d. They are the projection
of the corresponding m-dimensional vectors a; from the matrices C; from
above. We write a; = (aj1,...,0jn, |@jnt1s- -, Qjm) = (ag-n)\5§-m_n)). Since
Ci,...,Cs_1 and Cs = E!, generate a (t,m,s)-net over Fy, the system of
m —t vectors from F}" given by

(aLl, ceey ceey ceey ceey aLn, al’n+1, ceey ey al,m),
(a,d71, B T O N £ R P B2 A e adm),
0, ..., ..., ..., ..., 0, 0, ..., 0, 1),
(R : S, 0),
0, ..., ey ooy .., 0, 1, 0, ..., 0),
0, ..., ..., ... 0, 1, 0, ..., ..., 0),
o, ..., 0 1, 0, ..., 0, )

where the “1” in the last vector is the ¢t + d 4 1st component, is linearly
independent over F, (note that d < n—t and therefore t +d < n). But then,
as it is obvious by the above scheme, agn), e ,a((jn) and the first n —t — d
rows of E/, must be linearly independent over F, and the result follows. O

More detailed propagation rules for digital nets are presented in Chapter 9.

Structural results for digital nets

We give in the following some general structural results for digital nets.
We have seen in the example shown in Figure 4.11 in Section 4.2 that the
addition modulo 1 of a fixed s-dimensional point @ to all the points of
a (t,m,s)-net in base b, although it does not disturb the net property, it
does change in general the (strict) quality parameter ¢. The principal digital
net property, however, by shifting the net in general is destroyed. This,
for example, can be seen by the fact that any coordinate of any point of
a digital (t,m,s)-net in base b is of the form a/b™, where a is an integer.
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Hence, for example, addition of a vector whose coordinates are not all of this
form destroys the digital net property. Another reason is that any digital
net contains the origin. Hence shifting the net in a way which removes the
origin from the point set destroys the digital net property. Any elementary
interval in base b is half-open at the right-upper boundary. The right-upper
boundary of an elementary interval in base b of order less than or equal to m
(i.e., of volume larger or equal b~") in all coordinates is of the form a/b™.
Therefore any element of a digital (¢,m, s)-net in base b has distance from
the right-upper boundary, of any elementary interval of order less than or
equal to m, of at least b~"". From this fact the following stability result for
digital (¢,m, s)-nets in a base b follows.

Lemma 4.63 Let b be a prime power and let {xq, ..., Tymn_1} with &, =
(Tn1s.-.,xns) be a strict digital (t,m,s)-net over Fy. Let e, ; for 1 <i<s
and 0 < n < ™ — 1 be nonnegative reals with e,; < b="™ for all n and
i. Then {yq,...,Ypm_1} with y,, = (Tn1 + En1y--.Tns + Ens) 1S a strict
(t,m, s)-net in base b.

Remark 4.64 Indeed this property holds for all (¢,m,s)-nets in base b
whose points have coordinates of the form a/b™ with integers 0 < a < b™.

Another form of shifting a digital net is of higher relevance. Recall the
scheme for generating a digital (t,m,s)-net over Fy. Let the integer n be
such that 0 <n <™ — 1. Then

Un,i 1
n—mne ([FM - Cn= : c (M — z,;€[0,1).

yn,i,m

Instead of shifting x,, ; like above, let us now shift the column vector

Yn,id
-
€ (Fy")
yn,i,m
by a fixed column vector over [y, say
Ti1
e (F)’
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That is, instead of x,,; consider z, ;, which is obtained by

Zni,1 Ynin T 0l
En,i,m yn,i,m + Ei,m
and
—1/= —1/=
_ ¥ (ZTMJ) 12 (Zn,i,m)
zn,i—T—F---—F b .

We introduce a slightly more general concept here.

Definition 4.65 Let b be a prime power and ¢ : {0,...,b— 1} — F, be a
bijection with ¢(0) = 0. For . = Y 2, % €[0,1) and o = Y277, 3 € [0,1),
where &;,¢; € {0,...,b— 1}, we define the (b-adic) digital shifted point y by
J =2 Bhyo = 5255 B where i = o~ (&) + plsi)), and where the “+”
is addition in IFy.

For higher dimensions s > 1 let & = (01,...,05) € [0,1)*. For ¢ =
(x1,...,2s) € [0,1)° we define the (b-adic) digital shifted point y by y =
x Dpp 0 = (T1 Dy O1,-..,%s Dpp Os).

In the following b and the bijection ¢ are considered to be fixed and
therefore we simply write @ instead of @y,

Definition 4.66 Let b be a prime power and ¢ : {0,...,b — 1} — F, be
a bijection with ¢(0) = 0. For a point set P = {xg,...,xy_1} in [0,1)*
and a o € [0,1)° the point set Py = {xog @ 0,...,xNy_1 G o} is called the
(b-adic) digitally shifted point set P, or the (b-adic) digitally shifted version
of P. The vector o € [0,1)* is called a (b-adic) digital shift.

If we use a digital shift in conjunction with a (¢,m, s)-net, then they are
always assumed to be in the same base b. Therefore, if it is clear with respect
to which base b a point is shifted, we may omit the phrase “b-adic”.

We show now that a digital shift preserves the (t,m, s)-net structure.

Lemma 4.67 Let b be a prime power, ¢ : {0,...,b— 1} — Fy, a bijection
with p(0) = 0 and let {xg,...,zym_1} be a (strict) (t,m,s)-net in base b,
Tp = (Tn1,--.,Zns) for0<n <b™, andleto = (01,...,05) € [0,1)°. Then
the digitally shifted point set formed by the points y,, = €, ®o, 0 <n <™,
is again a (strict) (t,m,s)-net in base b with probability one with respect
to the Lebesque measure of o’s. (If the o;’s have only finitely many b-adic
digits different from zero, then the assertion is always true.)

Proof First we note that for any = € [0, 1) the set of all o € [0, 1), for which
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the b-adic expansion of x @ ¢ has only finitely many digits different from
b—1, is countable. In fact, if {; denotes the digits in the b-adic expansion of
x and ¢; denotes the digits in the b-adic expansion of o, then x @ o has only
finitely many digits different from b — 1 iff there is an index jy such that for
all j > jo we have (&) + ¢(s;) = @(b—1) € F, and this holds if and only if
g =@ Hpb—1) —p(&)) € F, for all j > jo. Thus the Lebesgue measure
of this set is zero and the probability that this case occurs is zero as well.

For 1 <i < slet oy = 3% + Ugf + ---. Further, for 0 < n < ™ and
1<i<sleta,,; = g”’bi’l + 57;732 + - and yn; = ML+ n%’§’2 + -+, where
for k > 1,

Mk = ¢ (0(&nik) + P(Sik))-

In the following we assume that infinitely many of the 7, 1,nn,2,... are
different from b — 1. As shown above this occurs with probability one. Let

A; A +1
1[0

be an elementary interval of volume b'~™, i.e., di,...,ds € Ny with dy +
-+ 4+ds = m —t and integers Aq,..., A with 0 < A; < i for 1 < i < s,
and let
A A A g,
W p T

Then the point y,, is contained in J if and only if

ik =Aip foralll <k <d;and1<1i<s,
and this is true if and only if
ik =0 Yp(Aig) —¢(six)) foralll<k<d;and 1 <i< s.(4.10)
Let now Pi,k € Iy, such that

Bk = o(Aik) — o(sik),

and let

B;  B;: B 4,

bdi b L bdi
where B; = ¢ ' (Biy) for 1 < k < d; and 1 < i < s. Then (4.10) is
equivalent to

IN

S
B, B;+1
i=1
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Now M is again an elementary interval of volume b*~™. Since {xg, ..., Tym_1}
forms a (t,m, s)-net in base b, it follows that M contains exactly b’ points of
{xg,...,xpm_1}. Therefore J contains exactly b* points of {yg,...,Ypm_1}

and hence this point set is a (¢, m, s)-net in base b.
If t =0, then the y,,, 0 <n < 0™, form a strict net. If £ > 1, then let now

B Bi+1
w1 -5

be an elementary interval of order m — ¢ + 1, such that M does not contain

exactly b=t of the elements of the strict (¢,m, s)-net {xg,...,xpm_1}. Let
A1

B; = ;)1 +.. —|— i Defining now in the opposite way A; = -
such that p(A; ) = @(Bik) + (i) € Fpfor 1 <k <djand 1 < i < s,
then as above

x, € M ifandonlyif =,eJ:=][[_, [l%" %) .

Therefore the strictness of the net {yg, ..., yym_1} follows. O

Remark 4.68 Note that for a given net the digital shift o € [0,1)® can
be chosen such that the origin is not contained in the shifted version of the
net any more. Hence, in general, the digitally shifted version of a digital net
is not a digital net.

There are several variants of digital shifts. We introduce the so-called
digital shift of depth m and a simplified digital shift for digital nets. Such
shifts are used later in Chapter 16 when we show the existence of digital
nets which achieve the best possible order of the Lo-discrepancy.

Definition 4.69 Let b be a prime power and let ¢ : {0,...,b—1} — F, bea
bijection with ¢(0) = 0. Let Pym = {x0,...,xzym_1} be a digital (¢,m,1)-net
over [Fy and let
x x x
T = P S e
be the b-adic digit expansion of x,,. Choose 0 = % +--- + 7 with ; € [y,
and define

Zni = (p(eng) +o(6))  for 1<i<m.
Further, for 0 < n < b™, choose ¢, € [0,b7™). Then the digitally shifted
point set Pym = {20,...,2zpm_1} is defined by
Zn 1 Zn,m
= T
Such a digital shift is called a digital shift of depth m.

46,
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For higher dimensions s > 1 each coordinate is shifted independently by
a digital shift of depth m.

This means that one applies the same digital shift to the first m digits,
whereas the following digits are shifted independently for each x,. In other
words, a digital shift of depth m is a combination of a digital shift o =
(01,...,05) where the 0;’s are of the form o; = ¢;1/b+ -+ + G /0™ with
Gj €Fpfor 1 < j<mand1l <i<s, and a geometric shift as used in
Lemma 4.63.

We also introduce a simplified version of a digital shift (of depth m).

Definition 4.70 With the notation from Definition 4.69 above, we define
a digitally shifted point set Pym = {z0,...,2pm_1} by
Zn,1 Zn,m

1
S T

This means we apply the same digital shift to the first m digits and then we
add to each point the quantity 1/(2b™). Such a shift is called a simplified
digital shift (of depth m). For higher dimensions s > 1 each coordinate is
shifted independently by a simplified digital shift.

Geometrically, the simplified digital shift of depth m means that the
shifted points are no longer on the left boundary of elementary intervals
of the form []7_,[A4;/b™, (A; +1)/b™), but they are moved to the midpoints
of such intervals. Note that for the simplified digital shift we only have 6™
possibilities, which means only sm digits need to be selected in performing
a simplified digital shift. In comparison, the digital shift of depth m requires
infinitely many digits.

It can be shown that a (strict) digital (¢, m, s)-net over Fy, which is shifted
by a digital shift of depth m or a simplified digital shift independently in each
coordinate is again a (strict) (¢,m,s)-net in base b with the same quality
parameter ¢ (with probability one in the case of a digital shift of depth m).
See Exercise 4.9 and Exercise 4.10.

Example 4.71 Consider the eight elements of the digital (0, 3,2)-net over
Z9 shown on the left-hand side of Figure 4.22, which are generated by
0 0 1 1 11
=101 0 and Co=| 010
1 0 0 0 0 1

Applying a 2-adic digital shift o = (01,02) with 01 = 1/2 and oy = 7/8
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................................................................

-----------------------------------------------------------------

Figure 4.22 A digital (0, 3,2)-net over Zy and its digitally shifted version.

then gives, for example, y3 = (y31,y3,2), where

0 0 1 1 1 0 1 1
Y3,1 < 0 1 0 1 + 1 0 = 1 +1 0 = 1
1 0 0 0 0 1 0 1
and
1 1 1 1 0 1
Y32 < 010 + 1 = 1 + = 0
0 0 1 0 1 0 1 1

and hence y; = (7/8,5/8).

We obtain the point set shown on the right-hand side of Figure 4.22, which
obviously cannot be obtained by the original digital net by an ordinary
translation, and which is not a digital net any more (as it does not contain
the origin).

Now let us disturb this point set in the “positive direction” by individual
quantities d,, ; less than 1/8 in each coordinate i for 0 < n < 8 (that is, we
have a digital shift of depth 3). Then we arrive, for example, at the point
set shown in Figure 4.23, which is still a strict (0,3, 2)-net in base 2.

A further very important structural property of digital nets is their group
structure which was first used by Larcher, Niederreiter & Schmid [139].

Let b be a prime power and let ¢ : {0,...,b— 1} — Fy, be a bijection with
©(0) = 0. The s-dimensional unit cube is an abelian group with respect to
the digit-wise b-adic addition @ as used in Definition 4.65. For z,y € [0,1)
let x = %1 + % +--- and y = - 4+ & +--- be their b-adic expansions (with
& # b—1 for infinitely many ¢ and 7; # b — 1 for infinitely many j). Then
LASTRPRTRES %—f—g—%-ﬁ---- with

¢ =@ Hel&) +¢(n;)) for jeN.
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Figure 4.23 A digital shift of depth 3 applied to a digital (0,3,2)-net in
base 2.

For vectors «,y € [0,1)* the b-adic addition @,y is defined component
wise.

As before, the base b and the bijection ¢ are considered to be fixed and
therefore we simply write @ instead of @ . If we use the b-adic addition
® = @y, in conjunction with a digital net, then we always assume that b
is the base of the digital net and ¢ is the bijection from the construction of
the digital net.

Now we consider the natural continuation of @ to [0, 1)* which we denote
again by @. Obviously ([0,1)%,®) is an abelian group. We then have the
following lemma.

Lemma 4.72 Let b be a prime power and let ¢ : {0,...,b — 1} — Fy, be
a bijection with ©(0) = 0. Any digital (t,m, s)-net over Fy, is a subgroup of
([0,1)%,@®). If the points of the digital net are pairwise different, then this
subgroup 1is 1somorphic to F}".

Proof Any column vector

no
n=| : |eEn’
Nm—1
uniquely represents an integer n := ng+nib+- - -+n,, 16" from {0, ..., b™—

1} via n; = ¢~ 1(m;) for 0 < i < m, and to any such integer belongs a net
element x,,.
We show that the mapping

U (IFZ”)T —{xo,...,Tpm_1}, n > T,

is a group-isomorphism from the additive group of F}* to ({xo, ..., ZTsm—1}, D).
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Let

n:= : and 1:=

be two elements from (F*)". Then the property ¥(n +1) = ¥(n) & ¥(1)
easily follows from the fact that for any m x m matrix C' over F;, we have
C(n+1) = Cn + CI. If the points of the digital net are pairwise different,
then the mapping W is surjective and therefore also injective, because |F}'| =
{xo,...,xpm_1}|. The result follows. O

Remark 4.73 With the notation of the b-adic addition we may interpret
the digitally b-adic digital shifting of a digital net as a translation of the dig-
ital net with respect to @ along a certain translation vector of [0,1)®. From
the group structure of the digital net it follows that a digital net remains
unchanged by translation with respect to @ if and only if the translation
vector is an element of the digital net.

Example 4.74 In the shifting example above the translation vector was
given by (1/2,7/8) in [0,1)2. This point does not belong to the original
digital net, so that the digitally shifted net is different from the original one.

For the following let b be a prime number and identify the finite field
[y, with Z. In this case we show how b-adic Walsh functions are linked to
digital nets over Z;. This connection is very important for the analysis of the
discrepancy of digital nets and of the worst-case error of QMC rules using
digital nets in certain function spaces.

Let {xq,...,xpm_1} be a digital (¢, m,s)-net over Z;. By Corollary A.7,
for all k € N, we have

bwalk.(a:h EBb :IZZ) = bwalk(mh) bwalk(aci)

and hence ,walg is a character on the group {xo,...,zym_1}. Now we can
prove the following very important character property of Walsh functions.

Lemma 4.75 Let b be a prime and let {xq, ..., xpm_1} be a digital (t,m, s)-
net over Zy generated by the m x m matrices C1,...,Cs over Zy. Then for
ak=(ki,...,ks) €{0,...,0™ —1}* we have

b —1
v ik + -+ Ok =0,
];) pwalk(@n) = { 0 otherwise,

where for k € {0,...,b™ — 1} we denote by k the m-dimensional column
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vector of b-adic digits of k, i.e., k € (Z})")T, and 0 denotes the zero-vector
in (Zm)7T.

Proof Since pwalg is a character, we obtain, by using Lemma 4.72, that

bm—1
o if pwalg(xy) =1 for all 0 < h < ™,
hz—o pwalk(zh) = { 0 otherwise.

We have pwalg(x),) =1 for all 0 < h < b™ if and only if

S
D ki xp;=0forall 0<h<b™,
i=1
where k; is the m-dimensional column vector of b-adic digits of k; and xy, ;
denotes the m-dimensional column vector of b-adic digits of the ith compo-
nent of xj,. From the construction of the digital net we find that x5, ; = C;h
and hence pwalg(x,) =1 for all 0 < h < 0™ if and only if

S
Y ki-Ch=0forall0<h<b"
i=1
where h denotes the row vector of b-adic digits of h. This is satisfied if and
only if
Clki+--+CJk,=0. O
A generalisation of Lemma 4.75 to the case of digital nets over Fy with
prime power b can be found in [219, Lemma 2.5]. In this case one requires
the more general concept of Walsh functions over the finite field Fp.

Following from Lemma 4.75, we introduce the notion of a so-called dual
net, which is, in this form, due to Niederreiter and Pirsic [187].

Definition 4.76 Let b be a prime. For a digital net with generating ma-
trices C1, ..., Cs over Z; we call the matrix C' = (C{|...|C,) € Z;***™ the
overall generating matriz of the digital net. The corresponding dual net is
defined by

D=D(Cy,...,Cs):={ke{0,...,0" —1}°: ClTkl—i—"'—i-C;—kS:O},

where k = (k1,...,ks) and for 1 < i < s we denote by k; the m-dimensional
column vector of b-adic digits of k; € {0,...,b™ — 1}. Furthermore, let

D = D’(Cl,...,CS) =D\ {0}.
Remark 4.77 Sometimes we also use the definition

Do = Doo(C1, ..., Cy) = {k € N} : try(k) € D(CY,...,Cs)}
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= {ke Ny : Cltry(ky) + -+ Cltr,(ks) = 0},

where for k& € Ny with b-adic expansion k = 3_ - Kb we write tr,, (k) =
Ko+ k1D + -+ K10 and tr, (k) i= (Ko, ..., km_1) | € (ZZ”)T and for
k= (ki,...,ks) we write try, (k) = (tr;(k1), ..., trm(ks)) € {0,..., 0™ —1}%.
Again we speak of the dual net.

Duality for digital nets was first introduced and studied by Niederreiter
& Pirsic [187] and, in a more specialised setting, by Skriganov [241], see also
[22]. Our definition of a dual net here corresponds to the definitions given in
[187]. We are concerned with duality theory for digital nets in more detail
in Chapter 7.

Digital (t,s)- and (T, s)-sequences

To construct a digital (T, s)-sequence in prime power base b, we again use
a finite field F, and a bijection ¢ : {0,...,b — 1} — F}, with ¢(0) = 0, and
we speak then of a “digital (T, s)-sequence over F,”. (Again, for arbitrary b
one has to choose a finite commutative Ring R with identity of order b, see
[135, 139, 175] for more information.) If b is a prime, we identify Fj, with Z,
and we omit the bijection ¢ and the bar.

Let now b be a prime power. To generate a digital (T, s)-sequence over F,,
we first have to choose N x N matrices C1,...,Cs (one for each component)
over [Fy. That is, matrices of the form

€11 €12 (13
C Co1 C22 C23 ... FNXN
= € .
c31 C32 C33 ... b

Example 4.78 For example, to generate a (T,2)-sequence over Zy take
the matrices

Cl S ZI;XN

I
c oo
oo~ o
o~ oo
— o oo
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and
© © @ @ 111 1 1
0 (1) (%) (§> 010 1 O
00 () () 001 1 0 e
G=10 0 0 (3 =looo 1 o0 €2y
: 00 0 O 1
where the binomial coefficients are taken modulo 2.
To generate now one of the points @, = (21,...,%n,s), with n € Ny,

of the (T, s)-sequence, we first write n in its b-adic (i.e., base b) expansion
n =Y 2,a;b" with a; € {0,...,b— 1} and a; = 0 for all i large enough.
Then take the column vector

€ (F)".

For example, to generate the point €13 = (13,1, 2132) of a (T, s)-sequence
over Zso, write

n=13=1-2240-2"41-224+1-224+0-2 +....

This corresponds to the vector

=
|
OO R = O

To generate the point @, = (21,...,%n,s) We explain how to generate
the ith coordinate x, ;. The value of x,, ; is obtained by multiplying the ith
matrix C; by n in [F}", which gives as result a column vector over Iy, say

Yn,il
CZ‘II = yn,i,2 S (IFEI)T
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(Note that for the multiplication only finitely many of the entries of n are dif-
ferent, from zero, as we assumed that ¢(0) = 0.) The elements ¢~ (7, ;) €
{0,...,b—1}, for j € N, are now the b-adic digits of z,,, i.e.,

_Sfl@n,z‘,l) Sfl@n,m)
.%'mi = b + b2

Definition 4.79 We call the sequence (xg, x1,...) constructed in this way
a digital sequence over Wy with generating matrices C1,...,Cs, or short, a

R

digital sequence.

Since any sequence in [0,1)° is a (T, s)-sequence in base b with a certain
quality function T (at least for T'(m) = m) we also speak of a digital (T, s)-
sequence over FFy,.

Example 4.80 In Example 4.78, for n = 13, we have

100000 1 1
010000 0 0
001000 1 1
Cm=|000100 1|1
000010 0 0
000001 0 0
111111 1 1
010101 0 1
001100 1 0
Con—=| 000100 1= 1|,
000011 0 0
000001 0 0

1 — 11 — L, 1,1 _ 13
+ 16 = 15> T132 = 5 + 1 + 15 = 15> and hence

ool
—
—

which yields z131 = % +
_ (11 13

213 = (T57 15)-
Remark 4.81 Depending on the matrices C1, ..., it may happen that
the vector C;n =: y, contains infinitely many entries different from zero.
For practical purposes this requires an adaptation of the point generation.
Usually the vector y,, is truncated at a suitable place.

Further, another theoretical problem may arise. It should be avoided that
the vector y,, contains only finitely many elements different from (b — 1).
Because of the nonuniqueness of representation of the b-adic real numbers
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represented by such “digit vectors”, the net structure of the sequence in
consideration would be destroyed. This does not happen for matrices like in
the example above. But it may happen for other choices of matrices. This is
the reason for the following additional condition on the matrices C, ..., Cs.
Let
Ci = (Cg-?«)j,reN e N

for 1 <i <s. We demand that for all ¢ and r we have cﬁ =0 for all j large
enough.

The quality function of digital sequences

As already mentioned, every sequence in [0, 1)® is a (T, s)-sequence in base b,
with T'(m) = m. Therefore we may ask: What is the strict quality function
of the above (T, s)-sequence in base b? The answer is given with the help
of the following quantity p.,,, which in some sense “measures” the “linear
independence” of the s infinite matrices Cy, ..., Cs.

Definition 4.82 Let Ci,...,Cs be N x N matrices over the finite field [Fy.
For any integers 1 < ¢ < s and m > 1 by Ci(m) we denote the left upper
m X m sub-matrix of C;. Then

Pm = pm(Cla oo 708) = p(Cfm% s 7C§m))’

where p is the linear independence parameter defined for s-tuples of m x m
matrices over I in Definition 4.50.

Example 4.83 In Example 4.78 above, for every m > 1 the matrices
C{m) and Cém) are just the first and the third matrix of Example 4.57. For
these matrices the value of p always equals m. Hence p,,(C1,Co) = m for
all m € N.

Now we can determine the strict quality function T of a digital sequence
over [Fy. The proof of the following theorem gives some additional insight
into the structure of a digital (T, s)-sequence.

Theorem 4.84 Let b be a prime power and let ¢ : {0,...,b— 1} — F,
be a bijection with ¢(0) = 0. The sequence (xo,x1,...) constructed by the
digital method with the N x N matrices C1,...,Cs over Fy is a strict (T, s)-
sequence in base b with T(m) = m — py, for all m € N, where p,, is the
quantity defined in Definition 4.82.



188 Nets and sequences

Proof By the definition of a (T, s)-sequence we have to show that for any
m € N and any k € Ny the point set

{mkbm, . ,$kbm+bm_1}
is a strict (T(m), m, s)-net in base b. (In fact, it suffices to show the strictness
for at least one of these blocks.) Indeed, for given k and m, and any [ between

0and 0™ —1let k = Ky 10" + -+ K1 and [ = \p_10™ 1 +--- 4+ \g be the
base b representations of k and [. For n = kb™ + [ we have

n-= ((,O(Ao), tee 7SO(>‘m—1)7 ()0("11)7 tee 790(51"4-1)7 N ')T € (FII)\])T

and with the following representation of the matrices Cj,

o p{™
Ci = c FI;]XN
we have
o(k1)
©(Ao) :
cim : D™ p(Krs1)
0
Cin = (’D%/\m_l) +
0 0
0
0
+ c
0
F-(m)n

Now we invoke Lemma 4.63 and Lemma 4.67 from Section 4.4. For the point
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set under consideration the vector

l Ol

is constant. The term

|

F-(m) n

(2

increases the value of each coordinate of the point x,, by a value less than b~
(here we use the additional condition in the definition of digital sequences).
Therefore the point set

{xkbma s 7mkbm+bm,1}

is the digital net over [F, generated by the matrices C’fm), . ,Cgm), which is

shifted by a digital shift of depth m. Hence, by Lemmas 4.52, 4.63, and 4.67,
this point set is a strict (t,m, s)-net in base b with quality parameter ¢ equal
to the qualit(y parameter of the digital net over Iy, generated by the matrices
C’{m)7 e 7C’Sm). This parameter, by Lemma 4.52 and Definition 4.82, is m —
pm and the result follows. O

Example 4.85 According to Example 4.83 and Theorem 4.84, the digital
sequence from Example 4.78 provides a digital (0,2)-sequence over Zs.

Distribution properties of digital sequences

Concerning the uniform distribution of a strict digital (T, s)-sequence over
Fp, by Theorem 4.32 in Section 4.3, we have again that it is uniformly dis-
tributed if limy, oo m — T(m) = co. In contrast to the general case however,
for digital (T, s)-sequences, this condition can be shown to be a necessary
and sufficient one.



190 Nets and sequences

Theorem 4.86 Let b be a prime power. A strict digital (T, s)-sequence
over Iy, is uniformly distributed modulo one, if and only if

lim m — T(m) = oc.

For the proof of this result we need the following lemma.

Lemma 4.87 Let b be a prime power. For integers m > 1 and t with
0<t<m,letcy,...,Cpny €} be given. Let L be the number of solutions
of the system of linear equations cjz = 0 for 1 < j < m —t in unknowns
z € (F)". Then b' divides L.

Proof Let us consider the additive group of (IFZ”_t)T and denote it by G. Let
G denote the dual group of characters x of G. Let ¢ := (¢j1,...,¢jm) € F?
and
Cli
a; = S (an—t)'l'

Cm—t,i
for 1 <1i < m. Let H be the subgroup

H={za1+ -+ znam : 21,---,2m € Fp}

in G.

A character x € G is trivial on H if and only if it is trivial on all of the
groups H; := {za; : z € Fp}.

We have

L= Y 1

ze(E™)T

Cjz:O

1 C1Z
D= P IR
ze(Fy) T x€G Cn_tZ
1 C1z
= pm—t Z Z X
xeGze(Fy)T Cn_tZ

1 m
LIS vem)

Xeé =1 ZiE]Fb
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Now
_ | b if x is trivial on Hj,
Z x(ziai) = { 0 otherwise,
EASIN
thus
ﬁ Z (zia) = b™ if y is trivial on H,
5 X\zidi) = 0  otherwise.
i=1z,€F
Consequently
1 -~ . .
L= pm—t Z bm:bt|{x€G : x trivial on H}|
xe@
X trivial on H
and hence bt divides L. .

Proof of Theorem 4.86 By Theorem 4.32 it suffices to show that the digital
sequence S = (xg, 1, ...) is not uniformly distributed if m — T'(m) does not
tend to infinity. Since m — T(m) is monotonically increasing, this means
m — T(m) = k for some integer k > 0 and all m > my, for some integer
mo > 0. Hence, for all m > my, the point set {xg,...,xym_1} is a strict
(m — k,m, s)-net in base b, in particular, it is never a (m — k — 1,m, s)-net
in base b. Assume that § is generated by the N x N matrices C1,...,Cs.
Let ng) be the jth row vector of the ith matrix and for m € N let ﬂm(c§l))
be the vector from F}" consisting of the first m components of cy). Hence,
there are integers dj,...,ds > 0, which may depend on m, i.e., d; = d;(m),
with di + -+ ds = k + 1 and elements Eél) efp,1<j<d;and1<1<s
such that the system

wm(cg-i))n = Eg-i) for1<j<d;and1<i<s

has L # b™ %=1 solutions n € (F7*)" (see Lemma 4.59 and the proof of
Theorem 4.84). Hence, the corresponding homogeneous system of equations

Wm(c§i))n:6for1§j§di and1<i<s

has more than ™%~ solutions, indeed, by Lemma 4.87, at least 2b™ "1
solutions. Therefore the box

J = J(m) :Hl {o%)

of volume b~*~! contains at least 2™ "' points (see again the proof of
Theorem 4.84). As there is only a finite number of boxes J(m), there is one
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box, say J*, such that for infinitely many m > mg we have J(m) = J*.
Therefore we obtain

A(J*, 6™, S) . 1
—m N 2 5

for infinitely many m > my. Thus S = (xg,@1,...) is not uniformly dis-
tributed modulo one. O

Corollary 4.88 Let b be a prime power. The N x N matrices C1,...,Cs
over Fy generate a uniformly distributed sequence in [0,1)° if and only if
lim p,, = oo,
m—0o0
where p, = p(C’l(m), . ,Cs(m)) 1s the independence quantity defined in Defi-
nition 4.82.

Proof This follows from Theorem 4.84 and from Theorem 4.86. U

Remark 4.89 From the above result and from Theorem 4.34 it also follows
that a strict digital (T, s)-sequence over Fy is even well-distributed if and
only if lim,, oo m — T(m) = occ.

Propagation rules for digital sequences
For digital (T, s)-sequences we have the following simple propagation rules:

1. Any digital (T, s)-sequence over [y is a digital (U, s)-sequence over Fy,
for all U with U(m) > T(m) for all m.

2. If the matrices C1,...,Cs generate a digital (T, s)-sequence over F;, and
if we take any s’ (where s’ < s) of these matrices, then these matrices
form a digital (T, s')-sequence over Fy,.

Structural results for digital sequences

Note that there is no analogue to Lemma 4.63 for digital (T, s)-sequences
over Fy. In general, common addition of a fixed (even very “small”) constant
vector can disturb the (T, s)-sequence property (i.e., can destroy its quality).
However, digitally shifting using @, from Definition 4.65 is possible.

Definition 4.90 Let b be a prime power and let ¢ : {0,...,b— 1} — F,
be a bijection with ¢(0) = 0. For a sequence S = (xg,x1,...) in [0,1)* and
a o € [0,1)° the sequence Sg = (xg @ 0,21 B o,...} is called the (b-adic)
digitally shifted sequence S, or the (b-adic) digitally shifted version of S. The
vector o € [0,1)° is called a (b-adic) digital shift.
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If we use a digital shift in conjunction with a (T, s)-sequence, then they
are always considered to be in the same base b and with the same bijection
. Therefore, if it is clear with respect to which base b a point is shifted we
may omit the phrase “b-adic”.

We show that a digital shift preserves the (T, s)-sequence structure.

Lemma 4.91 Let b be a prime power and let ¢ : {0,...,b — 1} — F;, be
a bijection with p(0) = 0. Let S = (xg,x1,...) be a (strict) digital (T, s)-
sequence over Fy and let o € [0,1)°. Then the digitally shifted sequence
So = (Yo, Y1, ---) 15 a (strict) (T, s)-sequence in base b.

Remark 4.92 For o = (01,...,05) € [0,1)% it should be avoided that
the 05, 1 < i < s, contain only finitely many b-adic digits different from
@~ 1(b—1) (see also the Remark 4.81).

Proof of Lemma 4.91 We use the notation of the proof of Theorem 4.84.
For 1 <i < sand g; = % +<g’22 + - with ¢, € {0,...,b—1} for k > 1,
let 0 i= (p(si), (si)s )T € (BT

The subsequence

{Yppms - - 7ykbm+bm71}

is obtained by calculating, for

n-= (90()‘0)7 s 790()‘771—1)’ (p("il)7 oo 790(’%7“4-1)7 0’ .o ')T € (FIIJ\I)T7

the shifted vector

A
C(m) (P(. 0) @(%‘,1)
A :
Cn+o; = cpé 1) + cp(gi,m)
0
o(k1)
: 0
D(m) .
i 80(“1—&-1) :
0 0
+ +
80(§i,m+1)
0 Fi(m)n + | o(Sime2)
6 .
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Using Lemma 4.63 and Lemma 4.67, this yields a (strict) (T(m), m, s)-net
in base b and the result follows. O

Like digital (t,m, s)-nets over Fy, also digital (T, s)-sequences over Fj, have
a group structure. Recall that ([0,1)%, &) is an abelian group.

Theorem 4.93 Let b be a prime power and let ¢ : {0,...,b—1} — Fy be a
bijection with p(0) = 0. Any digital (T, s)-sequence over Fy, is a subgroup of
([0,1)%,®). If the points of the digital sequence are pairwise different, then
this subgroup is isomorphic to the additive group IE~7§I ={(91,92,...) € IFbN :
g; = 0 for almost all i € N}.

Proof Any nonnegative integer n is uniquely represented by a vector
n=| m | (@)

where n := ng+n1b+--- vian; = ¢~ 1(%;), and to any such integer belongs
an element x,, of the digital sequence. This holds also the other way round,
namely, to any point x, from the digital sequence belongs a unique vector
ne (I~F§ )" and therefore a uniquely determined nonnegative integer n. Hence
the mapping

U (P — {xo,21,...}, n—x,

is bijective. It can be shown, like in the proof of Lemma 4.72, that ¥ is a
group homomorphism. Hence the result follows. ]

Exercises

4.1 Construct “by hand” a (0,2,2)-net in base 3.

4.2 Let b > 2 be an integer. Show that for any s > 2 and any m > 2 there
is a (m — 1,m, s)-net in base 2.

4.3 Show that the van der Corput sequence in base b is a (0, 1)-sequence
in base b.

4.4 Show that the 4 x 4 matrices

0 0

01: 702:

o O O
— O O O
— O O O
O = O O
O O = O
O O O

10
01
0 0



4.5

4.6
4.7
4.8

4.9

4.10

4.11

4.12
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1111 01 1 0
0101 110 1
CG=1oo011]"%“ oo o 1]
0001 0010

over Zg generate a digital (1,4, 4)-net over Zs.

Determine the strict quality parameter ¢ of the digital (¢, 3,2)-net over
F4 from Example 4.49.

Prove Lemma 4.59.

Prove Lemma 4.61.

Let b be a prime power, let s € N and let C1,...,Cs be N x N matrices
over Fp. For m € N let C’i(m) be the left upper m x m submatrix of
Ci, 1 < i < s. Show that C1,...,Cs generate a strict digital (T, s)-
sequence over Fy, with T(m) = 5(C§m), ... ,C,S’”)), where § is defined as
in Definition 4.58.

Show that a (strict) digital (¢, m, s)-net in base b, which is shifted by a
digital shift of depth m (Definition 4.69) independently in each coordi-
nate, is, with probability one, a (strict) (¢,m, s)-net in base b with the
same quality parameter ¢. (Assume that the shifts are uniformly and
iid..)

Show that a (strict) digital (¢,m,s)-net in base b, which is shifted
by a simplified digital shift (Definition 4.70), independently in each
coordinate, is again a (strict) (¢,m,s)-net in base b with the same
quality parameter t.

Let b be a prime power and let the N x N matrices C1, ...,y generate
a digital (T, s)-sequence over the finite field F;,. For any m > 1 consider
the left upper m x m sub-matrices C’fm), . ,Cgm). Take

0

ol O
=]l

=l

m

==l
ol O -

0

Sl

Show that the m x m matrices C’£m), ces ,C’S(m), CS(T% generate a digital

(r(m),m,s + 1)-net over Fy, with r(m) := max{T(0),...,T(m)}. Re-
mark: Note that this is a “digital version” of Lemma 4.38. Note also
the increase of the dimension from s to s + 1.

For k € N with b-adic expansion k = kg + k1b+ - - + Kq_10%" 1, where
ka—1 # 0, we define p(k) = a. Furthermore we define p(0) = 0. For
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4.13

4.14

4.15
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k = (ki,...,ks) € N§ let p(k) = >7_ p(k;). (This weight function
is intimately related to the so-called NRT-weight which is introduced
and used in Chapter 7 (Definition 7.1). See also Chapter 16, Defini-

tion 16.24.)

Show that if a point set P = {xy,...,xym_1} consisting of b points
in [0,1)° is a (t,m, s)-net in base b, b > 2 an arbitrary integer, then we
have

bm—1

> ywalg(e,) =0 for all k € Nj\ {0} with 0 < p(k) < m —t.
n=0

Remark: This is [96, Lemma 1]. Compare with Lemma 4.75, but note
that here P does not need to be a digital net. Hint: Show that the Walsh
function pwaly, for k = (k1, ..., ks) € N satisfying 0 < k; < b¥% for 1 <
i < s can be written as a step function of the form ywalgy =3 caXxJ,
with coefficients c¢q € R, where Jo = [[;_;[aib™ %, (a; + 1)b~ %) and
where the summation is overall possible a = (ai,...,as) € N§ with
0 <a; <b¥ for 1 <i <s.Show that ), cq = 0 whenever k # 0 and
use the (t,m, s)-net property of P.

Show the converse of Exercise 4.12. If P = {@q,...,xpm_1} is a point
set consisting of b points in [0,1)® such that

bm—1
Z pwalg(x,) =0 for all k € Nj\ {0} with 0 < p(k) <m — 1,
n=0

then P is a (t,m, s)-net in base b. Remark: This is [96, Lemma 2]. Note

that P is in general not a digital net. Hint: Consider the Walsh series

expansion of the characteristic function of an arbitrary elementary b-

adic elementary interval of order m — ¢ and use Lemma 3.9.

Show that for the b-adic spectral test (see Exercise 3.8) of a (t,m,s)-

net P in base b we have oy, ym (P) < b'~""1. Remark: This is [96, The-

orem 4].

Show that for the b-adic spectral test of a strict digital (¢, m, s)-net P

in base b we have o ym (P) = b'=™~1. Remark: This is [96, Corollary 8].
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Discrepancy estimates and average type results

The motivation for introducing and studying the concept of (¢, m,s)-nets
and (T, s)-sequences was to generate point sets (also sometimes in high
dimensions) with discrepancy as small as possible. In this chapter we give
an overview on theoretical results for the discrepancy of (digital) nets and
sequences.

While singular results were already given by Sobol’ [251] and by Faure [66],
a first systematic study of the discrepancy of nets was given by Niederre-
iter [170]. These results can also be found in [175, Chapter 4]. Further results
on the star discrepancy of digital nets and sequences, mainly for low dimen-
sions, can be found in [40, 69, 70, 72, 123, 124, 142, 143, 211].

After the work of Niederreiter in [170] and [175], metrical and average
results on the discrepancy of nets and net-sequences were given, see, for
instance, [132, 133, 134, 136, 138]. Further, also the study of weighted dis-
crepancy of net-type point sets received considerable attention in recent
years (see, for example, [49, 144]).

Even though we have many results for the extreme and star discrep-
ancy, very little is known about concrete theoretical estimates for the L,-
discrepancy, especially for net-type point sets. Singular results in this direc-
tion can be found in [20, 22, 73, 140, 141, 210, 242] (results concerning the
Lo-discrepancy are presented in Chapter 16).

The aims of this chapter are the following:

1. We illustrate the ideas underlying all discrepancy estimates for (¢, m, s)-
nets with help of detailed elaborated and illustrated proofs of a few dis-
crepancy results.

2. We give a collection of concrete discrepancy estimates for net-type point
sets with references for their proofs.
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3. We give a discussion on these results concerning their value for applica-
tions.

4. We give a collection of metrical and average type estimates for the quality
parameter and the discrepancy of net-type point sets.

5.1 Discrepancy estimates for (¢,m, s)-nets and (T, s)-sequences

In this section we give a collection of concrete star discrepancy estimates for
net-type point sets and sequences and we illustrate the ideas underlying all
such estimates.

Star discrepancy estimates for (t,m,s)-nets

The most important and general applicable concrete discrepancy estimates
for (t,m, s)-nets are the following two results given by Niederreiter in [175,
Theorem 4.5 and Theorem 4.6].

Theorem 5.1 The star discrepancy of a (t,m,s)-net P in base b > 3

satisfies
s—1 i
(T

=0
Theorem 5.2  The star discrepancy of a (t,m,s)-net P in an even base b
satisfies

b D (P) < btjz_; (mz—t> <g>+<g _ 1> bt:z_:: <m—t;—i+1> <g>

For applications the case b = 2 is of importance. For this case we obtain
the following corollary from the last result.

Corollary 5.3 The star discrepancy of a (t,m,s)-net P in base b = 2
satisfies

s—1
2" Dy (P) <28y (ml_ t).
=0

Below we present a detailed and self-contained proof for this bound.

Both of the above theorems give results for even bases b > 4. For the
special cases s = 2,3, and 4 alternative estimates are given which in some
cases give improvements of the results that can be derived from Theorem 5.1
for these cases.
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The corresponding result for s = 2 was proved by Dick & Kritzer [41,
Theorem 1] (see also [142, Theorem 5] for the special case of digital (0, m, 2)-
nets over Zs).

Theorem 5.4 For s = 2, the star discrepancy of a (t,m,s)-net P in base
b satisfies

0" D (P) < 0™ Dot (Hpm—t) + b,
where Hpym—y denotes the two-dimensional Hammersley point set in base b
consisting of b™ ! points (see Definition 3.44). If m —t > 2 we obtain
b? 9 1
b™ Dym <P ——m—t)+=+ =),
i (P) < (4(b+1)(m )Tt b>

for even bases b > 2 and
b—1 9 1
0™ Dy (P) < b (T(m —t) + =+ —) :

for odd bases b > 3.

Remark 5.5 This result improves [175, Theorem 4.7], which states that
for s = 2 the star discrepancy of a (¢,m, s)-net P in base b satisfies

b D (P) < b V"Tl(m - SJ .

Remark 5.6 It follows from Theorem 5.4 that among all (0,m,2)-nets
in base b, the two-dimensional Hammersley point set in base b consisting
of b™ points (which is of course itself a (digital) (0,m,2)-net in base b by
Lemma 4.13) has, up to the term b°, the worst star discrepancy.

The following result for nets in dimension s = 3 is [175, Theorem 4.8].

Theorem 5.7 For s = 3, the star discrepancy of a (t,m,s)-net P in base
b satisfies

2
b7 Dy (P) < ¥ K%) m -2+ 2L m 1)+ 2

Remark 5.8 For digital (0, m, 3)-nets P over Zs we have the improvement
2™ D4 (P) < m?/6 + O(m), by [211, Theorem 1].
The following result for nets in dimension s = 4 is [175, Theorem 4.9].

Theorem 5.9 For s =4, the star discrepancy of a (t,m,s)-net P in base
b satisfies

b Dym (P)
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- 3 o 2 _

These estimates are used by Niederreiter [175, Theorem 4.10] to obtain
the following asymptotic result for the discrepancy of (¢,m, s)-nets in base
b.

Theorem 5.10 The star discrepancy of a (t,m,s)-net P in base b with
m > 0 satisfies

b D (P) < B(s, b)b'm* ™ 4+ O(b'm*~2), (5.1)
where the implied O-constant depends only on b and s. Here B(s,b) =

(b_Tl)s_l if either s =2 or b =2, s = 3,4; otherwise B(s,b) = %.

Remark 5.11 Using the same method as Niederreiter, Kritzer [123] im-
proved the values of B(s,b) by a factor of roughly 1/2.

Proof of Theorem 5.10 For the expression in Theorem 5.1, for large enough

m we have
v ()T
< ¥ E J o (T:__Q Y E J e
< EJ o % +O(b'm*?)

with an implied O-constant depending only on s and b. For the expression
in Theorem 5.2, analogously, we have

ECE) 6RO TT6
() )

b o t s—2
+ 2 b's(m—t+s—1)
< pt é o L_l + O(btmsﬂ)
- 2 (s —1)!

with an implied O-constant depending only on s and b. Hence the result



Appendix A

Walsh functions

Walsh functions play a very important role in the analysis of digital nets
over Zyp. In this Appendix we recall the definition of Walsh functions and
we provide some important and useful results concerning these functions.
Many of these results are used within this book without further comment.
A standard reference for the theory of Walsh functions is the book of Schipp,
Wade & Simon [230]. This overview here is mainly based on [214].

A.1 Definition of Walsh functions

In 1923 Walsh [258] introduced a system of functions which is in some way
similar to the trigonometric function system {e*"** . k € Z} which is
connected to the well known Fourier theory. (However, the differences will
become clear in a moment.)

For b > 2 we denote by w, the primitive bth root of unity €27/t

Definition A.1 Let k € Ny with b-adic expansion k = kg —+r1b+kob?>+- -
(this expansion is obviously finite). The kth b-adic Walsh function pwaly, :
R — C, periodic with period one, is defined as

pwaly,(z) = wposiTmsatrtst

)

for x € [0,1) with b-adic expansion z = &b™1 + &b 2 + &b~ 3 + -+ (unique
in the sense that infinitely many of the digits & must be different from b—1).
We call the system {,waly : k € Ny} the b-adic Walsh function system.

In the literature the function system defined above is often called the
generalised Walsh function system. Only in the case b = 2 one speaks of
Walsh functions. However, within this book we also speak of Walsh functions
in the more general b-adic case.
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One of the main differences between Walsh functions and the trigonomet-
ric functions is that Walsh functions are only piecewise continuous. This is
clear, since Walsh functions are step functions as we show now.

Let k € Ny with b-adic expansion k = kg + k10 + -+ + k10" L. Let
J=1la/b", (a+1)/b"), with an integer 0 < a < b", be a so-called elementary
b-adic interval of order r. Let a have b-adic expansion of the form a =
ag+aib+--+a,_1b" . Then any x € J has b-adic expansion z = a,_1b~ 1+
Qr_9b 2 4+ -+ agh™" + §7~+1b7("+1) + §7~+2b7("+2) + --- with some digits
0<¢& <b—1fori>r+1and hence

pwalg(z) = wfoar*l+"'+ﬁr*1a0 = pwalg(a/b").
We summarise this result in the following proposition.

Proposition A.2 Let k € N with "' < k < b". Then the kth Walsh
function pwaly is constant on elementary b-adic intervals of order r of the
form [a/b", (a+1)/b") with value ywaly(a/b"). Further, ywaly = 1 identical.

Now we generalise the definition of Walsh functions to higher dimensions.

Definition A.3 For dimension s > 2, and kq,...,ks € Ny we define the
s-dimensional b-adic Walsh function ywaly, . . :R® — C by

S
bW&1k17...7ks (.CCl, e ,a;s) = H bwalkj (JZ])
7=1
For vectors k = (k1,...,ks) € Nj and « = (z1,...,25) € [0,1)® we write,

with some abuse of notation,

bwalk(a:) = bwalkl,m’ks ($1, Ce ,:L’S).

The system {,wal, : k € Nj} is called the s-dimensional b-adic Walsh
function system.

As any s-dimensional Walsh function is a product of one-dimensional
Walsh functions, it is clear that s-dimensional Walsh functions are step
functions too.

A.2 Basic properties of Walsh functions

We introduce some notation. By & we denote the digit-wise addition modulo
b, ie., forx =32 &b and y =50, n:b~" we define

TPy = Zgb*", where (; =& +1n; (mod b),

=w



580 Walsh functions

provided that infinitely many (; are different from b — 1. By © we denote
the digit-wise subtraction modulo b, i.e.,

TOY = Zgb_i, where ;=& —n; (mod b),

i=w

provided that infinitely many (; are different from b — 1. Correspondingly,
we define ©x := 06 z. For vectors & and y we define x @y, x Sy, and Sx
component wise. Note that all these operations depend on the base b.

Proposition A.4 For all k,l € Ny we have

pywaly, - pwal; = pwalge;  and = pwaly = pwalgy.

pwaly,

Proof Let k = ko + k1b + kob® + -+ and [ = A\g + A\1b+ Xgb? + ---. Then
we have

isoRibitl Dm0 Nibitl Diso(Ri+X)Eiv1
pwaly () bwall(a:):wbz ORI a0 TR o i i20 "

O Yiso(Ri®AN)Ei
= wy = pwalgg (),
where we used the periodicity of z +— wj, and also

1 — > >0 Rikit1 > is0(6K)Eir1
—_— = = = = = 1 . O
owaly (2] wy wy pywalgg ()

As corollary to Proposition A.4 we get its multi-dimensional analogue.

Corollary A.5 For all k,l € Nj we have

1 -
bwalk- bwall = bwalk@l and = bwalk = bwalgk.
bwalk

Proposition A.6 Let k € Ny, then for all x,y € [0,1) for which x &y and
x ©y respectively is defined we have

pywalg (z) pwaly(y) = pwalg(z @ y) and pwalg(z) pwalg(y) = pwalg(x ©y),
respectively.

Proof Let k = ko+k1b+rob?>+--- and assume that z = &b 1+ &b 24 -+
and y = m b~ + b2 + - - satisfy the condition from the statement of the
proposition. Then we have

pwalg(z) pwaly(y) = szeoM&JrluszeoWHJr1

_ wbzizo Ri€ip1tnie1) _ pwaly(z @ y),
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and
bW&lk ($)WTIQ(Z/) _ wa:izO Ri§i+1wb— Zizo RiTi+1
_ wbzz'zo Ki(Eir1—niv1) — ywaly(z © ). .

Again, as corollary to Proposition A.6 we get its multi-dimensional ana-
logue.

Corollary A.7 Let k € N§, then for all z,y € [0,1)%, for which x &y and
x © y respectively is defined we have

pwalg(x)- pwalg(y) = pwalg(x®y) and pwalg(x)- pwalg(y) = pwalg(xSy),
respectively.
Lemma A.8 Forl <k <b" we have ZZT:_Ol pywalg(a/b") = 0.

Proof Let k = ko + kib+ -+ Kk,_1b" L. For s € {1,...,b— 1} we have
ZZ;E wp® = 0 by the formula for a geometric sum and hence

br—1 b—1 r—1b-1
z bwalk(a/br) _ Z wsoar—l-i‘"'-i-’%—lao _ H Zwlfjia _ 0,
a=0 ag,...,ar—1=0 1=0 a=0
as there is an ¢ € {0,1,...,r — 1} such that ; # 0. O

Proposition A.9 We have

1 .
|1 ifk=0,
/0 bwalk(m)dx—{ 0 ifk£0.
Proof We have pwalyg = 1 and hence the integral is 1 for £ = 0. Let now

k= ko+r1b+ -+ Kp_1b" 1 with k,_1 # 0. From Proposition A.2 we know
that pwaly is constant on the elementary intervals of order r. Then we have

1 b1 o(at1)/0" 1 b'—1
/ pwalg(z) do = Z / pwalg(z) dz = o Z pwalg(a/b")
0 a=0 7 a/b" a=0

and the result follows from Lemma A.8. O

The next result shows that the s-dimensional Walsh function system is
orthonormal in Lo ([0, 1]°).

Proposition A.10 For all k,1 € Nj we have

- 1 ifk=1
alg(x) pwaly(xz) de = : ’
/[07113 bW k( )bW l( ) { 0 ’lfk?él
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Proof By Corollary A.5 we have pwalg - ywal; = pwalgs;. Hence

/ pwalg(x) pwaly(x) de = / pwalgoi(x) de
[0,1] [0,1]

and the result follows from Proposition A.9. O

Theorem A.11 For fixed b,s € N, b > 2, the s-dimensional b-adic Walsh
function system is a complete orthonormal basis in Lo([0,1]%).

For the proof of this fundamental result we need some preparation.

Lemma A.12 Let b > 2 be an integer. Then the one-dimensional Lebesgue
measure A is tnvariant under digit wise addition modulo b. In other words,
for all M C [0,1) which is Lebesque measurable and for all x € [0,1) we
have A(M) = AX(M @ ), where M ®xz:={y®z : ye M}.

Proof Let z € [0,1) and y € M with z = &bt + &b 2+ -+ and y =
mb~t +meb~2 4. Then x @y is not defined, if £;+n; =b—1 (mod b) or
equivalently n; = b—1—¢; (mod b) for all indices j > jo. Hence, the subset
{y € M : y® x not defined} is countable.

Consider an elementary interval J = [a/b", (a+1)/b") with a = ag+a1b+
-+ -+a,_1b" 1. Each y € I has the b-adic expansion y = o, 10"+, _ob 2+
b agh T A 1 b0 o ob= () L with digits 0 <y < b — 1 for
all j > r+1.

Now for y € J we have

ar—1® &1 W®E | 1B &1 | 2 D&y

YyOr = -

b br pr+l prt2 o

Hence, y — y & x maps all but countably many points from J to the ele-
mentary interval

J = + . 4 +

b b b b b

w1 &1 @I 1S3 ag Dy 1)

Furthermore, for all but countably many points y € J’ we can define the
inverse mapping y — y © x. Hence ®x preserves the measure of elementary
intervals.

Since every open subset from [0, 1] can be written as a countable union of
elementary intervals it follows that y — y @ x preserves the measure of every
open subset of [0, 1) and hence the result follows for all Lebesgue measurable
subsets from [0, 1). O
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Corollary A.13 Let c € [0,1)%, then for all f € La(]0,1]°) we have

/ flx)dx = flx®c)de.
[0,1]¢ [0,1]¢

Proof 1t is enough to show the result for s = 1. Let ¢ € [0,1) and let
f € Ly([0,1]). Define g(x) = f(x ® ¢). For each M C f([0,1]) we have
g 1(M) = f~Y(M) & c and hence, by Lemma A.12, we have A(g~1(M)) =
A(f~1(M)). Now the result follows from the definition of the Lebesgue-
integral. U

Definition A.14 An s-dimensional b-adic Walsh series is a function f :
[0,1]* — C of the form

F=" Flk)ywaly
keNg

~

for certain f(k) € C which are called the Walsh coefficients or Walsh-Fourier
coefficients of the function f. Furthermore, a Walsh polynomial is a finite
Walsh series.

Remark A.15 For uniformly convergent Walsh series f one can compute
the kth Walsh coefficient by

-~

fik) = [ f@)walkie) de.
[0,1)¢
We introduce very special Walsh polynomials, the so-called Walsh-Dirichlet

kernels.

Definition A.16 For k = (ki,...,ks) € N° the kth Walsh-Dirichlet kernel
is defined as

k1—1 ks—1
Dk, = E v E bwalllywls.
11=0 ls=

Lemma A.17 Forn € Ny let b, = (b",...,b") € N* then we have
Dy, (7) = b"X[0,p-n)s (x) for z € [0,1).

Proof For s =1 we show the result by induction on n € Ng. Let z € [0,1).
We have Di(x) = pwalp(z) = 1 = bO’SX[O’bfo)(a:) and hence the result
holds for n = 0. Assume the formula holds for Dya—1(z). Then we have

b —1 b—1bm"1—1

Dy (z) = Z pwal;(z) = Z pWaljg.pn—1()
1=0

i=0 [=0
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b—1 S
= Z pwal; yn—1 () Z pwal;(x)
i=0 1=0
b—1 '
= Z bWalZ pn— 1 Dbn 1( ) (wg"’)l,
i=0

where &, is the nth digit of x in its base b expansion. The last sum is equal
to b~ tb =b" if z € [0,67"F1) and &, = 0 which is equivalent to z € [0,56™")
and equal to 0 in all other cases. Hence the result follows for s = 1.

For s > 1 the result follows immediately from the identity

b1 s b"—1
Dbn (:IZ) = Z bwallhm,l H Z bwall xl HDbn 1‘1
l1ye.,ls=0 i=1l;=
together with the result for the case s = 1. O

Proof of Theorem A.11 We know already from Proposition A.10 that Walsh
functions are orthonormal in Lo ([0, 1]°). Hence it remains to show that the
Walsh polynomials are dense in La([0, 1]°).

For n = (ni1,...,ns) € N® denote by Sy, (x, f) the nth partial sum of the
form

ni—1 ns—1
Sp(@, f) =Y > fO)pwaly, . (2),
11=0 1s=0

with f(1) f[o 1) f(#) ywaly(2) dt. Then we have

ni—1 ns—1
=Y > (/ f(t)pwaly, g (2 )dt> pwaly, ()
11=0 1s=0
ny—1 ns—1
Z Z pwaly, j (xot)dt
(0.1 11=0
[ ft)Da@ot) dt:/ F@ o t)Da(t) dt.
[0,1)s [0,1]s

With the help of this formula we can now estimate the approximation error
for certain partial sums. With Lemma A.17 we obtain

b, (@. )~ f(@)| = | [ f@et)Dy,(t)dt— b / f(z)dt

[0,6-7)°

[0,1]°
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— b’nS

/ (fl@et) — fa)dt
[0,b—™)s

/ (f(t) - f(w)) dt
xOo[0,b—n)s
< sup {|f(t) — f(x)] : z, t e x |0, b_”)s} b Xs(x © 10,67 ™)%).

— b?’LS

Assume now that f € C([0,1]°). Hence f is also uniformly continuous
on [0,1]° and thus for every ¢ > 0 there exists an Ny = Np(e) such that
for all n > Ny and for all x,y € [0,1]° with |z — Y| < b™" we have

[flx) = fly)l <e
Obviously A (x ©[0,b67™)%) = b~ and hence we obtain

|Sb, (e, ) — f(x)| <e

for all n > Ny(e) and this holds independently from « as f is uniformly
continuous. Hence

||Sbn(ma ) - f”oo <e€

for all n > Ny(e). This means that the Walsh polynomials are dense in
C([0,1]*) with respect to the sup-norm || - | which in turn is dense in
L5(]0,1]*) with respect to the Ly-norm || - ||2. Hence the Walsh polynomials
are dense also in Ly([0, 1]°).

Since L9 ([0,1]%) is a Hilbert space, we have now that the Walsh functions
are a complete orthonormal system in L ([0, 1]°%). O

Note that Bessel’s inequality

F 2 Zr 2 Zr .
S IFwE < [ i@k (A1)

keNé [ ’ ]

holds for functions f € La([0,1]*). Since
0< [ 1f(@) -~ Sala ) do
(0,1}

= Zr 2 r — xr xr xr
=), @l | @S

[0,1]*

- / F@)Sn(, f)dz + / S, f)[? de
[0,1]¢

[0,1]°

ni—1 ns—1

:/[ol]s |f(2)]* dz — Z Z ROAT (A2)

11=0 ls=0
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~

we have 2?11;01 e 22:01 1f(l1, ..., 1)]? < f[O,l}S |f(x)|? dz, and by consid-
ering nq,...,ns — oo the result follows. We also have the following lemma.

Lemma A.18 Let {ar € C: k € Nj} be a set of complex numbers such
that ZkeNg lag|? < oo. Then the Walsh series ZkeNg ag pwalg converges in
Ly([0,1]°).

Proof Since Ly(]0,1]%) is complete, we only need to show that the partial

sums Sy, = 221;01 e ZZS;()I aiy,...1,pwaly, ., where n = (ng,...,ng) € N%,
form a Cauchy sequence in Ls([0, 1]%).
Indeed, for any n,n’ € Nj with n = (n;,...,n,) and n' = (n},...,n)),
where we assume that n; > nf,...,ns > n}, we have
ny—1 ns—1
/ [Sn(@, f) = Swla, )P de= 3" - > a.0> =0
[0,1]* Li=n!  ls=nl
as n},...,n., — oco. Thus the partial sums S, form a Cauchy sequence and
hence the result follows as La([0, 1]°) is complete. O

The completeness of the Walsh function system shown in Theorem A.11
is equivalent to the statement that Plancherel’s identity

/ @)z =3 |fk)?
[0,1] keN;

holds. This is shown in the following theorem (see for example [117, Sec-
tion I.5] for a more general statement).

Theorem A.19 The following statements are equivalent:

(a) The Walsh function system is complete in Lo([0,1]%).
(b) For every f € Lo([0,1]%) we have

xr 2 r = £ 2.
[, @ e = 3 1)

keN;

(c) For every f € La([0,1]%) we have

11500y Ts =00

i [ 15@) = Sup )P =0
[0,1]°

Proof The equivalence of (b) and (c) follows from (A.2).
Assume now that (b) holds. Let (g,h)r, = f[o 1 g(x)h(x) dx denote the
inner product in Ly([0,1]°). If a function f € Ly([0,1]*) is orthogonal to

pywaly, for all k € N§ it follows that f(k) = (f, ywalg)r, = 0 for all k € Nj
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and (b) implies that f[0,1]s |f(2)|>dx = 0. Thus the Walsh function system
is complete in Ly([0,1]*) and hence (b) implies (a).

Assume now that (a) holds. We complete the proof by showing that (c)
follows. From Bessel’s inequality and Lemma A.18 it follows that for every
f € La([0,1]°) we have S(, f) = Ypens F(k)pwalk € Lo([0,1]°). Hence
(f =S, f), pwalg) = 0 for all k € N§. Thus, if the Walsh function system
{pwal, : k € Nj} is complete, it follows that f[o,l}s |f(x) — S(z, f)|>dx =
0. U

A.3 Convergence of the Walsh series

For our purposes here we need strong assumptions on the convergence of the

~

Walsh series > ;7 f(k)pwaly(z) to the function f, i.e., we require that the
partial series 21’;4:0 F(k) ywalg(2) converges to f(z) at every point x € [0,1)
as L — oo.

For continuous functions f : [0,1) — R we can use the argument in [77, p.
373] to show that certain partial sums of the Walsh series converge at every
point = € [0,1) to the function value f(x). Indeed, for a given x € [0,1) we

have

bt—1 N 1 bt—1
() pwala(a) = [ 7)Y swali (o) wali(y) dy
k=0 0 k=0

, b7£ LbZ;J +b7€
v [ 7 ) dy.
b=t bl

As the function f is continuous it follows that Zzl;()l f(k:) pywalg (x) converges
to f(x) as I — oo. Hence, if the partial sums Zé:o f(k)pwalg(z) are a
Cauchy sequence, then we also have that Zé:o f(k:) pywalg(x) converges to
f(x) as L — oo.

For instance, if 72 |F(k)| < 0o, then the partial sums S Fk) ywaly,(z)
are a Cauchy sequence and hence Zzlz_ol f(k) ywaly(z) converges to f(z) as
[ — oo. In this case the convergence is even uniformly in x.

We have shown the following result which is sufficient for our purposes.
For more elaborate results in this direction see [230].

Theorem A.20 Let f:[0,1] — R be a continuous function and assume
that Y 12| f(k)] < oo. Then Zﬁ:o f(k)pwalg(x) converges uniformly to
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f(x) as L — oo and we have

o)

Z Yywalg(x) for all z € [0,1).
k=0

Remark A.21 We remark that in [258] it was shown that there are con-
tinuous functions f for which Zk of ( ) pwalg(x) does not converge at some
given point x as L. — oo. Therefore continuity is not a sufficient condition
to ensure that Zﬁ:o F(k) pywalg(z) is a Cauchy sequence.

However, Walsh [258] already proved the following result. If the function
f is not merely continuous, but has bounded variation (for instance, if f
has a derivative which is square integrable, i.e., fol If'(y)|?dy < oo, then f
has bounded variation), then it follows that i:o f(k:) pwaly () is a Cauchy
sequence for every x. Hence, in this case we have Z£:0 pwalg(z) — f(x) as
L — oo for all z.

The argument above can also be extended to continuous functions f :
[0,1)° — R, see Exercise A.9.

A.4 Walsh series expansions of a certain function

In this section we provide the b-adic Walsh series representations of a func-
tions which is used throughout this book.

Lemma A.22 Forb > 2 an integer and x € [0,1) we have

b—1

Z Z ba bwalmbafl(x)- (AS)

a=1 k=1 -

Proof Letx =&b 1 4&b 724+ and k = kq_ 109! +- - -+ K1b+ Ko, where
Kq—1 # 0. Then we have

1
/ (z — 1) pwaly(z) dz
0

-1 b ST
_ Z . Z —(&1k0++Eaka— 1)/ » (l‘ . %) dz
§=0  £=0 toa
b—1 b—1
1 _ _
- wbémo,..zwbﬁaﬁa—l (%4_..._{_%), (A.4)

&1=0 £a=0
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where we used the facts that

£i1+...+57a+i

T e L (8. S 1i_
Gt ( 2)dxb‘l(b+ T AV
b b

andz:E —0 bé‘m“ '=0for ko1 # 0. For any digits 0 < &;,...,&_1 <b—1
we have

T
2
|

b—1 b—1
fa 1 ga —&aka—1 fa —&aRka—1
< b e = 2 e
§a=0 ga:()

as for kq_1 # 0 we have

b—1 b—1 b
Z w;&ﬁ“_l =0 and Z §aw;£“”“_1 =—. (A.5)
gazo gazo wb a—1 o 1
Therefore we obtain from (A.4)
/1 b b—1 b—1
1 _ —§1K0 —§a—1Ka—2
(x — 5) pwalg(z) de = — Z wy Z wy .
0 bza(wb f - 1) {120 {a—lZO
For an integer 0 < k < b — 1 we use
Zw_gﬁ if kK = 0,
a 0 if K #0,
and obtain
1 — L ifkg=--=ke 0 =0,
/ (95— %) pwaly(z) doe = b%(w, " t-1) 0 o
0 0 otherwise.
Thus, for = € [0,1), we have
oo b—1
Z Z b bwalﬁbaq (). O
a=1 k=1 -

With Lemma A.22 we can prove a formula for a trigonometric sum which
is often used throughout this book.

Corollary A.23 Forb>2 and forle {—(b—1),...,b— 1} we have

b2 —1

2jude = b) + —5

sin?(kr/b)
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In particular, Zi;ll sin~?(km/b) = (b —1)/3.

Proof Using Lemma A.22 and the orthogonality properties of the Walsh
functions (see Proposition A.10) we obtain (see also (12.8))

oo b—1

2 —ylPdedy = =
;;WW //MMwyG
and hence

bi (.

£ Jwp — 12 12

For 1 <1 <b—1 we use (12.7), which states that for any z,y € [0,1) we

have
/ (@& 0) - (y@ o) do

oo b—1

= - — 22 Z b2a|w 1’2 bWalﬁba 1( )bwalnba71<y).

a=1 k=1

Take x =1/b and y = 0, then the left hand side of the equation yields
Y
/ |(z y@a’zda—/ (—@U)—U
o |\b
2 1
-0
do + / l <T + a) -0

2
do

2
do

b b2
I(b—1)
b2
and for the right hand side we obtain

b
_b—ll2+<1_b—l> (1 —b)?

oo b—1

QZZ b2a’ ] ‘2 pwal,pa— 1( )m

a=1 k=1
b—1 [e%S)

1 12
:6_22b2|w QZanZp;;—n?
K= k=1
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o1 28wl
T _ﬁ;wg—u?‘

Thus, for 0 <1 <b—1 we have

b—1 Kl 2
Wh 1 —0) b -1
= . A.
; jwi — 12 > 1 (A.6)

To show that (A.6) holds for —(b—1) <1< —1,usez =0and y = —1/b
in the argument above. The details are omitted.
Further observe that |wff — 1|2 = [e™1%/0|2|e7i#/b _e=m1k/0|2 = 4 gin? (y7r /b)

and therefore we have the desired result for —(b—1) <1 <b—1. O
Exercises

A.1 Show that a Walsh function can only take finitely many function values,
namely the bth roots of unity.

A.2 For k € Ny, the kth Rademacher function r, : R — R, periodic with
period one, is defined by ro(z) = 1 for all x € [0,1) and for k € N,
re(z) = (—=1)7 if x € [j/2F, (j +1)/2F) for some integer 0 < j < 2% — 1.
1. Show that the system of Rademacher functions is a sub-class of the

dyadic (i.e., b = 2) Walsh function system.
2. For b = 2, give a definition of Walsh functions in terms of Rademacher
functions.

A3 Let k= (ki,...,ks) € N§ with b"i < k; < b"i™! for all 1 <i < s. Show
that pwalg is constant on an elementary interval of the form

f[ [ a; a; + 1)
i=1 bre o
where 0 < a; < b™ are integers for all 1 <i < s.
A.4 Show that we have
1 -
- = 1 = 1
vl @)~ k(z) = pwal,(O)
whenever Oz is defined.

A5 Let f:]0,1)° — R be a function which is constant on any interval of
the form []7_,[a;b™", (a; +1)b~") with integers 0 < a; < b". Show that
f is a Walsh polynomial.

A.6 Show that for all k € N* we have f[o 1 Dy(x)dx = 1.

A.7 Verify Bessel’s inequality (A.1) for the function f(z) = x2.
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A.8 Show that the Rademacher functions, defined in Exercise A.2, are not
complete.

A.9 Show that the result on the convergence of Walsh series in Section A.3
also holds for s-dimensional continuous functions f : [0,1]* — R for

which ZkeNg |f(k)| < co. Hint: See [37, Section 3.3] for the result.

~

A.10 Define a function f : [0,1) — R for which > ;2 |f(k)| = oco.
A.11 Let b =2and f(x) = x. Draw the graphs of f and of Zilz_ol F(k) pwaly(z)
for [ = 0,1,2,3.



Notation

Note: In the following we list only symbols that are used in a global context.

Some specific sets and numbers

N Positive Integers.

Ny Nonnegative Integers.

7z Integers.

R Real numbers.

C Complex numbers.

Zy, Residue class ring modulo b (we identify Z; with
{0,...,b— 1} with addition and multiplication
modulo b).

Iy, Finite field with b elements for a prime power b
(if b is a prime, then we identify Fj, with Z;). The
elements of Fy, (for b not a prime) are sometimes
denoted by 0,1,...,b— 1.

|X| Cardinality of a set X.

xm The m fold Cartesian product of a set X.

(xm™)T The set of m-dimensional column vectors over X.

P Finite point set in [0,1)* (interpreted in the sense
of the combinatorial notion of “multiset”, i.e., a
set in which the multiplicity of elements matters.

S Infinite sequence in [0, 1)%.

Zs Index set {1,...,s}.

uo, Subsets of Zs.

Pu Point set in [0, 1) consisting of the points from
‘P projected to the components given by u C Z.

Fylz], Zp|x] Set of polynomials over Fy, or Zj.
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Fy((x71)), Zy((x~1)) Field of formal Laurent series over Fy, or Zj,.

Gom Gom = {q € Fo[z] : deg(q) <m}.

04 Set of nonnegative weights, i.e., v = {7y, : u C Z,}.
In the case of product weights v = (;);>1 is under-
stood as the sequence of one-dimensional weights.
In this case we set vy = [[;c, Vi-

i i=+-1

wy wp = 2™,

Vectors and matrices

a,bc,....x,y,z Row vectors over N, Ny, Z or R.

a,b,c,...,x,y,z Row vectors over Fy, or Zy,.

a' b, .. Transpose of a vector a, b, ... in [ or Z;.

x-y (or x-y) Usual inner product of the two vectors & and y

(or x and y respectively).
Ty For an s-dimensional vector = (z1,...,zs) and
for u C Z, the |u|-dimensional vector consisting of
the components of & whose index belongs to u, i.e.,
@y = (x;)iey. For example, for @ = (%, %, %, %, %)
€[0,1)° and u = {2,3,5} we have &, = (3, 3, 5)-
(xy, 1) For an s-dimensional vector © = (z1,...,xs) and
for u C Zs the s-dimensional vector whose ith component is z; if ¢ € u and
@ and u as above we have (xy,1) = (1, %, %, 1, %)

(xy,0) Like (x,,1) with one replaced by zero.

(zy, w) For w = (wy,...,ws) the vector whose ith component is z; if i € u and w; i

A,B,C,D, m x m or N x N matrices over [,.

AT Transpose of the matrix A.

c(m) Left upper m x m sub-matrix of a matrix C.

C/(mxn) Left upper m x n sub-matrix of a matrix C.

Some specific functions

dln, dtn d divides n (d does not divide n).

{z} Fractional part of a real number z.

|z ] Integer part of a real number z, ie., |z] =z — {z}.

[x] The smallest integer larger than or equal to x.

log Natural logarithm of x.

logy =

Base b logarithm of z.
a Complex conjugate of a complex number a.
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bwalk
X ()

©b

AS)

A(J,N,S)

A(J,N,P)

Notation

kth b-adic Walsh function (see Definition A.1).
Characteristic function of a set J, i.e., xs(z) =1 if
x€Jand xyj(x)=0ifx & J.

b-adic radical inverse function (see Definition 3.10).
Bijection from {0,...,b— 1} — F.

Inverse of the bijection ¢ : {0,...,b— 1} — F,.

For S = (z,,)r>0 the number of indices n, 0 < n < N,
for which the point @, belongs to J.

For a P = {xo,...,xy_1} the number of indices n,

0 <n < N, for which the point «,, belongs to J.
s-dimensional Lebesgue measure (for s = 1 simply ).
Star discrepancy (see Definition 2.2 and 2.14).
Weighted star discrepancy (see Definition 3.59).
Extreme discrepancy (see Definition 3.13).
L,-discrepancy (see Definition 3.19).

Weighted L,-discrepancy (see Definition 3.59).

kth Bernoulli polynomial.

For f,g :R—R, f >0, g(z) = O(f(z)) for x — a if
there exist C,d > 0 such that |g(z)| < Cf(z) for all
x with |z —a| < § (or x > ¢ if a = 00).

Projection of ¢ € FbN onto its first m components.

tr (k) = ko + K1b + - -+ + Ky 1™ for k € Ny with
b-adic expansion k = - Kb

trp(K) = (Ko ..., km—1) | for k € Ny with b-adic
expansion k =3~ Kb

Integral of the function f over the s-dimensional unit
cube, ie., I(f) = f[O,l]s f(x)dx.

Quasi-Monte Carlo (QMC) rule for f and an N-element point
set P = {@o,...,xn_1}, ie., Qn(f) = & n o f(@n).
Probability.

Expectation.

Variance.

Li-norm; |x|; = |x1| + -+ + |xg| if & = (21, ..., 25).
Maximum norm; |&|e = maxj<i<s |;| if € = (1,...,xs).
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Sobolev space
anchored, 49
unanchored, 48, 49, 475
unanchored (weighted), 387

square of order b, 251

star discrepancy, 31, 44, 70, 109

strength, 168, 256, 257, 488

superposition of digital nets, 239

support (of a divisor), 602

(t,m, s)-net in base b, 132

quality parameter, 133

star discrepancy, 198-200, 207, 215

weighted star discrepancy, 213, 248
trace code for digital nets, 311
tractability

polynomial, 104, 111

strong, 111, 239, 339, 378, 402
triangle inequality

for the discrepancy, 72

for the worst-case error, 41
(T, s)-sequence in base b, 148

quality function, 148

star discrepancy, 208-210, 213

strict, 148

uniformly distributed modulo one, 151

well-distributed modulo one, 152
(t, s)-sequence in base b, 148

quality parameter, 148

star discrepancy, 211, 212

strict, 148

uniformly distributed modulo one, 151

well-distributed modulo one, 152
((tw)p£ucz,» M, s)-net in base b, 248

quality parameter, 248

weighted star discrepancy, 248
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unbiased estimator, 419
uniform distribution modulo one, 60
(u, u + v)-construction, 305, 309

valuation, 593
discrete, 593
equivalent, 595
normalised, 593
valuation ring, 595
van der Corput sequence, 68, 154, 155, 158,
159, 194
van der Corput-Halton sequence, 87
variation
fractional order, 462
in the sense of Hardy and Krause, 46
total, 24, 46, 463

Walsh

coefficients, 452, 453, 457, 462, 464, 468,

475, 583

function, 578, 579

function system, 578, 579

polynomial, 583

series, 454, 481, 583

space, 35

space (weighted), 57
Walsh-Dirichlet kernel, 421, 583
Walsh-transform, 534
weighted

Lg-discrepancy, 109

star discrepancy, 109
weights, 109

finite order, 109

product, 109, 387
well-distribution modulo one, 60
Weyl criterion

(for the Walsh function system), 65

(for the trigonometric function system), 62
worst-case error, 33, 39, 41, 385

Xing-Niederreiter sequence, 298
Zaremba’s identity, 30, 45
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